| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/asn1.h> |
| |
| #include <string.h> |
| |
| #include <openssl/asn1t.h> |
| #include <openssl/buf.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../internal.h" |
| |
| static int asn1_check_eoc(const unsigned char **in, long len); |
| static int asn1_find_end(const unsigned char **in, long len, char inf); |
| |
| static int asn1_collect(BUF_MEM *buf, const unsigned char **in, long len, |
| char inf, int tag, int aclass, int depth); |
| |
| static int collect_data(BUF_MEM *buf, const unsigned char **p, long plen); |
| |
| static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass, |
| char *inf, char *cst, |
| const unsigned char **in, long len, |
| int exptag, int expclass, char opt, ASN1_TLC *ctx); |
| |
| static int asn1_template_ex_d2i(ASN1_VALUE **pval, |
| const unsigned char **in, long len, |
| const ASN1_TEMPLATE *tt, char opt, |
| ASN1_TLC *ctx); |
| static int asn1_template_noexp_d2i(ASN1_VALUE **val, |
| const unsigned char **in, long len, |
| const ASN1_TEMPLATE *tt, char opt, |
| ASN1_TLC *ctx); |
| static int asn1_d2i_ex_primitive(ASN1_VALUE **pval, |
| const unsigned char **in, long len, |
| const ASN1_ITEM *it, |
| int tag, int aclass, char opt, |
| ASN1_TLC *ctx); |
| |
| /* Table to convert tags to bit values, used for MSTRING type */ |
| static const unsigned long tag2bit[32] = { |
| 0, 0, 0, B_ASN1_BIT_STRING, /* tags 0 - 3 */ |
| B_ASN1_OCTET_STRING, 0, 0, B_ASN1_UNKNOWN, /* tags 4- 7 */ |
| B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, /* tags |
| * 8-11 */ |
| B_ASN1_UTF8STRING, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, /* tags |
| * 12-15 |
| */ |
| B_ASN1_SEQUENCE, 0, B_ASN1_NUMERICSTRING, B_ASN1_PRINTABLESTRING, /* tags |
| * 16-19 |
| */ |
| B_ASN1_T61STRING, B_ASN1_VIDEOTEXSTRING, B_ASN1_IA5STRING, /* tags 20-22 */ |
| B_ASN1_UTCTIME, B_ASN1_GENERALIZEDTIME, /* tags 23-24 */ |
| B_ASN1_GRAPHICSTRING, B_ASN1_ISO64STRING, B_ASN1_GENERALSTRING, /* tags |
| * 25-27 */ |
| B_ASN1_UNIVERSALSTRING, B_ASN1_UNKNOWN, B_ASN1_BMPSTRING, B_ASN1_UNKNOWN, /* tags |
| * 28-31 |
| */ |
| }; |
| |
| unsigned long ASN1_tag2bit(int tag) |
| { |
| if ((tag < 0) || (tag > 30)) |
| return 0; |
| return tag2bit[tag]; |
| } |
| |
| /* Macro to initialize and invalidate the cache */ |
| |
| #define asn1_tlc_clear(c) if (c) (c)->valid = 0 |
| /* Version to avoid compiler warning about 'c' always non-NULL */ |
| #define asn1_tlc_clear_nc(c) (c)->valid = 0 |
| |
| /* |
| * Decode an ASN1 item, this currently behaves just like a standard 'd2i' |
| * function. 'in' points to a buffer to read the data from, in future we |
| * will have more advanced versions that can input data a piece at a time and |
| * this will simply be a special case. |
| */ |
| |
| ASN1_VALUE *ASN1_item_d2i(ASN1_VALUE **pval, |
| const unsigned char **in, long len, |
| const ASN1_ITEM *it) |
| { |
| ASN1_TLC c; |
| ASN1_VALUE *ptmpval = NULL; |
| if (!pval) |
| pval = &ptmpval; |
| asn1_tlc_clear_nc(&c); |
| if (ASN1_item_ex_d2i(pval, in, len, it, -1, 0, 0, &c) > 0) |
| return *pval; |
| return NULL; |
| } |
| |
| /* |
