blob: 91b80d9253fe98e640f35f1cb9e01e566bb17b72 [file] [log] [blame]
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include "pw_kvs/key_value_store.h"
#include <algorithm>
#include <cinttypes>
#include <cstring>
#include <type_traits>
#define PW_LOG_USE_ULTRA_SHORT_NAMES 1
#include "pw_kvs/internal/entry.h"
#include "pw_kvs_private/macros.h"
#include "pw_log/log.h"
namespace pw::kvs {
namespace {
using std::byte;
using std::string_view;
constexpr bool InvalidKey(std::string_view key) {
return key.empty() || (key.size() > internal::Entry::kMaxKeyLength);
}
} // namespace
KeyValueStore::KeyValueStore(FlashPartition* partition,
Vector<KeyDescriptor>& key_descriptor_list,
Vector<SectorDescriptor>& sector_descriptor_list,
const EntryFormat& format,
const Options& options)
: partition_(*partition),
entry_header_format_(format),
key_descriptors_(key_descriptor_list),
sectors_(sector_descriptor_list),
options_(options) {
Reset();
}
Status KeyValueStore::Init() {
Reset();
INF("Initializing key value store");
if (partition_.sector_count() > sectors_.max_size()) {
ERR("KVS init failed: kMaxUsableSectors (=%zu) must be at least as "
"large as the number of sectors in the flash partition (=%zu)",
sectors_.max_size(),
partition_.sector_count());
return Status::FAILED_PRECONDITION;
}
const size_t sector_size_bytes = partition_.sector_size_bytes();
if (working_buffer_.size() < sector_size_bytes) {
ERR("KVS init failed: working_buffer_ (%zu B) is smaller than sector size "
"(%zu B)",
working_buffer_.size(),
sector_size_bytes);
return Status::INVALID_ARGUMENT;
}
DBG("First pass: Read all entries from all sectors");
Address sector_address = 0;
sectors_.assign(partition_.sector_count(),
SectorDescriptor(sector_size_bytes));
size_t total_corrupt_bytes = 0;
int corrupt_entries = 0;
for (SectorDescriptor& sector : sectors_) {
Address entry_address = sector_address;
size_t sector_corrupt_bytes = 0;
for (int num_entries_in_sector = 0; true; num_entries_in_sector++) {
DBG("Load entry: sector=%" PRIx32 ", entry#=%d, address=%" PRIx32,
sector_address,
num_entries_in_sector,
entry_address);
if (!AddressInSector(sector, entry_address)) {
DBG("Fell off end of sector; moving to the next sector");
break;
}
Address next_entry_address;
Status status = LoadEntry(entry_address, &next_entry_address);
if (status == Status::NOT_FOUND) {
DBG("Hit un-written data in sector; moving to the next sector");
break;
}
if (status == Status::DATA_LOSS) {
// The entry could not be read, indicating data corruption within the
// sector. Try to scan the remainder of the sector for other entries.
ERR("KVS init: data loss detected in sector %u at address %zu",
SectorIndex(&sector),
size_t(entry_address));
corrupt_entries++;
status = ScanForEntry(sector,
entry_address + Entry::kMinAlignmentBytes,
&next_entry_address);
if (status == Status::NOT_FOUND) {
// No further entries in this sector. Mark the remaining bytes in the
// sector as corrupt (since we can't reliably know the size of the
// corrupt entry).
sector_corrupt_bytes +=
sector_size_bytes - (entry_address - sector_address);
break;
}
if (!status.ok()) {
ERR("Unexpected error in KVS initialization: %s", status.str());
return Status::UNKNOWN;
}
sector_corrupt_bytes += next_entry_address - entry_address;
} else if (!status.ok()) {
ERR("Unexpected error in KVS initialization: %s", status.str());
return Status::UNKNOWN;
}
// Entry loaded successfully; so get ready to load the next one.
entry_address = next_entry_address;
// Update of the number of writable bytes in this sector.
sector.set_writable_bytes(sector_size_bytes -
(entry_address - sector_address));
}
if (sector_corrupt_bytes > 0) {
// If the sector contains corrupt data, prevent any further entries from
// being written to it by indicating that it has no space. This should
// also make it a decent GC candidate. Valid keys in the sector are still
// readable as normal.
