ui: Switch to a more "OO" implementation for `Dataset`
- Datasets objects now have `.optimize()`, `query()`, etc methods on
the dataset objects themselves instead of having to use standalone
functions. This negates the need for the namespace so this has been
removed.
- Datasets are now defined using classes, so we must use `new
XYZDataset()` to create datasets, rather than POJOs.
I.e.: return new SourceDataset({...})
Change-Id: Ie0d8d4d9d1e06088d02b62c2d218d3da879c5bfe
diff --git a/ui/src/frontend/base_slice_track.ts b/ui/src/frontend/base_slice_track.ts
index 45cbc9e..0c18970 100644
--- a/ui/src/frontend/base_slice_track.ts
+++ b/ui/src/frontend/base_slice_track.ts
@@ -35,7 +35,7 @@
import {TrackMouseEvent, TrackRenderContext} from '../public/track';
import {Point2D, VerticalBounds} from '../base/geom';
import {Trace} from '../public/trace';
-import {Ds} from '../trace_processor/dataset';
+import {SourceDataset, Dataset} from '../trace_processor/dataset';
// The common class that underpins all tracks drawing slices.
@@ -974,15 +974,15 @@
return {ts: Time.fromRaw(row.ts), dur: Duration.fromRaw(row.dur)};
}
- getDataset(): Ds.Dataset | undefined {
- return {
+ getDataset(): Dataset | undefined {
+ return new SourceDataset({
src: this.getSqlSource(),
schema: {
id: NUM,
ts: LONG,
dur: LONG,
},
- };
+ });
}
}
diff --git a/ui/src/frontend/named_slice_track.ts b/ui/src/frontend/named_slice_track.ts
index edb7ec9..7a23285 100644
--- a/ui/src/frontend/named_slice_track.ts
+++ b/ui/src/frontend/named_slice_track.ts
@@ -30,7 +30,7 @@
import {renderDuration} from './widgets/duration';
import {TraceImpl} from '../core/trace_impl';
import {assertIsInstance} from '../base/logging';
-import {Ds} from '../trace_processor/dataset';
+import {SourceDataset, Dataset} from '../trace_processor/dataset';
export const NAMED_ROW = {
// Base columns (tsq, ts, dur, id, depth).
@@ -82,8 +82,8 @@
return new ThreadSliceDetailsPanel(assertIsInstance(this.trace, TraceImpl));
}
- override getDataset(): Ds.Dataset | undefined {
- return {
+ override getDataset(): Dataset | undefined {
+ return new SourceDataset({
src: this.getSqlSource(),
schema: {
id: NUM,
@@ -91,6 +91,6 @@
ts: LONG,
dur: LONG,
},
- };
+ });
}
}
diff --git a/ui/src/plugins/dev.perfetto.AsyncSlices/async_slice_track.ts b/ui/src/plugins/dev.perfetto.AsyncSlices/async_slice_track.ts
index 4c8898b..0486e6e 100644
--- a/ui/src/plugins/dev.perfetto.AsyncSlices/async_slice_track.ts
+++ b/ui/src/plugins/dev.perfetto.AsyncSlices/async_slice_track.ts
@@ -14,12 +14,12 @@
import {BigintMath as BIMath} from '../../base/bigint_math';
import {clamp} from '../../base/math_utils';
-import {Ds} from '../../trace_processor/dataset';
import {NAMED_ROW, NamedSliceTrack} from '../../frontend/named_slice_track';
import {SLICE_LAYOUT_FIT_CONTENT_DEFAULTS} from '../../frontend/slice_layout';
import {NewTrackArgs} from '../../frontend/track';
import {TrackEventDetails} from '../../public/selection';
import {Slice} from '../../public/track';
+import {SourceDataset, Dataset} from '../../trace_processor/dataset';
import {
LONG,
LONG_NULL,
@@ -112,8 +112,8 @@
};
}
- override getDataset(): Ds.Dataset {
- return {
+ override getDataset(): Dataset {
+ return new SourceDataset({
src: `slice`,
filter: {
col: 'track_id',
@@ -126,6 +126,6 @@
dur: LONG,
parent_id: NUM_NULL,
},
- };
+ });
}
}
diff --git a/ui/src/plugins/dev.perfetto.AsyncSlices/slice_selection_aggregator.ts b/ui/src/plugins/dev.perfetto.AsyncSlices/slice_selection_aggregator.ts
index 0364152..23226bc 100644
--- a/ui/src/plugins/dev.perfetto.AsyncSlices/slice_selection_aggregator.ts
+++ b/ui/src/plugins/dev.perfetto.AsyncSlices/slice_selection_aggregator.ts
@@ -16,7 +16,7 @@
