blob: 046682a3c22c8a7c7e7222bfefe63d5ad0424830 [file] [log] [blame]
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include <chrono>
#include "gtest/gtest.h"
#include "pw_chrono/system_clock.h"
#include "pw_sync/mutex.h"
using pw::chrono::SystemClock;
namespace pw::sync {
namespace {
extern "C" {
// Functions defined in mutex_facade_test_c.c which call the API from C.
void pw_sync_Mutex_CallLock(pw_sync_Mutex* mutex);
bool pw_sync_Mutex_CallTryLock(pw_sync_Mutex* mutex);
bool pw_sync_Mutex_CallTryLockFor(pw_sync_Mutex* mutex,
pw_chrono_SystemClock_TickCount for_at_least);
bool pw_sync_Mutex_CallTryLockUntil(
pw_sync_Mutex* mutex, pw_chrono_SystemClock_TimePoint until_at_least);
void pw_sync_Mutex_CallUnlock(pw_sync_Mutex* mutex);
} // extern "C"
static constexpr auto kArbitraryDuration = std::chrono::milliseconds(42);
// We can't control the SystemClock's period configuration, so just in case
// duration cannot be accurately expressed in integer ticks, round the
// duration w/ duration_cast.
static constexpr auto kRoundedArbitraryDuration =
std::chrono::duration_cast<SystemClock::duration>(kArbitraryDuration);
static constexpr pw_chrono_SystemClock_TickCount kRoundedArbitraryDurationInC =
kRoundedArbitraryDuration.count();
// TODO(pwbug/291): Add real concurrency tests once we have pw::thread.
TEST(Mutex, LockUnlock) {
pw::sync::Mutex mutex;
mutex.lock();
// Ensure it fails to lock when already held.
EXPECT_FALSE(mutex.try_lock());
mutex.unlock();
}
Mutex static_mutex;
TEST(Mutex, LockUnlockStatic) {
static_mutex.lock();
// Ensure it fails to lock when already held.
EXPECT_FALSE(static_mutex.try_lock());
static_mutex.unlock();
}
TEST(Mutex, TryLockUnlock) {
pw::sync::Mutex mutex;
ASSERT_TRUE(mutex.try_lock());
// Ensure it fails to lock when already held.
EXPECT_FALSE(mutex.try_lock());
mutex.unlock();
}
TEST(Mutex, TryLockUnlockFor) {
pw::sync::Mutex mutex;
SystemClock::time_point before = SystemClock::now();
ASSERT_TRUE(mutex.try_lock_for(kRoundedArbitraryDuration));
SystemClock::duration time_elapsed = SystemClock::now() - before;
EXPECT_LT(time_elapsed, kRoundedArbitraryDuration);
// Ensure it blocks and fails to lock when already held.
before = SystemClock::now();
EXPECT_FALSE(mutex.try_lock_for(kRoundedArbitraryDuration));
time_elapsed = SystemClock::now() - before;
EXPECT_GE(time_elapsed, kRoundedArbitraryDuration);
mutex.unlock();
}
TEST(Mutex, TryLockUnlockUntil) {
pw::sync::Mutex mutex;
const SystemClock::time_point deadline =
SystemClock::now() + kRoundedArbitraryDuration;
ASSERT_TRUE(mutex.try_lock_until(deadline));
EXPECT_LT(SystemClock::now(), deadline);
// Ensure it blocks and fails to lock when already held.
EXPECT_FALSE(
mutex.try_lock_until(SystemClock::now() + kRoundedArbitraryDuration));
EXPECT_GE(SystemClock::now(), deadline);
mutex.unlock();
}
TEST(Mutex, LockUnlockInC) {
pw::sync::Mutex mutex;
pw_sync_Mutex_CallLock(&mutex);
pw_sync_Mutex_CallUnlock(&mutex);
}
TEST(Mutex, TryLockUnlockInC) {
pw::sync::Mutex mutex;
ASSERT_TRUE(pw_sync_Mutex_CallTryLock(&mutex));
// Ensure it fails to lock when already held.
EXPECT_FALSE(pw_sync_Mutex_CallTryLock(&mutex));
pw_sync_Mutex_CallUnlock(&mutex);
}
TEST(Mutex, TryLockUnlockForInC) {
pw::sync::Mutex mutex;
pw_chrono_SystemClock_TimePoint before = pw_chrono_SystemClock_Now();
ASSERT_TRUE(
pw_sync_Mutex_CallTryLockFor(&mutex, kRoundedArbitraryDurationInC));
pw_chrono_SystemClock_TickCount time_elapsed =
pw_chrono_SystemClock_Now().ticks_since_epoch - before.ticks_since_epoch;
EXPECT_LT(time_elapsed, kRoundedArbitraryDurationInC);
// Ensure it blocks and fails to lock when already held.
before = pw_chrono_SystemClock_Now();
EXPECT_FALSE(
pw_sync_Mutex_CallTryLockFor(&mutex, kRoundedArbitraryDurationInC));
time_elapsed =
pw_chrono_SystemClock_Now().ticks_since_epoch - before.ticks_since_epoch;
EXPECT_GE(time_elapsed, kRoundedArbitraryDurationInC);
pw_sync_Mutex_CallUnlock(&mutex);
}
TEST(Mutex, TryLockUnlockUntilInC) {
pw::sync::Mutex mutex;
pw_chrono_SystemClock_TimePoint deadline;
deadline.ticks_since_epoch = pw_chrono_SystemClock_Now().ticks_since_epoch +
kRoundedArbitraryDurationInC;
ASSERT_TRUE(pw_sync_Mutex_CallTryLockUntil(&mutex, deadline));
EXPECT_LT(pw_chrono_SystemClock_Now().ticks_since_epoch,
deadline.ticks_since_epoch);
// Ensure it blocks and fails to lock when already held.
EXPECT_FALSE(pw_sync_Mutex_CallTryLockUntil(&mutex, deadline));
EXPECT_GE(pw_chrono_SystemClock_Now().ticks_since_epoch,
deadline.ticks_since_epoch);
mutex.unlock();
}
} // namespace
} // namespace pw::sync