blob: 29fed33b3c67129060dcf2f72409357840ad8537 [file] [log] [blame]
// Copyright 2020 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include <cinttypes>
#include "pw_boot_armv7m/boot.h"
#include "pw_preprocessor/compiler.h"
#include "pw_sys_io/sys_io.h"
namespace {
// Default core clock. This is technically not a constant, but since this app
// doesn't change the system clock a constant will suffice.
constexpr uint32_t kSystemCoreClock = 12000000;
// UART status flags.
constexpr uint32_t kTxFifoEmptyMask = 0b10000000;
constexpr uint32_t kTxFifoFullMask = 0b1000000;
constexpr uint32_t kRxFifoFullMask = 0b100000;
constexpr uint32_t kRxFifoEmptyMask = 0b10000;
constexpr uint32_t kTxBusyMask = 0b1000;
// UART line control flags.
// Default: 8n1
constexpr uint32_t kDefaultLineControl = 0x60;
// UART control flags.
constexpr uint32_t kUartEnableMask = 0x1;
PW_PACKED(struct) UartBlock {
uint32_t data_register;
uint32_t receive_error;
uint32_t reserved1[4];
uint32_t status_flags;
uint32_t reserved2;
uint32_t low_power;
uint32_t integer_baud;
uint32_t fractional_baud;
uint32_t line_control;
uint32_t control;
uint32_t interrupt_fifo_level;
uint32_t interrupt_mask;
uint32_t raw_interrupt;
uint32_t masked_interrupt;
uint32_t interrupt_clear;
};
// Declare a reference to the memory mapped block for UART0.
volatile UartBlock& uart0 = *reinterpret_cast<volatile UartBlock*>(0x4000C000U);
constexpr uint32_t kRcgcUart0EnableMask = 0x1;
volatile uint32_t& rcgc1 = *reinterpret_cast<volatile uint32_t*>(0x400FE104U);
constexpr uint32_t kRccDefault = 0x078E3AD1U;
volatile uint32_t& rcc = *reinterpret_cast<volatile uint32_t*>(0x400FE070U);
constexpr uint32_t kRcc2Default = 0x07802810U;
volatile uint32_t& rcc2 = *reinterpret_cast<volatile uint32_t*>(0x400FE070U);
// Calculate a baud rate multiplier such that we have 16 bits of precision for
// the integer portion and 6 bits for the fractional portion.
void SetBaudRate(uint32_t clock, uint32_t target_baud) {
uint32_t divisor = target_baud * 16;
uint32_t remainder = clock % divisor;
uart0.integer_baud = (clock % divisor) & 0xffff;
uart0.fractional_baud = (((remainder << 7) / divisor + 1) >> 1) & 0x3f;
}
// Default handler to insert into the ARMv7-M vector table (below).
// This function exists for convenience. If a device isn't doing what you
// expect, it might have hit a fault and ended up here.
void DefaultFaultHandler(void) {
while (true) {
// Wait for debugger to attach.
}
}
// This is the device's interrupt vector table. It's not referenced in any code
// because the platform expects this table to be present at the beginning of
// flash. The exact address is specified in the pw_boot_armv7m configuration as
// part of the target config.
//
// For more information, see ARMv7-M Architecture Reference Manual DDI 0403E.b
// section B1.5.3.
// This typedef is for convenience when building the vector table. With the
// exception of SP_main (0th entry in the vector table), all the entries of the
// vector table are function pointers.
typedef void (*InterruptHandler)();
PW_KEEP_IN_SECTION(".vector_table")
const InterruptHandler vector_table[] = {
// The starting location of the stack pointer.
// This address is NOT an interrupt handler/function pointer, it is simply
// the address that the main stack pointer should be initialized to. The
// value is reinterpret casted because it needs to be in the vector table.
[0] = reinterpret_cast<InterruptHandler>(&pw_stack_high_addr),
// Reset handler, dictates how to handle reset interrupt. This is the
// address that the Program Counter (PC) is initialized to at boot.
[1] = pw_BootEntry,
// NMI handler.
[2] = DefaultFaultHandler,
// HardFault handler.
[3] = DefaultFaultHandler,
};
} // namespace
extern "C" void pw_PreMainInit() {
// Force RCC to be at default at boot.
rcc = kRccDefault;
rcc2 = kRcc2Default;
rcgc1 |= kRcgcUart0EnableMask;
for (volatile int i = 0; i < 3; ++i) {
// We must wait after enabling uart.
}
// Set baud rate.
SetBaudRate(kSystemCoreClock, /*target_baud=*/115200);
uart0.line_control = kDefaultLineControl;
uart0.control |= kUartEnableMask;
}
namespace pw::sys_io {
// Wait for a byte to read on UART0. This blocks until a byte is read. This is
// extremely inefficient as it requires the target to burn CPU cycles polling to
// see if a byte is ready yet.
Status ReadByte(std::byte* dest) {
while (true) {
if (uart0.receive_error) {
// Writing anything to this register clears all errors.
uart0.receive_error = 0xff;
}
if (uart0.status_flags & kRxFifoFullMask) {
*dest = static_cast<std::byte>(uart0.data_register);
break;
}
}
return Status::OK;
}
// Send a byte over UART0. Since this blocks on every byte, it's rather
// inefficient. At the default baud rate of 115200, one byte blocks the CPU for
// ~87 micro seconds. This means it takes only 10 bytes to block the CPU for
// 1ms!
Status WriteByte(std::byte b) {
// Wait for TX buffer to be empty. When the buffer is empty, we can write
// a value to be dumped out of UART.
while (!(uart0.status_flags & kTxFifoEmptyMask)) {
}
uart0.data_register = static_cast<uint32_t>(b);
return Status::OK;
}
// Writes a string using pw::sys_io, and add newline characters at the end.
StatusWithSize WriteLine(const std::string_view& s) {
size_t chars_written = 0;
StatusWithSize result = WriteBytes(std::as_bytes(std::span(s)));
if (!result.ok()) {
return result;
}
chars_written += result.size();
// Write trailing newline ("\n\r").
result = WriteBytes(std::as_bytes(std::span("\n\r", 2)));
chars_written += result.size();
return StatusWithSize(result.status(), chars_written);
}
} // namespace pw::sys_io