blob: 70b84ab4362c750d89f48badf38f57c9d35f54a7 [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <stdint.h>
#include <string.h>
#include <vector>
#include <openssl/aead.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include "../test/file_test.h"
namespace bssl {
// This program tests an AEAD against a series of test vectors from a file,
// using the FileTest format. As an example, here's a valid test case:
//
// KEY: 5a19f3173586b4c42f8412f4d5a786531b3231753e9e00998aec12fda8df10e4
// NONCE: 978105dfce667bf4
// IN: 6a4583908d
// AD: b654574932
// CT: 5294265a60
// TAG: 1d45758621762e061368e68868e2f929
static bool TestAEAD(FileTest *t, void *arg) {
const EVP_AEAD *aead = reinterpret_cast<const EVP_AEAD*>(arg);
std::vector<uint8_t> key, nonce, in, ad, ct, tag;
if (!t->GetBytes(&key, "KEY") ||
!t->GetBytes(&nonce, "NONCE") ||
!t->GetBytes(&in, "IN") ||
!t->GetBytes(&ad, "AD") ||
!t->GetBytes(&ct, "CT") ||
!t->GetBytes(&tag, "TAG")) {
return false;
}
ScopedEVP_AEAD_CTX ctx;
if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.data(), key.size(),
tag.size(), evp_aead_seal)) {
t->PrintLine("Failed to init AEAD.");
return false;
}
std::vector<uint8_t> out(in.size() + EVP_AEAD_max_overhead(aead));
if (!t->HasAttribute("NO_SEAL")) {
size_t out_len;
if (!EVP_AEAD_CTX_seal(ctx.get(), out.data(), &out_len, out.size(),
nonce.data(), nonce.size(), in.data(), in.size(),
ad.data(), ad.size())) {
t->PrintLine("Failed to run AEAD.");
return false;
}
out.resize(out_len);
if (out.size() != ct.size() + tag.size()) {
t->PrintLine("Bad output length: %u vs %u.", (unsigned)out_len,
(unsigned)(ct.size() + tag.size()));
return false;
}
if (!t->ExpectBytesEqual(ct.data(), ct.size(), out.data(), ct.size()) ||
!t->ExpectBytesEqual(tag.data(), tag.size(), out.data() + ct.size(),
tag.size())) {
return false;
}
} else {
out.resize(ct.size() + tag.size());
memcpy(out.data(), ct.data(), ct.size());
memcpy(out.data() + ct.size(), tag.data(), tag.size());
}
// The "stateful" AEADs for implementing pre-AEAD cipher suites need to be
// reset after each operation.
ctx.Reset();
if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.data(), key.size(),
tag.size(), evp_aead_open)) {
t->PrintLine("Failed to init AEAD.");
return false;
}
std::vector<uint8_t> out2(out.size());
size_t out2_len;
int ret = EVP_AEAD_CTX_open(ctx.get(), out2.data(), &out2_len, out2.size(),
nonce.data(), nonce.size(), out.data(),
out.size(), ad.data(), ad.size());
if (t->HasAttribute("FAILS")) {
if (ret) {
t->PrintLine("Decrypted bad data.");
return false;
}
ERR_clear_error();
return true;
}
if (!ret) {
t->PrintLine("Failed to decrypt.");
return false;
}
out2.resize(out2_len);
if (!t->ExpectBytesEqual(in.data(), in.size(), out2.data(), out2.size())) {
return false;
}
// The "stateful" AEADs for implementing pre-AEAD cipher suites need to be
// reset after each operation.
ctx.Reset();
if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.data(), key.size(),
tag.size(), evp_aead_open)) {
t->PrintLine("Failed to init AEAD.");
return false;
}
// Garbage at the end isn't ignored.
out.push_back(0);
out2.resize(out.size());
if (EVP_AEAD_CTX_open(ctx.get(), out2.data(), &out2_len, out2.size(),
nonce.data(), nonce.size(), out.data(), out.size(),
ad.data(), ad.size())) {
t->PrintLine("Decrypted bad data with trailing garbage.");
return false;
}
ERR_clear_error();
// The "stateful" AEADs for implementing pre-AEAD cipher suites need to be
// reset after each operation.
ctx.Reset();
if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.data(), key.size(),
tag.size(), evp_aead_open)) {
t->PrintLine("Failed to init AEAD.");
return false;
}
// Verify integrity is checked.
