blob: e5ff2f139b1a159b42c8544df50c63fd7a08251d [file] [log] [blame]
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include "pw_blob_store/blob_store.h"
#include <array>
#include <cstddef>
#include <cstring>
#include <span>
#include "gtest/gtest.h"
#include "pw_kvs/crc16_checksum.h"
#include "pw_kvs/fake_flash_memory.h"
#include "pw_kvs/flash_memory.h"
#include "pw_kvs/test_key_value_store.h"
#include "pw_log/log.h"
#include "pw_random/xor_shift.h"
namespace pw::blob_store {
namespace {
class BlobStoreTest : public ::testing::Test {
protected:
BlobStoreTest() : flash_(kFlashAlignment), partition_(&flash_) {}
void InitFlashTo(std::span<const std::byte> contents) {
partition_.Erase();
std::memcpy(flash_.buffer().data(), contents.data(), contents.size());
}
void InitSourceBufferToRandom(uint64_t seed,
size_t init_size_bytes = kBlobDataSize) {
ASSERT_LE(init_size_bytes, source_buffer_.size());
random::XorShiftStarRng64 rng(seed);
std::memset(source_buffer_.data(),
static_cast<int>(flash_.erased_memory_content()),
source_buffer_.size());
rng.Get(std::span(source_buffer_).first(init_size_bytes));
}
void InitSourceBufferToFill(char fill,
size_t fill_size_bytes = kBlobDataSize) {
ASSERT_LE(fill_size_bytes, source_buffer_.size());
std::memset(source_buffer_.data(),
static_cast<int>(flash_.erased_memory_content()),
source_buffer_.size());
std::memset(source_buffer_.data(), fill, fill_size_bytes);
}
// Fill the source buffer with random pattern based on given seed, written to
// BlobStore in specified chunk size.
void WriteTestBlock(size_t write_size_bytes = kBlobDataSize) {
ASSERT_LE(write_size_bytes, source_buffer_.size());
constexpr size_t kBufferSize = 256;
kvs::ChecksumCrc16 checksum;
ConstByteSpan write_data =
std::span(source_buffer_).first(write_size_bytes);
char name[16] = {};
snprintf(name, sizeof(name), "TestBlobBlock");
BlobStoreBuffer<kBufferSize> blob(
name, partition_, &checksum, kvs::TestKvs(), kBufferSize);
EXPECT_EQ(OkStatus(), blob.Init());
BlobStore::BlobWriter writer(blob);
EXPECT_EQ(OkStatus(), writer.Open());
ASSERT_EQ(OkStatus(), writer.Write(write_data));
EXPECT_EQ(OkStatus(), writer.Close());
// Use reader to check for valid data.
BlobStore::BlobReader reader(blob);
ASSERT_EQ(OkStatus(), reader.Open());
Result<ConstByteSpan> result = reader.GetMemoryMappedBlob();
ASSERT_TRUE(result.ok());
EXPECT_EQ(write_size_bytes, result.value().size_bytes());
VerifyFlash(result.value().first(write_size_bytes));
VerifyFlash(flash_.buffer().first(write_size_bytes));
EXPECT_EQ(OkStatus(), reader.Close());
}
// Open a new blob instance and read the blob using the given read chunk size.
void ChunkReadTest(size_t read_chunk_size) {
kvs::ChecksumCrc16 checksum;
VerifyFlash(flash_.buffer());
char name[16] = "TestBlobBlock";
constexpr size_t kBufferSize = 16;
BlobStoreBuffer<kBufferSize> blob(
name, partition_, &checksum, kvs::TestKvs(), kBufferSize);
EXPECT_EQ(OkStatus(), blob.Init());
// Use reader to check for valid data.
BlobStore::BlobReader reader1(blob);
ASSERT_EQ(OkStatus(), reader1.Open());
Result<ConstByteSpan> possible_blob = reader1.GetMemoryMappedBlob();
ASSERT_TRUE(possible_blob.ok());
VerifyFlash(possible_blob.value());
EXPECT_EQ(OkStatus(), reader1.Close());
BlobStore::BlobReader reader(blob);
ASSERT_EQ(OkStatus(), reader.Open());
std::array<std::byte, kBlobDataSize> read_buffer;
ByteSpan read_span = read_buffer;
while (read_span.size_bytes() > 0) {
size_t read_size = std::min(read_span.size_bytes(), read_chunk_size);
PW_LOG_DEBUG("Do write of %u bytes, %u bytes remain",
static_cast<unsigned>(read_size),
static_cast<unsigned>(read_span.size_bytes()));
ASSERT_EQ(read_span.size_bytes(), reader.ConservativeReadLimit());
auto result = reader.Read(read_span.first(read_size));
ASSERT_EQ(result.status(), OkStatus());
read_span = read_span.subspan(read_size);
}
EXPECT_EQ(OkStatus(), reader.Close());
VerifyFlash(read_buffer);
}
void VerifyFlash(ConstByteSpan verify_bytes, size_t offset = 0) {
// Should be defined as same size.