import {AreaSelection} from '../../public/selection';
import {Engine} from '../../trace_processor/engine';
import {AreaSelectionAggregator} from '../../public/selection';
-import {Ds} from '../../trace_processor/dataset';
+import {UnionDataset} from '../../trace_processor/dataset';
import {LONG, NUM, STR} from '../../trace_processor/query_result';
export class SliceSelectionAggregator implements AreaSelectionAggregator {
@@ -30,13 +30,13 @@
dur: LONG,
};
const validDatasets = area.tracks
- .map((t) => t.track.getDataset?.())
- .filter((d) => d !== undefined)
- .filter((d) => Ds.doesImplement(d, desiredSchema));
+ .map((track) => track.track.getDataset?.())
+ .filter((ds) => ds !== undefined)
+ .filter((ds) => ds.implements(desiredSchema));
if (validDatasets.length === 0) {
return false;
}
- const optimizedDataset = Ds.optimize({union: validDatasets});
+ const unionDataset = new UnionDataset(validDatasets);
await engine.query(`
create or replace perfetto table ${this.id} as
select
@@ -44,7 +44,7 @@
sum(dur) AS total_dur,
sum(dur)/count() as avg_dur,
count() as occurrences
- from (${Ds.query(optimizedDataset)})
+ from (${unionDataset.optimize().query()})
where
ts + dur > ${area.start}
and ts < ${area.end}
diff --git a/ui/src/plugins/dev.perfetto.Ftrace/ftrace_track.ts b/ui/src/plugins/dev.perfetto.Ftrace/ftrace_track.ts
index d056a8d..4ef7793 100644
--- a/ui/src/plugins/dev.perfetto.Ftrace/ftrace_track.ts
+++ b/ui/src/plugins/dev.perfetto.Ftrace/ftrace_track.ts
@@ -24,7 +24,7 @@
import {FtraceFilter} from './common';
import {Monitor} from '../../base/monitor';
import {TrackRenderContext} from '../../public/track';
-import {Ds} from '../../trace_processor/dataset';
+import {SourceDataset, Dataset} from '../../trace_processor/dataset';
const MARGIN = 2;
const RECT_HEIGHT = 18;
@@ -57,8 +57,8 @@
this.monitor = new Monitor([() => store.state]);
}
- getDataset(): Ds.Dataset {
- return {
+ getDataset(): Dataset {
+ return new SourceDataset({
// 'ftrace_event' doesn't have a dur column, but injecting dur=0 (all
// ftrace events are effectively 'instant') allows us to participate in
// generic slice aggregations
@@ -73,7 +73,7 @@
col: 'cpu',
eq: this.cpu,
},
- };
+ });
}
async onUpdate({
diff --git a/ui/src/public/track.ts b/ui/src/public/track.ts
index 93d493e..6d1b1dc 100644
--- a/ui/src/public/track.ts
+++ b/ui/src/public/track.ts
@@ -20,7 +20,7 @@
import {ColorScheme} from './color_scheme';
import {TrackEventDetailsPanel} from './details_panel';
import {TrackEventDetails, TrackEventSelection} from './selection';
-import {Ds} from '../trace_processor/dataset';
+import {Dataset} from '../trace_processor/dataset';
export interface TrackManager {
/**
@@ -179,7 +179,7 @@
* Optional: Returns a dataset that represents the events displayed on this
* track.
*/
- getDataset?(): Ds.Dataset | undefined;
+ getDataset?(): Dataset | undefined;
/**
* Optional: Get details of a track event given by eventId on this track.
diff --git a/ui/src/trace_processor/dataset.ts b/ui/src/trace_processor/dataset.ts
index 6863570..25c64cb 100644
--- a/ui/src/trace_processor/dataset.ts
+++ b/ui/src/trace_processor/dataset.ts
@@ -16,71 +16,43 @@
import {getOrCreate} from '../base/utils';
import {ColumnType, SqlValue} from './query_result';
-export namespace Ds {
- export type Dataset = UnionDataset | SourceDataset;
- export type Schema = Record<string, ColumnType>;
-
+/**
+ * A dataset defines a set of rows in TraceProcessor and a schema of the
+ * resultant columns. Dataset implementations describe how to get the data in
+ * different ways - e.g. 'source' datasets define a dataset as a table name (or
+ * select statement) + filters, whereas a 'union' dataset defines a dataset as
+ * the union of other datasets.