out[0] ^= 0x80;
out.resize(out.size() - 1);
out2.resize(out.size());
if (EVP_AEAD_CTX_open(ctx.get(), out2.data(), &out2_len, out2.size(),
nonce.data(), nonce.size(), out.data(), out.size(),
ad.data(), ad.size())) {
t->PrintLine("Decrypted bad data with corrupted byte.");
return false;
}
ERR_clear_error();
return true;
}
static int TestCleanupAfterInitFailure(const EVP_AEAD *aead) {
EVP_AEAD_CTX ctx;
uint8_t key[128];
memset(key, 0, sizeof(key));
const size_t key_len = EVP_AEAD_key_length(aead);
if (key_len > sizeof(key)) {
fprintf(stderr, "Key length of AEAD too long.\n");
return 0;
}
if (EVP_AEAD_CTX_init(&ctx, aead, key, key_len,
9999 /* a silly tag length to trigger an error */,
NULL /* ENGINE */) != 0) {
fprintf(stderr, "A silly tag length didn't trigger an error!\n");
return 0;
}
ERR_clear_error();
/* Running a second, failed _init should not cause a memory leak. */
if (EVP_AEAD_CTX_init(&ctx, aead, key, key_len,
9999 /* a silly tag length to trigger an error */,
NULL /* ENGINE */) != 0) {
fprintf(stderr, "A silly tag length didn't trigger an error!\n");
return 0;
}
ERR_clear_error();
/* Calling _cleanup on an |EVP_AEAD_CTX| after a failed _init should be a
* no-op. */
EVP_AEAD_CTX_cleanup(&ctx);
return 1;
}
static bool TestWithAliasedBuffers(const EVP_AEAD *aead) {
const size_t key_len = EVP_AEAD_key_length(aead);
const size_t nonce_len = EVP_AEAD_nonce_length(aead);
const size_t max_overhead = EVP_AEAD_max_overhead(aead);
std::vector<uint8_t> key(key_len, 'a');
ScopedEVP_AEAD_CTX ctx;
if (!EVP_AEAD_CTX_init(ctx.get(), aead, key.data(), key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)) {
return false;
}
static const uint8_t kPlaintext[260] =
"testing123456testing123456testing123456testing123456testing123456testing"
"123456testing123456testing123456testing123456testing123456testing123456t"
"esting123456testing123456testing123456testing123456testing123456testing1"
"23456testing123456testing123456testing12345";
const std::vector<size_t> offsets = {
0, 1, 2, 8, 15, 16, 17, 31, 32, 33, 63,
64, 65, 95, 96, 97, 127, 128, 129, 255, 256, 257,
};
std::vector<uint8_t> nonce(nonce_len, 'b');
std::vector<uint8_t> valid_encryption(sizeof(kPlaintext) + max_overhead);
size_t valid_encryption_len;
if (!EVP_AEAD_CTX_seal(
ctx.get(), valid_encryption.data(), &valid_encryption_len,
sizeof(kPlaintext) + max_overhead, nonce.data(), nonce_len,
kPlaintext, sizeof(kPlaintext), nullptr, 0)) {
fprintf(stderr, "EVP_AEAD_CTX_seal failed with disjoint buffers.\n");
return false;
}
// Test with out != in which we expect to fail.
std::vector<uint8_t> buffer(2 + valid_encryption_len);
uint8_t *in = buffer.data() + 1;
uint8_t *out1 = buffer.data();
uint8_t *out2 = buffer.data() + 2;
memcpy(in, kPlaintext, sizeof(kPlaintext));
size_t out_len;
if (EVP_AEAD_CTX_seal(ctx.get(), out1, &out_len,
sizeof(kPlaintext) + max_overhead, nonce.data(),
nonce_len, in, sizeof(kPlaintext), nullptr, 0) ||
EVP_AEAD_CTX_seal(ctx.get(), out2, &out_len,
sizeof(kPlaintext) + max_overhead, nonce.data(),
nonce_len, in, sizeof(kPlaintext), nullptr, 0)) {
fprintf(stderr, "EVP_AEAD_CTX_seal unexpectedly succeeded.\n");
return false;
}
ERR_clear_error();
memcpy(in, valid_encryption.data(), valid_encryption_len);
if (EVP_AEAD_CTX_open(ctx.get(), out1, &out_len, valid_encryption_len,
nonce.data(), nonce_len, in, valid_encryption_len,
nullptr, 0) ||
EVP_AEAD_CTX_open(ctx.get(), out2, &out_len, valid_encryption_len,
nonce.data(), nonce_len, in, valid_encryption_len,
nullptr, 0)) {
fprintf(stderr, "EVP_AEAD_CTX_open unexpectedly succeeded.\n");
return false;
}
ERR_clear_error();
// Test with out == in, which we expect to work.