EXPECT_EQ(source_buffer_.size(), flash_.buffer().size_bytes());
// Can't allow it to march off the end of source_buffer_.
ASSERT_LE((verify_bytes.size_bytes() + offset), source_buffer_.size());
for (size_t i = 0; i < verify_bytes.size_bytes(); i++) {
ASSERT_EQ(source_buffer_[i + offset], verify_bytes[i]);
}
}
static constexpr size_t kFlashAlignment = 16;
static constexpr size_t kSectorSize = 2048;
static constexpr size_t kSectorCount = 2;
static constexpr size_t kBlobDataSize = (kSectorCount * kSectorSize);
kvs::FakeFlashMemoryBuffer<kSectorSize, kSectorCount> flash_;
kvs::FlashPartition partition_;
std::array<std::byte, kBlobDataSize> source_buffer_;
};
TEST_F(BlobStoreTest, Init_Ok) {
// TODO: Do init test with flash/kvs explicitly in the different possible
// entry states.
constexpr size_t kBufferSize = 256;
BlobStoreBuffer<kBufferSize> blob(
"Blob_OK", partition_, nullptr, kvs::TestKvs(), kBufferSize);
EXPECT_EQ(OkStatus(), blob.Init());
}
TEST_F(BlobStoreTest, IsOpen) {
constexpr size_t kBufferSize = 256;
BlobStoreBuffer<kBufferSize> blob(
"Blob_open", partition_, nullptr, kvs::TestKvs(), kBufferSize);
EXPECT_EQ(OkStatus(), blob.Init());
BlobStore::DeferredWriter deferred_writer(blob);
EXPECT_EQ(false, deferred_writer.IsOpen());
EXPECT_EQ(OkStatus(), deferred_writer.Open());
EXPECT_EQ(true, deferred_writer.IsOpen());
EXPECT_EQ(OkStatus(), deferred_writer.Close());
EXPECT_EQ(false, deferred_writer.IsOpen());
BlobStore::BlobWriter writer(blob);
EXPECT_EQ(false, writer.IsOpen());
EXPECT_EQ(OkStatus(), writer.Open());
EXPECT_EQ(true, writer.IsOpen());
// Need to write something, so the blob reader is able to open.
std::array<std::byte, 64> tmp_buffer = {};
EXPECT_EQ(OkStatus(), writer.Write(tmp_buffer));
EXPECT_EQ(OkStatus(), writer.Close());
EXPECT_EQ(false, writer.IsOpen());
BlobStore::BlobReader reader(blob);
EXPECT_EQ(false, reader.IsOpen());
ASSERT_EQ(OkStatus(), reader.Open());
EXPECT_EQ(true, reader.IsOpen());
EXPECT_EQ(OkStatus(), reader.Close());
EXPECT_EQ(false, reader.IsOpen());
}
TEST_F(BlobStoreTest, Discard) {
InitSourceBufferToRandom(0x8675309);
WriteTestBlock();
constexpr char blob_title[] = "TestBlobBlock";
std::array<std::byte, 64> tmp_buffer = {};
kvs::ChecksumCrc16 checksum;
// TODO: Do this test with flash/kvs in the different entry state
// combinations.
constexpr size_t kBufferSize = 256;
BlobStoreBuffer<kBufferSize> blob(
blob_title, partition_, &checksum, kvs::TestKvs(), kBufferSize);
EXPECT_EQ(OkStatus(), blob.Init());
BlobStore::BlobWriter writer(blob);
EXPECT_EQ(OkStatus(), writer.Open());
EXPECT_EQ(OkStatus(), writer.Write(tmp_buffer));
// The write does an implicit erase so there should be no key for this blob.