+ *
+ * The idea is that users can build arbitrarily complex trees of datasets, then
+ * at any point call `optimize()` to create the smallest possible tree that
+ * represents the same dataset, and `query()` which produces a select statement
+ * for the resultant dataset.
+ *
+ * Users can also use the `schema` property and `implements()` to get and test
+ * the schema of a given dataset.
+ */
+export interface Dataset {
/**
- * Defines a dataset with a source SQL select statement of table name, a
- * schema describing the columns, and an optional filter.
+ * Get or calculate the resultant schema of this dataset.
*/
- export interface SourceDataset {
- readonly src: string;
- readonly schema: Schema;
- readonly filter?: EqFilter | InFilter;
- }
+ readonly schema: DatasetSchema;
/**
- * A dataset that represents the union of multiple datasets.
- */
- export interface UnionDataset {
- readonly union: ReadonlyArray<Dataset>;
- }
-
- /**
- * Generic filter type.
- */
- export type Filter = EqFilter | InFilter;
-
- /**
- * A filter used to express that a column must equal a value.
- */
- export interface EqFilter {
- readonly col: string;
- readonly eq: SqlValue;
- }
-
- /**
- * A filter used to express that column must be one of a set of values.
- */
- export interface InFilter {
- readonly col: string;
- readonly in: ReadonlyArray<SqlValue>;
- }
-
- /**
- * Returns true if the dataset implements a given schema.
+ * Produce a query for this dataset.
*
- * Note: `implements` is a reserved keyword in TS so we can't call this
- * function `implements`.
- *
- * @param dataset - The dataset to test.
- * @param testSchema - The schema to test against.
+ * @param schema - The schema to use for extracting columns - if undefined,
+ * the most specific possible schema is evaluated from the dataset first and
+ * used instead.
*/
- export function doesImplement(dataset: Dataset, testSchema: Schema): boolean {
- const datasetSchema = schema(dataset);
- return Object.entries(testSchema).every(([name, kind]) => {
- return name in datasetSchema && datasetSchema[name] === kind;
- });
- }
+ query(schema?: DatasetSchema): string;
/**
- * This function optimizes a dataset into the smallest possible expression.
+ * Optimizes a dataset into the smallest possible expression.
*
* For example by combining elements of union data sets that have the same src
* and similar filters into a single set.
*
- * For example, the following union data set...
+ * For example, the following 'union' dataset...
*
* ```
* {
@@ -105,7 +77,7 @@
* }
* ```
*
- * ...will be combined into a single set...
+ * ...will be combined into a single 'source' dataset...
*
* ```
* {
@@ -117,142 +89,202 @@
* filter: {col: 'a', in: [1, 2]},
* },
* ```
- *
- * @param dataset - The dataset to optimize.
*/
- export function optimize(dataset: Dataset): Dataset {
- if ('src' in dataset) {
- // No optimization possible for individual datasets
- return dataset;
- } else if ('union' in dataset) {
- // Recursively optimize each dataset of this union
- const optimizedUnion = dataset.union.map(optimize);
-
- // Find all source datasets and combine then based on src
- const combinedSrcSets = new Map<string, SourceDataset[]>();
- const otherDatasets: Dataset[] = [];
- for (const e of optimizedUnion) {
- if ('src' in e) {
- const set = getOrCreate(combinedSrcSets, e.src, () => []);
- set.push(e);
- } else {
- otherDatasets.push(e);
- }
- }
-
- const mergedSrcSets = Array.from(combinedSrcSets.values()).map(
- (srcGroup) => {
- if (srcGroup.length === 1) return srcGroup[0];
-
- // Combine schema across all members in the union
- const combinedSchema = srcGroup.reduce((acc, e) => {
- Object.assign(acc, e.schema);
- return acc;
- }, {} as Schema);
-
- // Merge filters for the same src
- const inFilters: InFilter[] = [];
- for (const {filter} of srcGroup) {
- if (filter) {
- if ('eq' in filter) {
- inFilters.push({col: filter.col, in: [filter.eq]});
- } else {
- inFilters.push(filter);
- }
- }
- }
-
- const mergedFilter = mergeFilters(inFilters);
- return {
- src: srcGroup[0].src,
- schema: combinedSchema,
- filter: mergedFilter,
- };
- },
- );
-
- const finalUnion = [...mergedSrcSets, ...otherDatasets];
-
- if (finalUnion.length === 1) {
- return finalUnion[0];
- } else {
- return {union: finalUnion};
- }
- } else {
- assertUnreachable(dataset);
- }
- }
-
- function mergeFilters(filters: InFilter[]): InFilter | undefined {
- if (filters.length === 0) return undefined;
- const col = filters[0].col;
- const values = new Set(filters.flatMap((filter) => filter.in));
- return {col, in: Array.from(values)};
- }
+ optimize(): Dataset;
/**
- * Get the schema of an dataset.