| * Decode an item, taking care of IMPLICIT tagging, if any. If 'opt' set and |
| * tag mismatch return -1 to handle OPTIONAL |
| */ |
| |
| int ASN1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, |
| const ASN1_ITEM *it, |
| int tag, int aclass, char opt, ASN1_TLC *ctx) |
| { |
| const ASN1_TEMPLATE *tt, *errtt = NULL; |
| const ASN1_COMPAT_FUNCS *cf; |
| const ASN1_EXTERN_FUNCS *ef; |
| const ASN1_AUX *aux = it->funcs; |
| ASN1_aux_cb *asn1_cb; |
| const unsigned char *p = NULL, *q; |
| unsigned char *wp = NULL; /* BIG FAT WARNING! BREAKS CONST WHERE USED */ |
| unsigned char imphack = 0, oclass; |
| char seq_eoc, seq_nolen, cst, isopt; |
| long tmplen; |
| int i; |
| int otag; |
| int ret = 0; |
| ASN1_VALUE **pchptr, *ptmpval; |
| int combine = aclass & ASN1_TFLG_COMBINE; |
| aclass &= ~ASN1_TFLG_COMBINE; |
| if (!pval) |
| return 0; |
| if (aux && aux->asn1_cb) |
| asn1_cb = aux->asn1_cb; |
| else |
| asn1_cb = 0; |
| |
| switch (it->itype) { |
| case ASN1_ITYPE_PRIMITIVE: |
| if (it->templates) { |
| /* |
| * tagging or OPTIONAL is currently illegal on an item template |
| * because the flags can't get passed down. In practice this |
| * isn't a problem: we include the relevant flags from the item |
| * template in the template itself. |
| */ |
| if ((tag != -1) || opt) { |
| OPENSSL_PUT_ERROR(ASN1, |
| ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE); |
| goto err; |
| } |
| return asn1_template_ex_d2i(pval, in, len, |
| it->templates, opt, ctx); |
| } |
| return asn1_d2i_ex_primitive(pval, in, len, it, |
| tag, aclass, opt, ctx); |
| break; |
| |
| case ASN1_ITYPE_MSTRING: |
| p = *in; |
| /* Just read in tag and class */ |
| ret = asn1_check_tlen(NULL, &otag, &oclass, NULL, NULL, |
| &p, len, -1, 0, 1, ctx); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } |
| |
| /* Must be UNIVERSAL class */ |
| if (oclass != V_ASN1_UNIVERSAL) { |
| /* If OPTIONAL, assume this is OK */ |
| if (opt) |
| return -1; |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MSTRING_NOT_UNIVERSAL); |
| goto err; |
| } |
| /* Check tag matches bit map */ |
| if (!(ASN1_tag2bit(otag) & it->utype)) { |
| /* If OPTIONAL, assume this is OK */ |
| if (opt) |
| return -1; |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MSTRING_WRONG_TAG); |
| goto err; |
| } |
| return asn1_d2i_ex_primitive(pval, in, len, it, otag, 0, 0, ctx); |
| |
| case ASN1_ITYPE_EXTERN: |
| /* Use new style d2i */ |
| ef = it->funcs; |
| return ef->asn1_ex_d2i(pval, in, len, it, tag, aclass, opt, ctx); |
| |
| case ASN1_ITYPE_COMPAT: |
| /* we must resort to old style evil hackery */ |
| cf = it->funcs; |
| |
| /* If OPTIONAL see if it is there */ |
| if (opt) { |
| int exptag; |
| p = *in; |
| if (tag == -1) |
| exptag = it->utype; |
| else |
| exptag = tag; |
| /* |
| * Don't care about anything other than presence of expected tag |
| */ |
| |
| ret = asn1_check_tlen(NULL, NULL, NULL, NULL, NULL, |
| &p, len, exptag, aclass, 1, ctx); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } |
| if (ret == -1) |
| return -1; |
| } |
| |
| /* |
| * This is the old style evil hack IMPLICIT handling: since the |
| * underlying code is expecting a tag and class other than the one |