sector.set_writable_bytes(0);
WRN("Sector %u contains %zuB of corrupt data",
SectorIndex(&sector),
sector_corrupt_bytes);
}
sector_address += sector_size_bytes;
total_corrupt_bytes += sector_corrupt_bytes;
}
DBG("Second pass: Count valid bytes in each sector");
const KeyDescriptor* newest_key = nullptr;
// For every valid key, increment the valid bytes for that sector.
for (KeyDescriptor& key_descriptor : key_descriptors_) {
Entry entry;
TRY(Entry::Read(partition_, key_descriptor.address(), &entry));
SectorFromKey(key_descriptor)->AddValidBytes(entry.size());
if (key_descriptor.IsNewerThan(last_transaction_id_)) {
last_transaction_id_ = key_descriptor.transaction_id();
newest_key = &key_descriptor;
}
}
if (newest_key == nullptr) {
last_new_sector_ = sectors_.begin();
} else {
last_new_sector_ = SectorFromKey(newest_key);
}
initialized_ = true;
INF("KeyValueStore init complete: active keys %zu, deleted keys %zu, sectors "
"%zu, logical sector size %zu bytes",
size(),
(key_descriptors_.size() - size()),
sectors_.size(),
partition_.sector_size_bytes());
if (total_corrupt_bytes > 0) {
WRN("Found %zu corrupt bytes and %d corrupt entries during init process; "
"some keys may be missing",
total_corrupt_bytes,
corrupt_entries);
return Status::DATA_LOSS;
}
return Status::OK;
}
KeyValueStore::StorageStats KeyValueStore::GetStorageStats() const {
StorageStats stats{0, 0, 0};
const size_t sector_size = partition_.sector_size_bytes();
bool found_empty_sector = false;
for (const SectorDescriptor& sector : sectors_) {
stats.in_use_bytes += sector.valid_bytes();
stats.reclaimable_bytes += sector.RecoverableBytes(sector_size);
if (!found_empty_sector && sector.Empty(sector_size)) {
// The KVS tries to always keep an empty sector for GC, so don't count
// the first empty sector seen as writable space. However, a free sector
// cannot always be assumed to exist; if a GC operation fails, all sectors
// may be partially written, in which case the space reported might be
// inaccurate.
found_empty_sector = true;
continue;
}
stats.writable_bytes += sector.writable_bytes();
}
return stats;
}
Status KeyValueStore::LoadEntry(Address entry_address,
Address* next_entry_address) {
Entry entry;
TRY(Entry::Read(partition_, entry_address, &entry));
// TODO: Handle multiple magics for formats that have changed.
if (entry.magic() != entry_header_format_.magic) {
// TODO: It may be cleaner to have some logging helpers for these cases.
ERR("Found corrupt magic: %zx; expecting %zx; at address %zx",
size_t(entry.magic()),
size_t(entry_header_format_.magic),
size_t(entry_address));
return Status::DATA_LOSS;
}
// Read the key from flash & validate the entry (which reads the value).
Entry::KeyBuffer key_buffer;
TRY_ASSIGN(size_t key_length, entry.ReadKey(key_buffer));
const string_view key(key_buffer.data(), key_length);
TRY(entry.VerifyChecksumInFlash(entry_header_format_.checksum));
TRY(AppendNewOrOverwriteStaleExistingDescriptor(entry.descriptor(key)));
*next_entry_address = entry.next_address();
return Status::OK;
}
// Scans flash memory within a sector to find a KVS entry magic.
Status KeyValueStore::ScanForEntry(const SectorDescriptor& sector,
Address start_address,
Address* next_entry_address) {
DBG("Scanning sector %u for entries starting from address %zx",
SectorIndex(&sector),
size_t(start_address));
// Entries must start at addresses which are aligned on a multiple of
// Entry::kMinAlignmentBytes. However, that multiple can vary between entries.