+ * Returns true if this dataset implements a given schema.
*
- * @param dataset - The dataset to get the schema of.
+ * @param schema - The schema to test against.
*/
- export function schema(dataset: Dataset): Schema {
- if ('src' in dataset) {
- return dataset.schema;
- } else if ('union' in dataset) {
- // Find the minimal set of columns that are supported by all datasets of
- // the union
- let sch: Record<string, ColumnType> | undefined = undefined;
- dataset.union.forEach((e) => {
- const eSchema = schema(e);
- if (sch === undefined) {
- // First time just use this one
- sch = eSchema;
- } else {
- const newSch: Record<string, ColumnType> = {};
- for (const [key, kind] of Object.entries(sch)) {
- if (key in eSchema && eSchema[key] === kind) {
- newSch[key] = kind;
- }
- }
- sch = newSch;
- }
- });
- return sch ?? {};
- } else {
- assertUnreachable(dataset);
- }
+ implements(schema: DatasetSchema): boolean;
+}
+
+/**
+ * Defines a list of columns and types that define the shape of the data
+ * represented by a dataset.
+ */
+export type DatasetSchema = Record<string, ColumnType>;
+
+/**
+ * A filter used to express that a column must equal a value.
+ */
+interface EqFilter {
+ readonly col: string;
+ readonly eq: SqlValue;
+}
+
+/**
+ * A filter used to express that column must be one of a set of values.
+ */
+interface InFilter {
+ readonly col: string;
+ readonly in: ReadonlyArray<SqlValue>;
+}
+
+/**
+ * Union of all filter types.
+ */
+type Filter = EqFilter | InFilter;
+
+/**
+ * Named arguments for a SourceDataset.
+ */
+interface SourceDatasetConfig {
+ readonly src: string;
+ readonly schema: DatasetSchema;
+ readonly filter?: Filter;
+}
+
+/**
+ * Defines a dataset with a source SQL select statement of table name, a
+ * schema describing the columns, and an optional filter.
+ */
+export class SourceDataset implements Dataset {
+ readonly src: string;
+ readonly schema: DatasetSchema;
+ readonly filter?: Filter;
+
+ constructor(config: SourceDatasetConfig) {
+ this.src = config.src;
+ this.schema = config.schema;
+ this.filter = config.filter;
}
- /**
- * Produce a query for this dataset.
- *
- * @param dataset - The dataset to get the query for.
- * @param sch - The schema to use for extracting columns - if undefined, the
- * most specific possible schema is evaluated from the dataset first and used
- * instead.
- */
- export function query(dataset: Dataset, sch?: Schema): string {
- function filterToQuery(filter: Filter) {
- if ('eq' in filter) {
- return `where ${filter.col} = ${filter.eq}`;
- } else if ('in' in filter) {
- return `where ${filter.col} in (${filter.in.join(',')})`;
+ query(schema?: DatasetSchema) {
+ schema = schema ?? this.schema;
+ const cols = Object.keys(schema);
+ const whereClause = this.filterToQuery();
+ return `select ${cols.join(', ')} from (${this.src}) ${whereClause}`.trim();
+ }
+
+ optimize() {
+ // Cannot optimize SourceDataset
+ return this;
+ }
+
+ implements(schema: DatasetSchema) {
+ return Object.entries(schema).every(([name, kind]) => {
+ return name in this.schema && this.schema[name] === kind;
+ });
+ }
+
+ private filterToQuery() {
+ const filter = this.filter;
+ if (filter === undefined) {
+ return '';
+ }
+ if ('eq' in filter) {
+ return `where ${filter.col} = ${filter.eq}`;
+ } else if ('in' in filter) {
+ return `where ${filter.col} in (${filter.in.join(',')})`;
+ } else {
+ assertUnreachable(filter);
+ }
+ }
+}
+
+/**
+ * A dataset that represents the union of multiple datasets.