| * present we change the buffer temporarily then change it back |
| * afterwards. This doesn't and never did work for tags > 30. Yes |
| * this is *horrible* but it is only needed for old style d2i which |
| * will hopefully not be around for much longer. FIXME: should copy |
| * the buffer then modify it so the input buffer can be const: we |
| * should *always* copy because the old style d2i might modify the |
| * buffer. |
| */ |
| |
| if (tag != -1) { |
| wp = *(unsigned char **)in; |
| imphack = *wp; |
| if (p == NULL) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } |
| *wp = (unsigned char)((*p & V_ASN1_CONSTRUCTED) |
| | it->utype); |
| } |
| |
| ptmpval = cf->asn1_d2i(pval, in, len); |
| |
| if (tag != -1) |
| *wp = imphack; |
| |
| if (ptmpval) |
| return 1; |
| |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| |
| case ASN1_ITYPE_CHOICE: |
| if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL)) |
| goto auxerr; |
| |
| if (*pval) { |
| /* Free up and zero CHOICE value if initialised */ |
| i = asn1_get_choice_selector(pval, it); |
| if ((i >= 0) && (i < it->tcount)) { |
| tt = it->templates + i; |
| pchptr = asn1_get_field_ptr(pval, tt); |
| ASN1_template_free(pchptr, tt); |
| asn1_set_choice_selector(pval, -1, it); |
| } |
| } else if (!ASN1_item_ex_new(pval, it)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } |
| /* CHOICE type, try each possibility in turn */ |
| p = *in; |
| for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { |
| pchptr = asn1_get_field_ptr(pval, tt); |
| /* |
| * We mark field as OPTIONAL so its absence can be recognised. |
| */ |
| ret = asn1_template_ex_d2i(pchptr, &p, len, tt, 1, ctx); |
| /* If field not present, try the next one */ |
| if (ret == -1) |
| continue; |
| /* If positive return, read OK, break loop */ |
| if (ret > 0) |
| break; |
| /* Otherwise must be an ASN1 parsing error */ |
| errtt = tt; |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } |
| |
| /* Did we fall off the end without reading anything? */ |
| if (i == it->tcount) { |
| /* If OPTIONAL, this is OK */ |
| if (opt) { |
| /* Free and zero it */ |
| ASN1_item_ex_free(pval, it); |
| return -1; |
| } |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NO_MATCHING_CHOICE_TYPE); |
| goto err; |
| } |
| |
| asn1_set_choice_selector(pval, i, it); |
| if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL)) |
| goto auxerr; |
| *in = p; |
| return 1; |
| |
| case ASN1_ITYPE_NDEF_SEQUENCE: |
| case ASN1_ITYPE_SEQUENCE: |
| p = *in; |
| tmplen = len; |
| |
| /* If no IMPLICIT tagging set to SEQUENCE, UNIVERSAL */ |
| if (tag == -1) { |
| tag = V_ASN1_SEQUENCE; |
| aclass = V_ASN1_UNIVERSAL; |
| } |
| /* Get SEQUENCE length and update len, p */ |
| ret = asn1_check_tlen(&len, NULL, NULL, &seq_eoc, &cst, |
| &p, len, tag, aclass, opt, ctx); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } else if (ret == -1) |
| return -1; |
| if (aux && (aux->flags & ASN1_AFLG_BROKEN)) { |
| len = tmplen - (p - *in); |
| seq_nolen = 1; |
| } |
| /* If indefinite we don't do a length check */ |
| else |
| seq_nolen = seq_eoc; |