// When scanning, we don't have an entry to tell us what the current alignment
// is, so the minimum alignment is used to be exhaustive.
for (Address address = AlignUp(start_address, Entry::kMinAlignmentBytes);
AddressInSector(sector, address);
address += Entry::kMinAlignmentBytes) {
// TODO: Handle multiple magics for formats that have changed.
uint32_t magic;
TRY(partition_.Read(address, as_writable_bytes(span(&magic, 1))));
if (magic == entry_header_format_.magic) {
DBG("Found entry magic at address %zx", size_t(address));
*next_entry_address = address;
return Status::OK;
}
}
return Status::NOT_FOUND;
}
// TODO: This method is the trigger of the O(valid_entries * all_entries) time
// complexity for reading. At some cost to memory, this could be optimized by
// using a hash table instead of scanning, but in practice this should be fine
// for a small number of keys
Status KeyValueStore::AppendNewOrOverwriteStaleExistingDescriptor(
const KeyDescriptor& key_descriptor) {
// With the new key descriptor, either add it to the descriptor table or
// overwrite an existing entry with an older version of the key.
KeyDescriptor* existing_descriptor = FindDescriptor(key_descriptor.hash());
// Write a new entry.
if (existing_descriptor == nullptr) {
if (key_descriptors_.full()) {
return Status::RESOURCE_EXHAUSTED;
}
key_descriptors_.push_back(key_descriptor);
} else if (key_descriptor.IsNewerThan(
existing_descriptor->transaction_id())) {
// Existing entry is old; replace the existing entry with the new one.
*existing_descriptor = key_descriptor;
} else {
// Otherwise, check if the entries have a duplicate transaction ID, which is
// not valid.
if (existing_descriptor->transaction_id() ==
key_descriptor.transaction_id()) {
ERR("Data loss: Duplicated old(=%zu) and new(=%zu) transaction ID",
size_t(existing_descriptor->transaction_id()),
size_t(key_descriptor.transaction_id()));
return Status::DATA_LOSS;
}
DBG("Found stale entry when appending; ignoring");
}
return Status::OK;
}
KeyValueStore::KeyDescriptor* KeyValueStore::FindDescriptor(uint32_t hash) {
for (KeyDescriptor& key_descriptor : key_descriptors_) {
if (key_descriptor.hash() == hash) {
return &key_descriptor;
}
}
return nullptr;
}
StatusWithSize KeyValueStore::Get(string_view key,
span<byte> value_buffer,
size_t offset_bytes) const {
TRY_WITH_SIZE(CheckOperation(key));
const KeyDescriptor* key_descriptor;
TRY_WITH_SIZE(FindExistingKeyDescriptor(key, &key_descriptor));
Entry entry;
TRY_WITH_SIZE(Entry::Read(partition_, key_descriptor->address(), &entry));
StatusWithSize result = entry.ReadValue(value_buffer, offset_bytes);
if (result.ok() && options_.verify_on_read && offset_bytes == 0u) {
Status verify_result = entry.VerifyChecksum(
entry_header_format_.checksum, key, value_buffer.first(result.size()));
if (!verify_result.ok()) {
std::memset(value_buffer.data(), 0, result.size());
return StatusWithSize(verify_result, 0);
}
return StatusWithSize(verify_result, result.size());
}
return result;
}
Status KeyValueStore::Put(string_view key, span<const byte> value) {
DBG("Writing key/value; key length=%zu, value length=%zu",
key.size(),
value.size());
TRY(CheckOperation(key));
if (Entry::size(partition_, key, value) > partition_.sector_size_bytes()) {
DBG("%zu B value with %zu B key cannot fit in one sector",
value.size(),
key.size());
return Status::INVALID_ARGUMENT;
}
KeyDescriptor* key_descriptor;
Status status = FindKeyDescriptor(key, &key_descriptor);
if (status.ok()) {
DBG("Overwriting entry for key %#08" PRIx32 " in sector %u",
key_descriptor->hash(),
SectorIndex(SectorFromKey(key_descriptor)));
return WriteEntryForExistingKey(
key_descriptor, KeyDescriptor::kValid, key, value);
}
if (status == Status::NOT_FOUND) {
return WriteEntryForNewKey(key, value);
}
return status;
}
Status KeyValueStore::Delete(string_view key) {
TRY(CheckOperation(key));
KeyDescriptor* key_descriptor;
TRY(FindExistingKeyDescriptor(key, &key_descriptor));
DBG("Writing tombstone for key %#08" PRIx32 " in sector %u",
key_descriptor->hash(),
SectorIndex(SectorFromKey(key_descriptor)));
return WriteEntryForExistingKey(
key_descriptor, KeyDescriptor::kDeleted, key, {});
}
KeyValueStore::iterator& KeyValueStore::iterator::operator++() {
// Skip to the next entry that is valid (not deleted).
