blob: a2f14883ab6cf8258e2bc824e4bd8f88109c0811 [file] [log] [blame]
/* Written by Nils Larsch for the OpenSSL project. */
/* ====================================================================
* Copyright (c) 2000-2003 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/ec.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include "internal.h"
typedef struct x9_62_fieldid_st {
ASN1_OBJECT *fieldType;
union {
char *ptr;
/* NID_X9_62_prime_field */
ASN1_INTEGER *prime;
/* anything else */
ASN1_TYPE *other;
} p;
} X9_62_FIELDID;
ASN1_ADB_TEMPLATE(fieldID_def) = ASN1_SIMPLE(X9_62_FIELDID, p.other, ASN1_ANY);
ASN1_ADB(X9_62_FIELDID) = {
ADB_ENTRY(NID_X9_62_prime_field, ASN1_SIMPLE(X9_62_FIELDID, p.prime, ASN1_INTEGER)),
} ASN1_ADB_END(X9_62_FIELDID, 0, fieldType, 0, &fieldID_def_tt, NULL);
ASN1_SEQUENCE(X9_62_FIELDID) = {
ASN1_SIMPLE(X9_62_FIELDID, fieldType, ASN1_OBJECT),
ASN1_ADB_OBJECT(X9_62_FIELDID)
} ASN1_SEQUENCE_END(X9_62_FIELDID);
typedef struct x9_62_curve_st {
ASN1_OCTET_STRING *a;
ASN1_OCTET_STRING *b;
ASN1_BIT_STRING *seed;
} X9_62_CURVE;
ASN1_SEQUENCE(X9_62_CURVE) = {
ASN1_SIMPLE(X9_62_CURVE, a, ASN1_OCTET_STRING),
ASN1_SIMPLE(X9_62_CURVE, b, ASN1_OCTET_STRING),
ASN1_OPT(X9_62_CURVE, seed, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END(X9_62_CURVE);
typedef struct ec_parameters_st {
long version;
X9_62_FIELDID *fieldID;
X9_62_CURVE *curve;
ASN1_OCTET_STRING *base;
ASN1_INTEGER *order;
ASN1_INTEGER *cofactor;
} ECPARAMETERS;
DECLARE_ASN1_ALLOC_FUNCTIONS(ECPARAMETERS);
ASN1_SEQUENCE(ECPARAMETERS) = {
ASN1_SIMPLE(ECPARAMETERS, version, LONG),
ASN1_SIMPLE(ECPARAMETERS, fieldID, X9_62_FIELDID),
ASN1_SIMPLE(ECPARAMETERS, curve, X9_62_CURVE),
ASN1_SIMPLE(ECPARAMETERS, base, ASN1_OCTET_STRING),
ASN1_SIMPLE(ECPARAMETERS, order, ASN1_INTEGER),
ASN1_OPT(ECPARAMETERS, cofactor, ASN1_INTEGER)
} ASN1_SEQUENCE_END(ECPARAMETERS);
IMPLEMENT_ASN1_ALLOC_FUNCTIONS(ECPARAMETERS);
typedef struct ecpk_parameters_st {
int type;
union {
ASN1_OBJECT *named_curve;
ECPARAMETERS *parameters;
} value;
} ECPKPARAMETERS;
/* SEC1 ECPrivateKey */
typedef struct ec_privatekey_st {
long version;
ASN1_OCTET_STRING *privateKey;
ECPKPARAMETERS *parameters;
ASN1_BIT_STRING *publicKey;
} EC_PRIVATEKEY;
DECLARE_ASN1_FUNCTIONS_const(ECPKPARAMETERS);
DECLARE_ASN1_ENCODE_FUNCTIONS_const(ECPKPARAMETERS, ECPKPARAMETERS);
ASN1_CHOICE(ECPKPARAMETERS) = {
ASN1_SIMPLE(ECPKPARAMETERS, value.named_curve, ASN1_OBJECT),
ASN1_SIMPLE(ECPKPARAMETERS, value.parameters, ECPARAMETERS),
} ASN1_CHOICE_END(ECPKPARAMETERS);
IMPLEMENT_ASN1_FUNCTIONS_const(ECPKPARAMETERS);
DECLARE_ASN1_FUNCTIONS_const(EC_PRIVATEKEY);
DECLARE_ASN1_ENCODE_FUNCTIONS_const(EC_PRIVATEKEY, EC_PRIVATEKEY);
ASN1_SEQUENCE(EC_PRIVATEKEY) = {
ASN1_SIMPLE(EC_PRIVATEKEY, version, LONG),
ASN1_SIMPLE(EC_PRIVATEKEY, privateKey, ASN1_OCTET_STRING),
ASN1_EXP_OPT(EC_PRIVATEKEY, parameters, ECPKPARAMETERS, 0),
ASN1_EXP_OPT(EC_PRIVATEKEY, publicKey, ASN1_BIT_STRING, 1),
} ASN1_SEQUENCE_END(EC_PRIVATEKEY);
IMPLEMENT_ASN1_FUNCTIONS_const(EC_PRIVATEKEY);
ECPKPARAMETERS *ec_asn1_group2pkparameters(const EC_GROUP *group,
ECPKPARAMETERS *params) {
int ok = 0, nid;
ECPKPARAMETERS *ret = params;
if (ret == NULL) {
ret = ECPKPARAMETERS_new();
if (ret == NULL) {