| if (!cst) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_SEQUENCE_NOT_CONSTRUCTED); |
| goto err; |
| } |
| |
| if (!*pval && !ASN1_item_ex_new(pval, it)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } |
| |
| if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL)) |
| goto auxerr; |
| |
| /* Free up and zero any ADB found */ |
| for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { |
| if (tt->flags & ASN1_TFLG_ADB_MASK) { |
| const ASN1_TEMPLATE *seqtt; |
| ASN1_VALUE **pseqval; |
| seqtt = asn1_do_adb(pval, tt, 0); |
| if (seqtt == NULL) |
| continue; |
| pseqval = asn1_get_field_ptr(pval, seqtt); |
| ASN1_template_free(pseqval, seqtt); |
| } |
| } |
| |
| /* Get each field entry */ |
| for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { |
| const ASN1_TEMPLATE *seqtt; |
| ASN1_VALUE **pseqval; |
| seqtt = asn1_do_adb(pval, tt, 1); |
| if (seqtt == NULL) |
| goto err; |
| pseqval = asn1_get_field_ptr(pval, seqtt); |
| /* Have we ran out of data? */ |
| if (!len) |
| break; |
| q = p; |
| if (asn1_check_eoc(&p, len)) { |
| if (!seq_eoc) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNEXPECTED_EOC); |
| goto err; |
| } |
| len -= p - q; |
| seq_eoc = 0; |
| q = p; |
| break; |
| } |
| /* |
| * This determines the OPTIONAL flag value. The field cannot be |
| * omitted if it is the last of a SEQUENCE and there is still |
| * data to be read. This isn't strictly necessary but it |
| * increases efficiency in some cases. |
| */ |
| if (i == (it->tcount - 1)) |
| isopt = 0; |
| else |
| isopt = (char)(seqtt->flags & ASN1_TFLG_OPTIONAL); |
| /* |
| * attempt to read in field, allowing each to be OPTIONAL |
| */ |
| |
| ret = asn1_template_ex_d2i(pseqval, &p, len, seqtt, isopt, ctx); |
| if (!ret) { |
| errtt = seqtt; |
| goto err; |
| } else if (ret == -1) { |
| /* |
| * OPTIONAL component absent. Free and zero the field. |
| */ |
| ASN1_template_free(pseqval, seqtt); |
| continue; |
| } |
| /* Update length */ |
| len -= p - q; |
| } |
| |
| /* Check for EOC if expecting one */ |
| if (seq_eoc && !asn1_check_eoc(&p, len)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); |
| goto err; |
| } |
| /* Check all data read */ |
| if (!seq_nolen && len) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_SEQUENCE_LENGTH_MISMATCH); |
| goto err; |
| } |
| |
| /* |
| * If we get here we've got no more data in the SEQUENCE, however we |
| * may not have read all fields so check all remaining are OPTIONAL |
| * and clear any that are. |
| */ |
| for (; i < it->tcount; tt++, i++) { |
| const ASN1_TEMPLATE *seqtt; |
| seqtt = asn1_do_adb(pval, tt, 1); |
| if (seqtt == NULL) |
| goto err; |
| if (seqtt->flags & ASN1_TFLG_OPTIONAL) { |
| ASN1_VALUE **pseqval; |
| pseqval = asn1_get_field_ptr(pval, seqtt); |
| ASN1_template_free(pseqval, seqtt); |
| } else { |
| errtt = seqtt; |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_FIELD_MISSING); |
| goto err; |
| } |
| } |
| /* Save encoding */ |
| if (!asn1_enc_save(pval, *in, p - *in, it)) |
| goto auxerr; |
| if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL)) |
| goto auxerr; |
| *in = p; |
| return 1; |
| |
| default: |
| return 0; |
| } |