while (++index_ < item_.kvs_.key_descriptors_.size() &&
descriptor().deleted()) {
}
return *this;
}
const KeyValueStore::Item& KeyValueStore::iterator::operator*() {
std::memset(item_.key_buffer_.data(), 0, item_.key_buffer_.size());
Entry entry;
if (Entry::Read(item_.kvs_.partition_, descriptor().address(), &entry).ok()) {
entry.ReadKey(item_.key_buffer_);
}
return item_;
}
KeyValueStore::iterator KeyValueStore::begin() const {
size_t i = 0;
// Skip over any deleted entries at the start of the descriptor list.
while (i < key_descriptors_.size() && key_descriptors_[i].deleted()) {
i += 1;
}
return iterator(*this, i);
}
// TODO(hepler): The valid entry count could be tracked in the KVS to avoid the
// need for this for-loop.
size_t KeyValueStore::size() const {
size_t valid_entries = 0;
for (const KeyDescriptor& key_descriptor : key_descriptors_) {
if (!key_descriptor.deleted()) {
valid_entries += 1;
}
}
return valid_entries;
}
StatusWithSize KeyValueStore::ValueSize(std::string_view key) const {
TRY_WITH_SIZE(CheckOperation(key));
const KeyDescriptor* key_descriptor;
TRY_WITH_SIZE(FindExistingKeyDescriptor(key, &key_descriptor));
Entry entry;
TRY_WITH_SIZE(Entry::Read(partition_, key_descriptor->address(), &entry));
return StatusWithSize(entry.value_size());
}
Status KeyValueStore::FixedSizeGet(std::string_view key,
byte* value,
size_t size_bytes) const {
// Ensure that the size of the stored value matches the size of the type.
// Otherwise, report error. This check avoids potential memory corruption.
StatusWithSize result = ValueSize(key);
if (!result.ok()) {
return result.status();
}
if (result.size() != size_bytes) {
DBG("Requested %zu B read, but value is %zu B", size_bytes, result.size());
return Status::INVALID_ARGUMENT;
}
return Get(key, span(value, size_bytes)).status();
}
Status KeyValueStore::CheckOperation(string_view key) const {
if (InvalidKey(key)) {
return Status::INVALID_ARGUMENT;
}
if (!initialized()) {
return Status::FAILED_PRECONDITION;
}
return Status::OK;
}
// Searches for a KeyDescriptor that matches this key and sets *result to point
// to it if one is found.
//
// OK: there is a matching descriptor and *result is set
// NOT_FOUND: there is no descriptor that matches this key, but this key
// has a unique hash (and could potentially be added to the KVS)
// ALREADY_EXISTS: there is no descriptor that matches this key, but the
// key's hash collides with the hash for an existing descriptor
//
Status KeyValueStore::FindKeyDescriptor(string_view key,
const KeyDescriptor** result) const {
const uint32_t hash = internal::Hash(key);
Entry::KeyBuffer key_buffer;
for (auto& descriptor : key_descriptors_) {
if (descriptor.hash() == hash) {
TRY(Entry::ReadKey(
partition_, descriptor.address(), key.size(), key_buffer.data()));
if (key == string_view(key_buffer.data(), key.size())) {
DBG("Found match for key hash 0x%08" PRIx32, hash);
*result = &descriptor;
return Status::OK;
} else {
WRN("Found key hash collision for 0x%08" PRIx32, hash);
return Status::ALREADY_EXISTS;
}
}
}
return Status::NOT_FOUND;
}
// Searches for a KeyDescriptor that matches this key and sets *result to point
// to it if one is found.