memcpy(in, kPlaintext, sizeof(kPlaintext));
if (!EVP_AEAD_CTX_seal(ctx.get(), in, &out_len,
sizeof(kPlaintext) + max_overhead, nonce.data(),
nonce_len, in, sizeof(kPlaintext), nullptr, 0)) {
fprintf(stderr, "EVP_AEAD_CTX_seal failed in-place.\n");
return false;
}
if (out_len != valid_encryption_len ||
memcmp(in, valid_encryption.data(), out_len) != 0) {
fprintf(stderr, "EVP_AEAD_CTX_seal produced bad output in-place.\n");
return false;
}
memcpy(in, valid_encryption.data(), valid_encryption_len);
if (!EVP_AEAD_CTX_open(ctx.get(), in, &out_len, valid_encryption_len,
nonce.data(), nonce_len, in, valid_encryption_len,
nullptr, 0)) {
fprintf(stderr, "EVP_AEAD_CTX_open failed in-place.\n");
return false;
}
if (out_len != sizeof(kPlaintext) ||
memcmp(in, kPlaintext, out_len) != 0) {
fprintf(stderr, "EVP_AEAD_CTX_open produced bad output in-place.\n");
return false;
}
return true;
}
struct KnownAEAD {
const char name[40];
const EVP_AEAD *(*func)(void);
// limited_implementation indicates that tests that assume a generic AEAD
// interface should not be performed. For example, the key-wrap AEADs only
// handle inputs that are a multiple of eight bytes in length and the
// SSLv3/TLS AEADs have the concept of “direction”.
bool limited_implementation;
};
static const struct KnownAEAD kAEADs[] = {
{ "aes-128-gcm", EVP_aead_aes_128_gcm, false },
{ "aes-256-gcm", EVP_aead_aes_256_gcm, false },
{ "chacha20-poly1305", EVP_aead_chacha20_poly1305, false },
{ "chacha20-poly1305-old", EVP_aead_chacha20_poly1305_old, false },
{ "rc4-md5-tls", EVP_aead_rc4_md5_tls, true },
{ "rc4-sha1-tls", EVP_aead_rc4_sha1_tls, true },
{ "aes-128-cbc-sha1-tls", EVP_aead_aes_128_cbc_sha1_tls, true },
{ "aes-128-cbc-sha1-tls-implicit-iv", EVP_aead_aes_128_cbc_sha1_tls_implicit_iv, true },
{ "aes-128-cbc-sha256-tls", EVP_aead_aes_128_cbc_sha256_tls, true },
{ "aes-256-cbc-sha1-tls", EVP_aead_aes_256_cbc_sha1_tls, true },
{ "aes-256-cbc-sha1-tls-implicit-iv", EVP_aead_aes_256_cbc_sha1_tls_implicit_iv, true },
{ "aes-256-cbc-sha256-tls", EVP_aead_aes_256_cbc_sha256_tls, true },
{ "aes-256-cbc-sha384-tls", EVP_aead_aes_256_cbc_sha384_tls, true },
{ "des-ede3-cbc-sha1-tls", EVP_aead_des_ede3_cbc_sha1_tls, true },
{ "des-ede3-cbc-sha1-tls-implicit-iv", EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv, true },
{ "rc4-md5-ssl3", EVP_aead_rc4_md5_ssl3, true },
{ "rc4-sha1-ssl3", EVP_aead_rc4_sha1_ssl3, true },
{ "aes-128-cbc-sha1-ssl3", EVP_aead_aes_128_cbc_sha1_ssl3, true },
{ "aes-256-cbc-sha1-ssl3", EVP_aead_aes_256_cbc_sha1_ssl3, true },
{ "des-ede3-cbc-sha1-ssl3", EVP_aead_des_ede3_cbc_sha1_ssl3, true },
{ "aes-128-key-wrap", EVP_aead_aes_128_key_wrap, true },
{ "aes-256-key-wrap", EVP_aead_aes_256_key_wrap, true },
{ "aes-128-ctr-hmac-sha256", EVP_aead_aes_128_ctr_hmac_sha256, false },
{ "aes-256-ctr-hmac-sha256", EVP_aead_aes_256_ctr_hmac_sha256, false },
{ "", NULL, false },
};
static int Main(int argc, char **argv) {
CRYPTO_library_init();
if (argc != 3) {
fprintf(stderr, "%s <aead> <test file.txt>\n", argv[0]);
return 1;
}
const struct KnownAEAD *known_aead;
for (unsigned i = 0;; i++) {
known_aead = &kAEADs[i];
if (known_aead->func == NULL) {
fprintf(stderr, "Unknown AEAD: %s\n", argv[1]);
return 2;
}
if (strcmp(known_aead->name, argv[1]) == 0) {
break;
}
}
const EVP_AEAD *const aead = known_aead->func();
if (!TestCleanupAfterInitFailure(aead)) {
return 1;
}
if (!known_aead->limited_implementation && !TestWithAliasedBuffers(aead)) {
fprintf(stderr, "Aliased buffers test failed for %s.\n", known_aead->name);
return 1;
}
return FileTestMain(TestAEAD, const_cast<EVP_AEAD*>(aead), argv[2]);
}
} // namespace bssl
int main(int argc, char **argv) {
return bssl::Main(argc, argv);
}