| auxerr: |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_AUX_ERROR); |
| err: |
| if (combine == 0) |
| ASN1_item_ex_free(pval, it); |
| if (errtt) |
| ERR_add_error_data(4, "Field=", errtt->field_name, |
| ", Type=", it->sname); |
| else |
| ERR_add_error_data(2, "Type=", it->sname); |
| return 0; |
| } |
| |
| /* |
| * Templates are handled with two separate functions. One handles any |
| * EXPLICIT tag and the other handles the rest. |
| */ |
| |
| static int asn1_template_ex_d2i(ASN1_VALUE **val, |
| const unsigned char **in, long inlen, |
| const ASN1_TEMPLATE *tt, char opt, |
| ASN1_TLC *ctx) |
| { |
| int flags, aclass; |
| int ret; |
| long len; |
| const unsigned char *p, *q; |
| char exp_eoc; |
| if (!val) |
| return 0; |
| flags = tt->flags; |
| aclass = flags & ASN1_TFLG_TAG_CLASS; |
| |
| p = *in; |
| |
| /* Check if EXPLICIT tag expected */ |
| if (flags & ASN1_TFLG_EXPTAG) { |
| char cst; |
| /* |
| * Need to work out amount of data available to the inner content and |
| * where it starts: so read in EXPLICIT header to get the info. |
| */ |
| ret = asn1_check_tlen(&len, NULL, NULL, &exp_eoc, &cst, |
| &p, inlen, tt->tag, aclass, opt, ctx); |
| q = p; |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| return 0; |
| } else if (ret == -1) |
| return -1; |
| if (!cst) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_EXPLICIT_TAG_NOT_CONSTRUCTED); |
| return 0; |
| } |
| /* We've found the field so it can't be OPTIONAL now */ |
| ret = asn1_template_noexp_d2i(val, &p, len, tt, 0, ctx); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| return 0; |
| } |
| /* We read the field in OK so update length */ |
| len -= p - q; |
| if (exp_eoc) { |
| /* If NDEF we must have an EOC here */ |
| if (!asn1_check_eoc(&p, len)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); |
| goto err; |
| } |
| } else { |
| /* |
| * Otherwise we must hit the EXPLICIT tag end or its an error |
| */ |
| if (len) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_EXPLICIT_LENGTH_MISMATCH); |
| goto err; |
| } |
| } |
| } else |
| return asn1_template_noexp_d2i(val, in, inlen, tt, opt, ctx); |
| |
| *in = p; |
| return 1; |
| |
| err: |
| ASN1_template_free(val, tt); |
| return 0; |
| } |
| |
| static int asn1_template_noexp_d2i(ASN1_VALUE **val, |
| const unsigned char **in, long len, |
| const ASN1_TEMPLATE *tt, char opt, |
| ASN1_TLC *ctx) |
| { |
| int flags, aclass; |
| int ret; |
| const unsigned char *p; |
| if (!val) |
| return 0; |
| flags = tt->flags; |
| aclass = flags & ASN1_TFLG_TAG_CLASS; |
| |
| p = *in; |
| |
| if (flags & ASN1_TFLG_SK_MASK) { |
| /* SET OF, SEQUENCE OF */ |
| int sktag, skaclass; |
| char sk_eoc; |
| /* First work out expected inner tag value */ |
| if (flags & ASN1_TFLG_IMPTAG) { |
| sktag = tt->tag; |
| skaclass = aclass; |
| } else { |
| skaclass = V_ASN1_UNIVERSAL; |
| if (flags & ASN1_TFLG_SET_OF) |
| sktag = V_ASN1_SET; |
| else |
| sktag = V_ASN1_SEQUENCE; |
| } |
| /* Get the tag */ |
| ret = asn1_check_tlen(&len, NULL, NULL, &sk_eoc, NULL, |
| &p, len, sktag, skaclass, opt, ctx); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| return 0; |
| } else if (ret == -1) |
| return -1; |