//
// OK: there is a matching descriptor and *result is set
// NOT_FOUND: there is no descriptor that matches this key
//
Status KeyValueStore::FindExistingKeyDescriptor(
string_view key, const KeyDescriptor** result) const {
Status status = FindKeyDescriptor(key, result);
// If the key's hash collides with an existing key or if the key is deleted,
// treat it as if it is not in the KVS.
if (status == Status::ALREADY_EXISTS ||
(status.ok() && (*result)->deleted())) {
return Status::NOT_FOUND;
}
return status;
}
Status KeyValueStore::WriteEntryForExistingKey(KeyDescriptor* key_descriptor,
KeyDescriptor::State new_state,
string_view key,
span<const byte> value) {
// Find the original entry and sector to update the sector's valid_bytes.
Entry original_entry;
TRY(Entry::Read(partition_, key_descriptor->address(), &original_entry));
SectorDescriptor* old_sector = SectorFromKey(key_descriptor);
SectorDescriptor* sector;
TRY(FindOrRecoverSectorWithSpace(&sector,
Entry::size(partition_, key, value)));
DBG("Writing existing entry; found sector %u (%#" PRIx32 ")",
SectorIndex(sector),
SectorBaseAddress(sector));
if (old_sector != SectorFromKey(key_descriptor)) {
DBG("Sector for old entry (size %zu) was garbage collected. Old entry "
"relocated to sector %u",
original_entry.size(),
SectorIndex(SectorFromKey(key_descriptor)));
old_sector = SectorFromKey(key_descriptor);
}
TRY(AppendEntry(sector, key_descriptor, key, value, new_state));
old_sector->RemoveValidBytes(original_entry.size());
return Status::OK;
}
Status KeyValueStore::WriteEntryForNewKey(string_view key,
span<const byte> value) {
if (key_descriptors_.full()) {
WRN("KVS full: trying to store a new entry, but can't. Have %zu entries",
key_descriptors_.size());
return Status::RESOURCE_EXHAUSTED;
}
SectorDescriptor* sector;
TRY(FindOrRecoverSectorWithSpace(&sector,
Entry::size(partition_, key, value)));
DBG("Writing new entry; found sector: %u", SectorIndex(sector));
// Create the KeyDescriptor that will be added to the list. The transaction ID
// and address will be set by AppendEntry.
KeyDescriptor key_descriptor(key);
TRY(AppendEntry(sector, &key_descriptor, key, value, KeyDescriptor::kValid));
// Only add the entry when we are certain the write succeeded.
key_descriptors_.push_back(key_descriptor);
return Status::OK;
}
Status KeyValueStore::RelocateEntry(KeyDescriptor& key_descriptor) {
struct TempEntry {
Entry::KeyBuffer key;
std::array<byte, sizeof(working_buffer_) - sizeof(key)> value;
};
auto [key_buffer, value_buffer] =
*std::launder(reinterpret_cast<TempEntry*>(working_buffer_.data()));
DBG("Relocating entry at %zx for key %" PRIx32,
size_t(key_descriptor.address()),
key_descriptor.hash());
// Read the entry to be relocated. Store the entry in a local variable and
// store the key and value in the TempEntry stored in the static allocated
// working_buffer_.
Entry entry;
TRY(Entry::Read(partition_, key_descriptor.address(), &entry));
TRY_ASSIGN(size_t key_length, entry.ReadKey(key_buffer));
string_view key = string_view(key_buffer.data(), key_length);
StatusWithSize result = entry.ReadValue(value_buffer);
if (!result.ok()) {
return Status::INTERNAL;
}
const span value = span(value_buffer.data(), result.size());
TRY(entry.VerifyChecksum(entry_header_format_.checksum, key, value));
SectorDescriptor* old_sector = SectorFromKey(key_descriptor);
// Find a new sector for the entry and write it to the new location.