OPENSSL_PUT_ERROR(EC, ec_asn1_group2pkparameters, ERR_R_MALLOC_FAILURE);
return NULL;
}
} else {
if (ret->value.named_curve) {
ASN1_OBJECT_free(ret->value.named_curve);
}
}
/* use the ASN.1 OID to describe the the elliptic curve parameters. */
nid = EC_GROUP_get_curve_name(group);
if (nid) {
ret->type = 0;
ret->value.named_curve = (ASN1_OBJECT*) OBJ_nid2obj(nid);
ok = ret->value.named_curve != NULL;
}
if (!ok) {
ECPKPARAMETERS_free(ret);
return NULL;
}
return ret;
}
EC_GROUP *ec_asn1_pkparameters2group(const ECPKPARAMETERS *params) {
EC_GROUP *ret = NULL;
int nid = NID_undef;
if (params == NULL) {
OPENSSL_PUT_ERROR(EC, ec_asn1_pkparameters2group, EC_R_MISSING_PARAMETERS);
return NULL;
}
if (params->type == 0) {
nid = OBJ_obj2nid(params->value.named_curve);
} else if (params->type == 1) {
/* We don't support arbitary curves so we attempt to recognise it from the
* group order. */
const ECPARAMETERS *ecparams = params->value.parameters;
unsigned i;
const struct built_in_curve *curve;
for (i = 0; OPENSSL_built_in_curves[i].nid != NID_undef; i++) {
curve = &OPENSSL_built_in_curves[i];
const unsigned param_len = curve->data->param_len;
if (ecparams->order->length == param_len &&
memcmp(ecparams->order->data, &curve->data->data[param_len * 5],
param_len) == 0) {
nid = curve->nid;
break;
}
}
}
if (nid == NID_undef) {
OPENSSL_PUT_ERROR(EC, ec_asn1_pkparameters2group, EC_R_NON_NAMED_CURVE);
return NULL;
}
ret = EC_GROUP_new_by_curve_name(nid);
if (ret == NULL) {
OPENSSL_PUT_ERROR(EC, ec_asn1_pkparameters2group,
EC_R_EC_GROUP_NEW_BY_NAME_FAILURE);
return NULL;
}
return ret;
}
static EC_GROUP *d2i_ECPKParameters(EC_GROUP **groupp, const uint8_t **inp,
long len) {
EC_GROUP *group = NULL;
ECPKPARAMETERS *params = NULL;
params = d2i_ECPKPARAMETERS(NULL, inp, len);
if (params == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPKParameters, EC_R_D2I_ECPKPARAMETERS_FAILURE);
ECPKPARAMETERS_free(params);
return NULL;
}
group = ec_asn1_pkparameters2group(params);
if (group == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPKParameters, EC_R_PKPARAMETERS2GROUP_FAILURE);
ECPKPARAMETERS_free(params);
return NULL;
}
if (groupp && *groupp) {
EC_GROUP_free(*groupp);
}
if (groupp) {
*groupp = group;
}
ECPKPARAMETERS_free(params);
return group;
}
static int i2d_ECPKParameters(const EC_GROUP *group, uint8_t **outp) {
int ret = 0;
ECPKPARAMETERS *tmp = ec_asn1_group2pkparameters(group, NULL);
if (tmp == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPKParameters, EC_R_GROUP2PKPARAMETERS_FAILURE);
return 0;
}
ret = i2d_ECPKPARAMETERS(tmp, outp);
if (ret == 0) {
OPENSSL_PUT_ERROR(EC, i2d_ECPKParameters, EC_R_I2D_ECPKPARAMETERS_FAILURE);
ECPKPARAMETERS_free(tmp);
return 0;
}
ECPKPARAMETERS_free(tmp);
return ret;
}
EC_KEY *d2i_ECPrivateKey(EC_KEY **a, const uint8_t **in, long len) {
int ok = 0;
EC_KEY *ret = NULL;
EC_PRIVATEKEY *priv_key = NULL;
priv_key = EC_PRIVATEKEY_new();
if (priv_key == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_MALLOC_FAILURE);
return NULL;
}
priv_key = d2i_EC_PRIVATEKEY(&priv_key, in, len);
if (priv_key == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
EC_PRIVATEKEY_free(priv_key);
return NULL;
}
if (a == NULL || *a == NULL) {
ret = EC_KEY_new();
