blob: 121a7366f04eb4298131b6f785c7395a7ebf18fa [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/mem.h>
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#include <openssl/err.h>
#if defined(OPENSSL_WINDOWS)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <windows.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif
#include "internal.h"
#define OPENSSL_MALLOC_PREFIX 8
#if defined(OPENSSL_ASAN)
void __asan_poison_memory_region(const volatile void *addr, size_t size);
void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
#else
static void __asan_poison_memory_region(const void *addr, size_t size) {}
static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
#endif
// Windows doesn't really support weak symbols as of May 2019, and Clang on
// Windows will emit strong symbols instead. See
// https://bugs.llvm.org/show_bug.cgi?id=37598
#if defined(__GNUC__) || (defined(__clang__) && !defined(_MSC_VER))
#define WEAK_SYMBOL_DECL
#define WEAK_SYMBOL_DEFAULT_IMPL __attribute((weak, noinline))
#else
#define WEAK_SYMBOL_DECL static
#define WEAK_SYMBOL_DEFAULT_IMPL static
#endif
// sdallocx is a sized |free| function. By passing the size (which we happen to
// always know in BoringSSL), the malloc implementation can save work. We cannot
// depend on |sdallocx| being available so we declare a wrapper that falls back
// to |free| as a weak symbol.
//
// This will always be safe, but will only be overridden if the malloc
// implementation is statically linked with BoringSSL. So, if |sdallocx| is
// provided in, say, libc.so, we still won't use it because that's dynamically
// linked. This isn't an ideal result, but its helps in some cases.
WEAK_SYMBOL_DECL void sdallocx(void *ptr, size_t size, int flags);
WEAK_SYMBOL_DEFAULT_IMPL void sdallocx(void *ptr, size_t size, int flags) {
free(ptr);
}
// The following two functions are for memory tracking. They are no-ops by
// default but can be overridden at link time if the application needs to
// observe heap operations.
WEAK_SYMBOL_DECL void OPENSSL_track_memory_alloc(void *ptr, size_t size);
WEAK_SYMBOL_DEFAULT_IMPL void OPENSSL_track_memory_alloc(void *ptr,
size_t size) {}
WEAK_SYMBOL_DECL void OPENSSL_track_memory_free(void *ptr, size_t size);
WEAK_SYMBOL_DEFAULT_IMPL void OPENSSL_track_memory_free(void *ptr,
size_t size) {}
void *OPENSSL_malloc(size_t size) {
if (size + OPENSSL_MALLOC_PREFIX < size) {
return NULL;
}
void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
if (ptr == NULL) {
return NULL;
}
*(size_t *)ptr = size;
__asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
OPENSSL_track_memory_alloc(ptr, size + OPENSSL_MALLOC_PREFIX);
return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
}
void OPENSSL_free(void *orig_ptr) {
if (orig_ptr == NULL) {
return;
}
void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
__asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
size_t size = *(size_t *)ptr;
OPENSSL_track_memory_free(ptr, size + OPENSSL_MALLOC_PREFIX);
OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
}
void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
if (orig_ptr == NULL) {
return OPENSSL_malloc(new_size);
}
void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
__asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
size_t old_size = *(size_t *)ptr;
__asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
void *ret = OPENSSL_malloc(new_size);
if (ret == NULL) {
return NULL;
}
size_t to_copy = new_size;
if (old_size < to_copy) {
to_copy = old_size;
}
memcpy(ret, orig_ptr, to_copy);
OPENSSL_free(orig_ptr);
return ret;
}
void OPENSSL_cleanse(void *ptr, size_t len) {
#if defined(OPENSSL_WINDOWS)
SecureZeroMemory(ptr, len);
#else
OPENSSL_memset(ptr, 0, len);
#if !defined(OPENSSL_NO_ASM)
/* As best as we can tell, this is sufficient to break any optimisations that
might try to eliminate "superfluous" memsets. If there's an easy way to
detect memset_s, it would be better to use that. */
__asm__ __volatile__("" : : "r"(ptr) : "memory");
#endif
#endif // !OPENSSL_NO_ASM
}
void OPENSSL_clear_free(void *ptr, size_t unused) {
OPENSSL_free(ptr);
}
int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
const uint8_t *a = in_a;
const uint8_t *b = in_b;
uint8_t x = 0;
for (size_t i = 0; i < len; i++) {
x |= a[i] ^ b[i];
}
return x;
}
uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
// These are the FNV-1a parameters for 32 bits.
static const uint32_t kPrime = 16777619u;
static const uint32_t kOffsetBasis = 2166136261u;
const uint8_t *in = ptr;
uint32_t h = kOffsetBasis;
for (size_t i = 0; i < len; i++) {
h ^= in[i];
h *= kPrime;
}
return h;
}
size_t OPENSSL_strnlen(const char *s, size_t len) {
for (size_t i = 0; i < len; i++) {
if (s[i] == 0) {
return i;
}
}
return len;
}
char *OPENSSL_strdup(const char *s) {
if (s == NULL) {
return NULL;
}
const size_t len = strlen(s) + 1;
char *ret = OPENSSL_malloc(len);
if (ret == NULL) {
return NULL;
}
OPENSSL_memcpy(ret, s, len);
return ret;
}
int OPENSSL_tolower(int c) {
if (c >= 'A' && c <= 'Z') {
return c + ('a' - 'A');
}
return c;
}
int OPENSSL_strcasecmp(const char *a, const char *b) {
for (size_t i = 0;; i++) {
const int aa = OPENSSL_tolower(a[i]);
const int bb = OPENSSL_tolower(b[i]);
if (aa < bb) {
return -1;
} else if (aa > bb) {
return 1;
} else if (aa == 0) {
return 0;
}
}
}
int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
for (size_t i = 0; i < n; i++) {
const int aa = OPENSSL_tolower(a[i]);
const int bb = OPENSSL_tolower(b[i]);
if (aa < bb) {
return -1;
} else if (aa > bb) {
return 1;
} else if (aa == 0) {
return 0;
}
}
return 0;
}
int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
va_list args;
va_start(args, format);
int ret = BIO_vsnprintf(buf, n, format, args);
va_end(args);
return ret;
}
int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
return vsnprintf(buf, n, format, args);
}
char *OPENSSL_strndup(const char *str, size_t size) {
char *ret;
size_t alloc_size;
if (str == NULL) {
return NULL;
}
size = OPENSSL_strnlen(str, size);
alloc_size = size + 1;
if (alloc_size < size) {
// overflow
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
return NULL;
}
ret = OPENSSL_malloc(alloc_size);
if (ret == NULL) {
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
return NULL;
}
OPENSSL_memcpy(ret, str, size);
ret[size] = '\0';
return ret;
}
size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
size_t l = 0;
for (; dst_size > 1 && *src; dst_size--) {
*dst++ = *src++;
l++;
}
if (dst_size) {
*dst = 0;
}
return l + strlen(src);
}
size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
size_t l = 0;
for (; dst_size > 0 && *dst; dst_size--, dst++) {
l++;
}
return l + OPENSSL_strlcpy(dst, src, dst_size);
}
void *OPENSSL_memdup(const void *data, size_t size) {
if (size == 0) {
return NULL;
}
void *ret = OPENSSL_malloc(size);
if (ret == NULL) {
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
return NULL;
}
OPENSSL_memcpy(ret, data, size);
return ret;
}