SectorDescriptor* new_sector;
TRY(FindSectorWithSpace(&new_sector, entry.size(), old_sector, true));
TRY(AppendEntry(
new_sector, &key_descriptor, key, value, key_descriptor.state()));
// Do the valid bytes accounting for the sector the entry was relocated from.
old_sector->RemoveValidBytes(entry.size());
return Status::OK;
}
// Find either an existing sector with enough space that is not the sector to
// skip, or an empty sector. Maintains the invariant that there is always at
// least 1 empty sector unless set to bypass the rule.
Status KeyValueStore::FindSectorWithSpace(
SectorDescriptor** found_sector,
size_t size,
const SectorDescriptor* sector_to_skip,
bool bypass_empty_sector_rule) {
SectorDescriptor* first_empty_sector = nullptr;
bool at_least_two_empty_sectors = bypass_empty_sector_rule;
DBG("Find sector with %zu bytes available, starting with sector %u",
size,
SectorIndex(last_new_sector_));
if (sector_to_skip != nullptr) {
DBG(" Skip sector %u", SectorIndex(sector_to_skip));
}
if (bypass_empty_sector_rule) {
DBG(" Bypassing empty sector rule");
}
// The last_new_sector_ is the sector that was last selected as the "new empty
// sector" to write to. This last new sector is used as the starting point for
// the next "find a new empty sector to write to" operation. By using the last
// new sector as the start point we will cycle which empty sector is selected
// next, spreading the wear across all the empty sectors and get a wear
// leveling benefit, rather than putting more wear on the lower number
// sectors.
SectorDescriptor* sector = last_new_sector_;
// Look for a partial sector to use with enough space. Immediately use the
// first one of those that is found. While scanning for a partial sector, keep
// track of the first empty sector and if a second sector was seen.
for (size_t j = 0; j < sectors_.size(); j++) {
sector += 1;
if (sector == sectors_.end()) {
sector = sectors_.begin();
}
if (sector_to_skip == sector) {
continue;
}
const size_t sector_size_bytes = partition_.sector_size_bytes();
if (!sector->Empty(sector_size_bytes) && sector->HasSpace(size)) {
*found_sector = sector;
return Status::OK;
}
if (sector->Empty(sector_size_bytes)) {
if (first_empty_sector == nullptr) {
first_empty_sector = sector;
} else {
at_least_two_empty_sectors = true;
}
}
}
// If the scan for a partial sector does not find a suitable sector, use the
// first empty sector that was found. Normally it is required to keep 1 empty
// sector after the sector found here, but that rule can be bypassed in
// special circumstances (such as during garbage collection).
if (at_least_two_empty_sectors) {
DBG(" Found a usable empty sector; returning the first found (%u)",
SectorIndex(first_empty_sector));
last_new_sector_ = first_empty_sector;
*found_sector = first_empty_sector;
return Status::OK;
}
// No sector was found.
DBG(" Unable to find a usable sector");
*found_sector = nullptr;
return Status::RESOURCE_EXHAUSTED;
}
Status KeyValueStore::FindOrRecoverSectorWithSpace(SectorDescriptor** sector,
size_t size) {
Status result = FindSectorWithSpace(sector, size);
if (result == Status::RESOURCE_EXHAUSTED && options_.partial_gc_on_write) {
// Garbage collect and then try again to find the best sector.
TRY(GarbageCollectOneSector());
return FindSectorWithSpace(sector, size);
}
return result;
}
KeyValueStore::SectorDescriptor* KeyValueStore::FindSectorToGarbageCollect() {
const size_t sector_size_bytes = partition_.sector_size_bytes();
SectorDescriptor* sector_candidate = nullptr;
size_t candidate_bytes = 0;
// Step 1: Try to find a sectors with stale keys and no valid keys (no
// relocation needed). If any such sectors are found, use the sector with the
// most reclaimable bytes.
for (auto& sector : sectors_) {
if ((sector.valid_bytes() == 0) &&
(sector.RecoverableBytes(sector_size_bytes) > candidate_bytes)) {
sector_candidate = &sector;
candidate_bytes = sector.RecoverableBytes(sector_size_bytes);
}
}
// Step 2: If step 1 yields no sectors, just find the sector with the most
// reclaimable bytes.