+ */
+export class UnionDataset implements Dataset {
+ constructor(readonly union: ReadonlyArray<Dataset>) {}
+
+ get schema(): DatasetSchema {
+ // Find the minimal set of columns that are supported by all datasets of
+ // the union
+ let sch: Record<string, ColumnType> | undefined = undefined;
+ this.union.forEach((ds) => {
+ const dsSchema = ds.schema;
+ if (sch === undefined) {
+ // First time just use this one
+ sch = dsSchema;
} else {
- assertUnreachable(filter);
+ const newSch: Record<string, ColumnType> = {};
+ for (const [key, kind] of Object.entries(sch)) {
+ if (key in dsSchema && dsSchema[key] === kind) {
+ newSch[key] = kind;
+ }
+ }
+ sch = newSch;
+ }
+ });
+ return sch ?? {};
+ }
+
+ query(schema?: DatasetSchema): string {
+ schema = schema ?? this.schema;
+ return this.union
+ .map((dataset) => dataset.query(schema))
+ .join(' union all ');
+ }
+
+ optimize(): Dataset {
+ // Recursively optimize each dataset of this union
+ const optimizedUnion = this.union.map((ds) => ds.optimize());
+
+ // Find all source datasets and combine then based on src
+ const combinedSrcSets = new Map<string, SourceDataset[]>();
+ const otherDatasets: Dataset[] = [];
+ for (const e of optimizedUnion) {
+ if (e instanceof SourceDataset) {
+ const set = getOrCreate(combinedSrcSets, e.src, () => []);
+ set.push(e);
+ } else {
+ otherDatasets.push(e);
}
}
- sch = sch ?? schema(dataset);
- if ('src' in dataset) {
- const whereClause = dataset.filter ? filterToQuery(dataset.filter) : '';
- const cols = Object.keys(sch);
- return `select ${cols.join(', ')} from (${dataset.src}) ${whereClause}`.trim();
- } else if ('union' in dataset) {
- return dataset.union
- .map((dataset) => query(dataset, sch))
- .join(' union all ');
+ const mergedSrcSets = Array.from(combinedSrcSets.values()).map(
+ (srcGroup) => {
+ if (srcGroup.length === 1) return srcGroup[0];
+
+ // Combine schema across all members in the union
+ const combinedSchema = srcGroup.reduce((acc, e) => {
+ Object.assign(acc, e.schema);
+ return acc;
+ }, {} as DatasetSchema);
+
+ // Merge filters for the same src
+ const inFilters: InFilter[] = [];
+ for (const {filter} of srcGroup) {
+ if (filter) {
+ if ('eq' in filter) {
+ inFilters.push({col: filter.col, in: [filter.eq]});
+ } else {
+ inFilters.push(filter);
+ }
+ }
+ }
+
+ const mergedFilter = mergeFilters(inFilters);
+ return new SourceDataset({
+ src: srcGroup[0].src,
+ schema: combinedSchema,
+ filter: mergedFilter,
+ });
+ },
+ );
+
+ const finalUnion = [...mergedSrcSets, ...otherDatasets];
+
+ if (finalUnion.length === 1) {
+ return finalUnion[0];
} else {
- assertUnreachable(dataset);
+ return new UnionDataset(finalUnion);
}
}
+
+ implements(schema: DatasetSchema) {
+ return Object.entries(schema).every(([name, kind]) => {
+ return name in this.schema && this.schema[name] === kind;
+ });
+ }
+}
+
+function mergeFilters(filters: InFilter[]): InFilter | undefined {
+ if (filters.length === 0) return undefined;
+ const col = filters[0].col;
+ const values = new Set(filters.flatMap((filter) => filter.in));
+ return {col, in: Array.from(values)};
}
diff --git a/ui/src/trace_processor/dataset_unittest.ts b/ui/src/trace_processor/dataset_unittest.ts
index e354b54..2bd4e53 100644
--- a/ui/src/trace_processor/dataset_unittest.ts
+++ b/ui/src/trace_processor/dataset_unittest.ts
@@ -12,168 +12,158 @@
// See the License for the specific language governing permissions and
// limitations under the License.