if (ret == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
if (a) {
*a = ret;
}
} else {
ret = *a;
}
if (priv_key->parameters) {
if (ret->group) {
EC_GROUP_free(ret->group);
}
ret->group = ec_asn1_pkparameters2group(priv_key->parameters);
}
if (ret->group == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
ret->version = priv_key->version;
if (priv_key->privateKey) {
ret->priv_key =
BN_bin2bn(M_ASN1_STRING_data(priv_key->privateKey),
M_ASN1_STRING_length(priv_key->privateKey), ret->priv_key);
if (ret->priv_key == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_BN_LIB);
goto err;
}
} else {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, EC_R_MISSING_PRIVATE_KEY);
goto err;
}
if (ret->pub_key) {
EC_POINT_free(ret->pub_key);
}
ret->pub_key = EC_POINT_new(ret->group);
if (ret->pub_key == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
if (priv_key->publicKey) {
const uint8_t *pub_oct;
int pub_oct_len;
pub_oct = M_ASN1_STRING_data(priv_key->publicKey);
pub_oct_len = M_ASN1_STRING_length(priv_key->publicKey);
/* The first byte (the point conversion form) must be present. */
if (pub_oct_len <= 0) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, EC_R_BUFFER_TOO_SMALL);
goto err;
}
/* Save the point conversion form. */
ret->conv_form = (point_conversion_form_t)(pub_oct[0] & ~0x01);
if (!EC_POINT_oct2point(ret->group, ret->pub_key, pub_oct, pub_oct_len,
NULL)) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
} else {
if (!EC_POINT_mul(ret->group, ret->pub_key, ret->priv_key, NULL, NULL,
NULL)) {
OPENSSL_PUT_ERROR(EC, d2i_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
/* Remember the original private-key-only encoding. */
ret->enc_flag |= EC_PKEY_NO_PUBKEY;
}
ok = 1;
err:
if (!ok) {
if (ret) {
EC_KEY_free(ret);
}
ret = NULL;
if (a) {
*a = ret;
}
}
if (priv_key) {
EC_PRIVATEKEY_free(priv_key);
}
return ret;
}
int i2d_ECPrivateKey(const EC_KEY *key, uint8_t **outp) {
int ret = 0, ok = 0;
uint8_t *buffer = NULL;
size_t buf_len = 0, tmp_len;
EC_PRIVATEKEY *priv_key = NULL;
if (key == NULL || key->group == NULL || key->priv_key == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_PASSED_NULL_PARAMETER);
goto err;
}
priv_key = EC_PRIVATEKEY_new();
if (priv_key == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
priv_key->version = key->version;
buf_len = BN_num_bytes(key->priv_key);
buffer = OPENSSL_malloc(buf_len);
if (buffer == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!BN_bn2bin(key->priv_key, buffer)) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_BN_LIB);
goto err;
}
if (!M_ASN1_OCTET_STRING_set(priv_key->privateKey, buffer, buf_len)) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_ASN1_LIB);
goto err;
}
/* TODO(fork): replace this flexibility with key sensible default? */
if (!(key->enc_flag & EC_PKEY_NO_PARAMETERS)) {
if ((priv_key->parameters = ec_asn1_group2pkparameters(
key->group, priv_key->parameters)) == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
}
/* TODO(fork): replace this flexibility with key sensible default? */
if (!(key->enc_flag & EC_PKEY_NO_PUBKEY) && key->pub_key != NULL) {
priv_key->publicKey = M_ASN1_BIT_STRING_new();
if (priv_key->publicKey == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