if (sector_candidate == nullptr) {
for (auto& sector : sectors_) {
if (sector.RecoverableBytes(sector_size_bytes) > candidate_bytes) {
sector_candidate = &sector;
candidate_bytes = sector.RecoverableBytes(sector_size_bytes);
}
}
}
if (sector_candidate != nullptr) {
DBG("Found sector %u to Garbage Collect, %zu recoverable bytes",
SectorIndex(sector_candidate),
sector_candidate->RecoverableBytes(sector_size_bytes));
} else {
DBG("Unable to find sector to garbage collect!");
}
return sector_candidate;
}
Status KeyValueStore::GarbageCollectOneSector() {
DBG("Garbage Collect a single sector");
// Step 1: Find the sector to garbage collect
SectorDescriptor* sector_to_gc = FindSectorToGarbageCollect();
LogSectors();
if (sector_to_gc == nullptr) {
return Status::RESOURCE_EXHAUSTED;
}
// Step 2: Move any valid entries in the GC sector to other sectors
if (sector_to_gc->valid_bytes() != 0) {
for (auto& descriptor : key_descriptors_) {
if (AddressInSector(*sector_to_gc, descriptor.address())) {
DBG(" Relocate entry");
TRY(RelocateEntry(descriptor));
}
}
}
if (sector_to_gc->valid_bytes() != 0) {
ERR(" Failed to relocate valid entries from sector being garbage "
"collected, %zu valid bytes remain",
sector_to_gc->valid_bytes());
return Status::INTERNAL;
}
// Step 3: Reinitialize the sector
sector_to_gc->set_writable_bytes(0);
TRY(partition_.Erase(SectorBaseAddress(sector_to_gc), 1));
sector_to_gc->set_writable_bytes(partition_.sector_size_bytes());
DBG(" Garbage Collect complete");
LogSectors();
return Status::OK;
}
Status KeyValueStore::AppendEntry(SectorDescriptor* sector,
KeyDescriptor* key_descriptor,
string_view key,
span<const byte> value,
KeyDescriptor::State new_state) {
const Address address = NextWritableAddress(sector);
Entry entry = CreateEntry(address, key, value, new_state);
DBG("Appending %zu B entry with transaction ID %" PRIu32 " to address %#zx",
entry.size(),
entry.transaction_id(),
size_t(address));
StatusWithSize result = entry.Write(key, value);
// Remove any bytes that were written, even if the write was not successful.
// This is important to retain the writable space invariant on the sectors.
sector->RemoveWritableBytes(result.size());
if (!result.ok()) {
ERR("Failed to write %zu bytes at %" PRIx32 ". %zu actually written",
entry.size(),
address,
result.size());
return result.status();
}
if (options_.verify_on_write) {
TRY(entry.VerifyChecksumInFlash(entry_header_format_.checksum));
}
// Entry was written successfully; update the key descriptor and the sector
// descriptor to reflect the new entry.
entry.UpdateDescriptor(key_descriptor);
sector->AddValidBytes(result.size());
return Status::OK;
}
KeyValueStore::Entry KeyValueStore::CreateEntry(Address address,
std::string_view key,
span<const byte> value,
KeyDescriptor::State state) {
// Always bump the transaction ID when creating a new entry.
//
// Burning transaction IDs prevents inconsistencies between flash and memory
// that which could happen if a write succeeds, but for some reason the read
// and verify step fails. Here's how this would happen:
//
// 1. The entry is written but for some reason the flash reports failure OR
// The write succeeds, but the read / verify operation fails.
// 2. The transaction ID is NOT incremented, because of the failure
// 3. (later) A new entry is written, re-using the transaction ID (oops)
//
// By always burning transaction IDs, the above problem can't happen.