-import {Ds} from './dataset';
+import {SourceDataset, UnionDataset} from './dataset';
import {LONG, NUM, STR} from './query_result';
test('get query for simple dataset', () => {
- const dataset: Ds.Dataset = {
+ const dataset = new SourceDataset({
src: 'slice',
schema: {id: NUM},
- };
+ });
- expect(Ds.query(dataset)).toEqual('select id from (slice)');
+ expect(dataset.query()).toEqual('select id from (slice)');
});
test("get query for simple dataset with 'eq' filter", () => {
- const dataset: Ds.Dataset = {
+ const dataset = new SourceDataset({
src: 'slice',
schema: {id: NUM},
filter: {
col: 'id',
eq: 123,
},
- };
+ });
- expect(Ds.query(dataset)).toEqual('select id from (slice) where id = 123');
+ expect(dataset.query()).toEqual('select id from (slice) where id = 123');
});
test("get query for simple dataset with an 'in' filter", () => {
- const dataset: Ds.Dataset = {
+ const dataset = new SourceDataset({
src: 'slice',
schema: {id: NUM},
filter: {
col: 'id',
in: [123, 456],
},
- };
+ });
- expect(Ds.query(dataset)).toEqual(
+ expect(dataset.query()).toEqual(
'select id from (slice) where id in (123,456)',
);
});
test('get query for union dataset', () => {
- const dataset: Ds.Dataset = {
- union: [
- {
- src: 'slice',
- schema: {id: NUM},
- filter: {
- col: 'id',
- eq: 123,
- },
+ const dataset = new UnionDataset([
+ new SourceDataset({
+ src: 'slice',
+ schema: {id: NUM},
+ filter: {
+ col: 'id',
+ eq: 123,
},
- {
- src: 'slice',
- schema: {id: NUM},
- filter: {
- col: 'id',
- eq: 456,
- },
+ }),
+ new SourceDataset({
+ src: 'slice',
+ schema: {id: NUM},
+ filter: {
+ col: 'id',
+ eq: 456,
},
- ],
- };
+ }),
+ ]);
- expect(Ds.query(dataset)).toEqual(
+ expect(dataset.query()).toEqual(
'select id from (slice) where id = 123 union all select id from (slice) where id = 456',
);
});
test('doesImplement', () => {
- const dataset = {
+ const dataset = new SourceDataset({
src: 'slice',
schema: {id: NUM, ts: LONG},
- };
+ });
- expect(Ds.doesImplement(dataset, {id: NUM})).toBe(true);
- expect(Ds.doesImplement(dataset, {id: NUM, ts: LONG})).toBe(true);
- expect(Ds.doesImplement(dataset, {id: NUM, ts: LONG, name: STR})).toBe(false);
- expect(Ds.doesImplement(dataset, {id: LONG})).toBe(false);
+ expect(dataset.implements({id: NUM})).toBe(true);
+ expect(dataset.implements({id: NUM, ts: LONG})).toBe(true);
+ expect(dataset.implements({id: NUM, ts: LONG, name: STR})).toBe(false);
+ expect(dataset.implements({id: LONG})).toBe(false);
});
test('find the schema of a simple dataset', () => {
- const dataset: Ds.Dataset = {
+ const dataset = new SourceDataset({
src: 'slice',
schema: {id: NUM, ts: LONG},
- };
+ });
- expect(Ds.schema(dataset)).toMatchObject({id: NUM, ts: LONG});
+ expect(dataset.schema).toMatchObject({id: NUM, ts: LONG});
});
test('find the schema of a union where source sets differ in their names', () => {
- const dataset: Ds.Dataset = {
- union: [
- {
- src: 'slice',
- schema: {foo: NUM},
- },
- {
- src: 'slice',
- schema: {bar: NUM},
- },
- ],
- };
+ const dataset = new UnionDataset([
+ new SourceDataset({
+ src: 'slice',
+ schema: {foo: NUM},
+ }),
+ new SourceDataset({
+ src: 'slice',