tmp_len = EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, NULL,
0, NULL);
if (tmp_len > buf_len) {
uint8_t *tmp_buffer = OPENSSL_realloc(buffer, tmp_len);
if (!tmp_buffer) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_MALLOC_FAILURE);
goto err;
}
buffer = tmp_buffer;
buf_len = tmp_len;
}
if (!EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, buffer,
buf_len, NULL)) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
priv_key->publicKey->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
priv_key->publicKey->flags |= ASN1_STRING_FLAG_BITS_LEFT;
if (!M_ASN1_BIT_STRING_set(priv_key->publicKey, buffer, buf_len)) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_ASN1_LIB);
goto err;
}
}
ret = i2d_EC_PRIVATEKEY(priv_key, outp);
if (ret == 0) {
OPENSSL_PUT_ERROR(EC, i2d_ECPrivateKey, ERR_R_EC_LIB);
goto err;
}
ok = 1;
err:
if (buffer) {
OPENSSL_free(buffer);
}
if (priv_key) {
EC_PRIVATEKEY_free(priv_key);
}
return (ok ? ret : 0);
}
int i2d_ECParameters(const EC_KEY *key, uint8_t **outp) {
if (key == NULL) {
OPENSSL_PUT_ERROR(EC, i2d_ECParameters, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return i2d_ECPKParameters(key->group, outp);
}
EC_KEY *d2i_ECParameters(EC_KEY **key, const uint8_t **inp, long len) {
EC_KEY *ret;
if (inp == NULL || *inp == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECParameters, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
if (key == NULL || *key == NULL) {
ret = EC_KEY_new();
if (ret == NULL) {
OPENSSL_PUT_ERROR(EC, d2i_ECParameters, ERR_R_MALLOC_FAILURE);
return NULL;
}
if (key) {
*key = ret;
}
} else {
ret = *key;
}
if (!d2i_ECPKParameters(&ret->group, inp, len)) {
OPENSSL_PUT_ERROR(EC, d2i_ECParameters, ERR_R_EC_LIB);
return NULL;
}
return ret;
}
EC_KEY *o2i_ECPublicKey(EC_KEY **keyp, const uint8_t **inp, long len) {
EC_KEY *ret = NULL;
if (keyp == NULL || *keyp == NULL || (*keyp)->group == NULL) {
OPENSSL_PUT_ERROR(EC, o2i_ECPublicKey, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
ret = *keyp;
if (ret->pub_key == NULL &&
(ret->pub_key = EC_POINT_new(ret->group)) == NULL) {
OPENSSL_PUT_ERROR(EC, o2i_ECPublicKey, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!EC_POINT_oct2point(ret->group, ret->pub_key, *inp, len, NULL)) {
OPENSSL_PUT_ERROR(EC, o2i_ECPublicKey, ERR_R_EC_LIB);
return 0;
}
/* save the point conversion form */
ret->conv_form = (point_conversion_form_t)(*inp[0] & ~0x01);
*inp += len;
return ret;
}
int i2o_ECPublicKey(const EC_KEY *key, uint8_t **outp) {
size_t buf_len = 0;
int new_buffer = 0;
if (key == NULL) {
OPENSSL_PUT_ERROR(EC, i2o_ECPublicKey, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
buf_len = EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, NULL,
0, NULL);
if (outp == NULL || buf_len == 0) {
/* out == NULL => just return the length of the octet string */
return buf_len;
}
if (*outp == NULL) {
*outp = OPENSSL_malloc(buf_len);
if (*outp == NULL) {
OPENSSL_PUT_ERROR(EC, i2o_ECPublicKey, ERR_R_MALLOC_FAILURE);
return 0;
}
new_buffer = 1;
}
if (!EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, *outp,
buf_len, NULL)) {
OPENSSL_PUT_ERROR(EC, i2o_ECPublicKey, ERR_R_EC_LIB);
if (new_buffer) {
OPENSSL_free(*outp);
*outp = NULL;
}
return 0;
}
if (!new_buffer) {
*outp += buf_len;
}
return buf_len;
}