last_transaction_id_ += 1;
if (state == KeyDescriptor::kDeleted) {
return Entry::Tombstone(
partition_, address, entry_header_format_, key, last_transaction_id_);
}
return Entry::Valid(partition_,
address,
entry_header_format_,
key,
value,
last_transaction_id_);
}
void KeyValueStore::Reset() {
initialized_ = false;
key_descriptors_.clear();
last_new_sector_ = nullptr;
last_transaction_id_ = 0;
}
void KeyValueStore::LogDebugInfo() {
const size_t sector_size_bytes = partition_.sector_size_bytes();
DBG("====================== KEY VALUE STORE DUMP =========================");
DBG(" ");
DBG("Flash partition:");
DBG(" Sector count = %zu", partition_.sector_count());
DBG(" Sector max count = %zu", sectors_.max_size());
DBG(" Sectors in use = %zu", sectors_.size());
DBG(" Sector size = %zu", sector_size_bytes);
DBG(" Total size = %zu", partition_.size_bytes());
DBG(" Alignment = %zu", partition_.alignment_bytes());
DBG(" ");
DBG("Key descriptors:");
DBG(" Entry count = %zu", key_descriptors_.size());
DBG(" Max entry count = %zu", key_descriptors_.max_size());
DBG(" ");
DBG(" # hash version address address (hex)");
for (size_t i = 0; i < key_descriptors_.size(); ++i) {
const KeyDescriptor& kd = key_descriptors_[i];
DBG(" |%3zu: | %8zx |%8zu | %8zu | %8zx",
i,
size_t(kd.hash()),
size_t(kd.transaction_id()),
size_t(kd.address()),
size_t(kd.address()));
}
DBG(" ");
DBG("Sector descriptors:");
DBG(" # tail free valid has_space");
for (size_t sector_id = 0; sector_id < sectors_.size(); ++sector_id) {
const SectorDescriptor& sd = sectors_[sector_id];
DBG(" |%3zu: | %8zu |%8zu | %s",
sector_id,
size_t(sd.writable_bytes()),
sd.valid_bytes(),
sd.writable_bytes() ? "YES" : "");
}
DBG(" ");
// TODO: This should stop logging after some threshold.
// size_t dumped_bytes = 0;
DBG("Sector raw data:");
for (size_t sector_id = 0; sector_id < sectors_.size(); ++sector_id) {
// Read sector data. Yes, this will blow the stack on embedded.
std::array<byte, 500> raw_sector_data; // TODO!!!
StatusWithSize sws =
partition_.Read(sector_id * sector_size_bytes, raw_sector_data);
DBG("Read: %zu bytes", sws.size());
DBG(" base addr offs 0 1 2 3 4 5 6 7");
for (size_t i = 0; i < sector_size_bytes; i += 8) {
DBG(" %3zu %8zx %5zu | %02x %02x %02x %02x %02x %02x %02x %02x",
sector_id,
(sector_id * sector_size_bytes) + i,
i,
static_cast<unsigned int>(raw_sector_data[i + 0]),
static_cast<unsigned int>(raw_sector_data[i + 1]),
static_cast<unsigned int>(raw_sector_data[i + 2]),
static_cast<unsigned int>(raw_sector_data[i + 3]),
static_cast<unsigned int>(raw_sector_data[i + 4]),
static_cast<unsigned int>(raw_sector_data[i + 5]),
static_cast<unsigned int>(raw_sector_data[i + 6]),
static_cast<unsigned int>(raw_sector_data[i + 7]));
// TODO: Fix exit condition.
if (i > 128) {
break;
}
}
DBG(" ");
}
DBG("////////////////////// KEY VALUE STORE DUMP END /////////////////////");
}
void KeyValueStore::LogSectors() const {
DBG("Sector descriptors: count %zu", sectors_.size());
for (auto& sector : sectors_) {
DBG(" - Sector %u: valid %zu, recoverable %zu, free %zu",
SectorIndex(&sector),
sector.valid_bytes(),
sector.RecoverableBytes(partition_.sector_size_bytes()),
sector.writable_bytes());
}
}
void KeyValueStore::LogKeyDescriptor() const {
DBG("Key descriptors: count %zu", key_descriptors_.size());
for (auto& key : key_descriptors_) {
DBG(" - Key: %s, hash %#zx, transaction ID %zu, address %#zx",
key.deleted() ? "Deleted" : "Valid",
static_cast<size_t>(key.hash()),
static_cast<size_t>(key.transaction_id()),
static_cast<size_t>(key.address()));
}
}
} // namespace pw::kvs