+ schema: {bar: NUM},
+ }),
+ ]);
- expect(Ds.schema(dataset)).toMatchObject({});
+ expect(dataset.schema).toMatchObject({});
});
test('find the schema of a union with differing source sets', () => {
- const dataset: Ds.Dataset = {
- union: [
- {
- src: 'slice',
- schema: {foo: NUM},
- },
- {
- src: 'slice',
- schema: {foo: LONG},
- },
- ],
- };
+ const dataset = new UnionDataset([
+ new SourceDataset({
+ src: 'slice',
+ schema: {foo: NUM},
+ }),
+ new SourceDataset({
+ src: 'slice',
+ schema: {foo: LONG},
+ }),
+ ]);
- expect(Ds.schema(dataset)).toMatchObject({});
+ expect(dataset.schema).toMatchObject({});
});
test('find the schema of a union with one column in common', () => {
- const dataset: Ds.Dataset = {
- union: [
- {
- src: 'slice',
- schema: {foo: NUM, bar: NUM},
- },
- {
- src: 'slice',
- schema: {foo: NUM, baz: NUM},
- },
- ],
- };
+ const dataset = new UnionDataset([
+ new SourceDataset({
+ src: 'slice',
+ schema: {foo: NUM, bar: NUM},
+ }),
+ new SourceDataset({
+ src: 'slice',
+ schema: {foo: NUM, baz: NUM},
+ }),
+ ]);
- expect(Ds.schema(dataset)).toMatchObject({foo: NUM});
+ expect(dataset.schema).toMatchObject({foo: NUM});
});
test('optimize a union dataset', () => {
- const dataset: Ds.Dataset = {
- union: [
- {
- src: 'slice',
- schema: {},
- filter: {
- col: 'track_id',
- eq: 123,
- },
+ const dataset = new UnionDataset([
+ new SourceDataset({
+ src: 'slice',
+ schema: {},
+ filter: {
+ col: 'track_id',
+ eq: 123,
},
- {
- src: 'slice',
- schema: {},
- filter: {
- col: 'track_id',
- eq: 456,
- },
+ }),
+ new SourceDataset({
+ src: 'slice',
+ schema: {},
+ filter: {
+ col: 'track_id',
+ eq: 456,
},
- ],
- };
+ }),
+ ]);
- expect(Ds.optimize(dataset)).toEqual({
+ expect(dataset.optimize()).toEqual({
src: 'slice',
schema: {},
filter: {
@@ -184,28 +174,26 @@
});
test('optimize a union dataset with different types of filters', () => {
- const dataset: Ds.Dataset = {
- union: [
- {
- src: 'slice',
- schema: {},
- filter: {
- col: 'track_id',
- eq: 123,
- },
+ const dataset = new UnionDataset([
+ new SourceDataset({
+ src: 'slice',
+ schema: {},
+ filter: {
+ col: 'track_id',
+ eq: 123,
},
- {
- src: 'slice',
- schema: {},
- filter: {
- col: 'track_id',
- in: [456, 789],
- },
+ }),
+ new SourceDataset({
+ src: 'slice',
+ schema: {},
+ filter: {
+ col: 'track_id',
+ in: [456, 789],
},
- ],
- };
+ }),
+ ]);
- expect(Ds.optimize(dataset)).toEqual({
+ expect(dataset.optimize()).toEqual({
src: 'slice',
schema: {},
filter: {
@@ -216,20 +204,18 @@
});
test('optimize a union dataset with different schemas', () => {
- const dataset: Ds.Dataset = {
- union: [
- {
- src: 'slice',
- schema: {foo: NUM},
- },
- {
- src: 'slice',
- schema: {bar: NUM},
- },
- ],
- };
+ const dataset = new UnionDataset([
+ new SourceDataset({
+ src: 'slice',
+ schema: {foo: NUM},
+ }),
+ new SourceDataset({
+ src: 'slice',
+ schema: {bar: NUM},
+ }),
+ ]);
- expect(Ds.optimize(dataset)).toEqual({
+ expect(dataset.optimize()).toEqual({
src: 'slice',
// The resultant schema is the combination of the union's member's schemas,
// as we know the source is the same as we know we can get all of the 'seen'