EXPECT_EQ(Status::NotFound(),
kvs::TestKvs().Get(blob_title, tmp_buffer).status());
EXPECT_EQ(OkStatus(), writer.Close());
EXPECT_EQ(OkStatus(), kvs::TestKvs().Get(blob_title, tmp_buffer).status());
EXPECT_EQ(OkStatus(), writer.Open());
EXPECT_EQ(OkStatus(), writer.Discard());
EXPECT_EQ(OkStatus(), writer.Close());
EXPECT_EQ(Status::NotFound(),
kvs::TestKvs().Get(blob_title, tmp_buffer).status());
}
TEST_F(BlobStoreTest, MultipleErase) {
constexpr size_t kBufferSize = 256;
BlobStoreBuffer<kBufferSize> blob(
"Blob_OK", partition_, nullptr, kvs::TestKvs(), kBufferSize);
EXPECT_EQ(OkStatus(), blob.Init());
BlobStore::BlobWriter writer(blob);
EXPECT_EQ(OkStatus(), writer.Open());
EXPECT_EQ(OkStatus(), writer.Erase());
EXPECT_EQ(OkStatus(), writer.Erase());
EXPECT_EQ(OkStatus(), writer.Erase());
}
TEST_F(BlobStoreTest, OffsetRead) {
InitSourceBufferToRandom(0x11309);
WriteTestBlock();
constexpr size_t kOffset = 10;
ASSERT_LT(kOffset, kBlobDataSize);
kvs::ChecksumCrc16 checksum;
char name[16] = "TestBlobBlock";
constexpr size_t kBufferSize = 16;
BlobStoreBuffer<kBufferSize> blob(
name, partition_, &checksum, kvs::TestKvs(), kBufferSize);
EXPECT_EQ(OkStatus(), blob.Init());
BlobStore::BlobReader reader(blob);
ASSERT_EQ(OkStatus(), reader.Open(kOffset));
std::array<std::byte, kBlobDataSize - kOffset> read_buffer;
ByteSpan read_span = read_buffer;
ASSERT_EQ(read_span.size_bytes(), reader.ConservativeReadLimit());
auto result = reader.Read(read_span);
ASSERT_EQ(result.status(), OkStatus());
EXPECT_EQ(OkStatus(), reader.Close());
VerifyFlash(read_buffer, kOffset);
}
TEST_F(BlobStoreTest, InvalidReadOffset) {
InitSourceBufferToRandom(0x11309);
WriteTestBlock();
constexpr size_t kOffset = kBlobDataSize;
kvs::ChecksumCrc16 checksum;
char name[16] = "TestBlobBlock";
constexpr size_t kBufferSize = 16;
BlobStoreBuffer<kBufferSize> blob(
name, partition_, &checksum, kvs::TestKvs(), kBufferSize);
EXPECT_EQ(OkStatus(), blob.Init());
BlobStore::BlobReader reader(blob);
ASSERT_EQ(Status::InvalidArgument(), reader.Open(kOffset));
}
// Test reading with a read buffer larger than the available data in the
TEST_F(BlobStoreTest, ReadBufferIsLargerThanData) {
InitSourceBufferToRandom(0x57326);
constexpr size_t kWriteBytes = 64;
WriteTestBlock(kWriteBytes);
kvs::ChecksumCrc16 checksum;
char name[16] = "TestBlobBlock";
constexpr size_t kBufferSize = 16;
BlobStoreBuffer<kBufferSize> blob(
name, partition_, &checksum, kvs::TestKvs(), kBufferSize);
EXPECT_EQ(OkStatus(), blob.Init());
BlobStore::BlobReader reader(blob);
ASSERT_EQ(OkStatus(), reader.Open());
EXPECT_EQ(kWriteBytes, reader.ConservativeReadLimit());
std::array<std::byte, kWriteBytes + 10> read_buffer;
ByteSpan read_span = read_buffer;
auto result = reader.Read(read_span);
ASSERT_EQ(result.status(), OkStatus());
EXPECT_EQ(OkStatus(), reader.Close());
}
TEST_F(BlobStoreTest, ChunkRead1) {
InitSourceBufferToRandom(0x8675309);
WriteTestBlock();
ChunkReadTest(1);
}
TEST_F(BlobStoreTest, ChunkRead3) {
InitSourceBufferToFill(0);
WriteTestBlock();
ChunkReadTest(3);
}
TEST_F(BlobStoreTest, ChunkRead4) {
InitSourceBufferToFill(1);
WriteTestBlock();
ChunkReadTest(4);
}
TEST_F(BlobStoreTest, ChunkRead5) {
InitSourceBufferToFill(0xff);
WriteTestBlock();
ChunkReadTest(5);
}
TEST_F(BlobStoreTest, ChunkRead16) {
InitSourceBufferToRandom(0x86);
WriteTestBlock();
ChunkReadTest(16);
}
TEST_F(BlobStoreTest, ChunkRead64) {
InitSourceBufferToRandom(0x9);
WriteTestBlock();
ChunkReadTest(64);
}
TEST_F(BlobStoreTest, ChunkReadFull) {
InitSourceBufferToRandom(0x9);
WriteTestBlock();
ChunkReadTest(kBlobDataSize);
}
TEST_F(BlobStoreTest, PartialBufferThenClose) {
// Do write of only a partial chunk, which will only have bytes in buffer
// (none written to flash) at close.
size_t data_bytes = 12;
InitSourceBufferToRandom(0x111, data_bytes);
WriteTestBlock(data_bytes);
// Do write with several full chunks and then some partial.
data_bytes = 158;
InitSourceBufferToRandom(0x3222, data_bytes);
}
// Test to do write/close, write/close multiple times.
TEST_F(BlobStoreTest, MultipleWrites) {
InitSourceBufferToRandom(0x1121);
WriteTestBlock();
InitSourceBufferToRandom(0x515);
WriteTestBlock();
InitSourceBufferToRandom(0x4321);
WriteTestBlock();
}
} // namespace
} // namespace pw::blob_store