| if (!*val) |
| *val = (ASN1_VALUE *)sk_new_null(); |
| else { |
| /* |
| * We've got a valid STACK: free up any items present |
| */ |
| STACK_OF(ASN1_VALUE) *sktmp = (STACK_OF(ASN1_VALUE) *)*val; |
| ASN1_VALUE *vtmp; |
| while (sk_ASN1_VALUE_num(sktmp) > 0) { |
| vtmp = sk_ASN1_VALUE_pop(sktmp); |
| ASN1_item_ex_free(&vtmp, ASN1_ITEM_ptr(tt->item)); |
| } |
| } |
| |
| if (!*val) { |
| OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* Read as many items as we can */ |
| while (len > 0) { |
| ASN1_VALUE *skfield; |
| const unsigned char *q = p; |
| /* See if EOC found */ |
| if (asn1_check_eoc(&p, len)) { |
| if (!sk_eoc) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNEXPECTED_EOC); |
| goto err; |
| } |
| len -= p - q; |
| sk_eoc = 0; |
| break; |
| } |
| skfield = NULL; |
| if (!ASN1_item_ex_d2i(&skfield, &p, len, |
| ASN1_ITEM_ptr(tt->item), -1, 0, 0, ctx)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } |
| len -= p - q; |
| if (!sk_ASN1_VALUE_push((STACK_OF(ASN1_VALUE) *)*val, skfield)) { |
| ASN1_item_ex_free(&skfield, ASN1_ITEM_ptr(tt->item)); |
| OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| } |
| if (sk_eoc) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); |
| goto err; |
| } |
| } else if (flags & ASN1_TFLG_IMPTAG) { |
| /* IMPLICIT tagging */ |
| ret = ASN1_item_ex_d2i(val, &p, len, |
| ASN1_ITEM_ptr(tt->item), tt->tag, aclass, opt, |
| ctx); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } else if (ret == -1) |
| return -1; |
| } else { |
| /* Nothing special */ |
| ret = ASN1_item_ex_d2i(val, &p, len, ASN1_ITEM_ptr(tt->item), |
| -1, tt->flags & ASN1_TFLG_COMBINE, opt, ctx); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| goto err; |
| } else if (ret == -1) |
| return -1; |
| } |
| |
| *in = p; |
| return 1; |
| |
| err: |
| ASN1_template_free(val, tt); |
| return 0; |
| } |
| |
| static int asn1_d2i_ex_primitive(ASN1_VALUE **pval, |
| const unsigned char **in, long inlen, |
| const ASN1_ITEM *it, |
| int tag, int aclass, char opt, ASN1_TLC *ctx) |
| { |
| int ret = 0, utype; |
| long plen; |
| char cst, inf, free_cont = 0; |
| const unsigned char *p; |
| BUF_MEM buf = {0, NULL, 0 }; |
| const unsigned char *cont = NULL; |
| long len; |
| if (!pval) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_NULL); |
| return 0; /* Should never happen */ |
| } |
| |
| if (it->itype == ASN1_ITYPE_MSTRING) { |
| utype = tag; |
| tag = -1; |
| } else |
| utype = it->utype; |
| |
| if (utype == V_ASN1_ANY) { |
| /* If type is ANY need to figure out type from tag */ |
| unsigned char oclass; |
| if (tag >= 0) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_TAGGED_ANY); |
| return 0; |
| } |
| if (opt) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_OPTIONAL_ANY); |
| return 0; |
| } |
| p = *in; |
| ret = asn1_check_tlen(NULL, &utype, &oclass, NULL, NULL, |
| &p, inlen, -1, 0, 0, ctx); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| return 0; |
| } |
| if (oclass != V_ASN1_UNIVERSAL) |
| utype = V_ASN1_OTHER; |
| } |
| if (tag == -1) { |
| tag = utype; |
| aclass = V_ASN1_UNIVERSAL; |
| } |
| p = *in; |
| /* Check header */ |
| ret = asn1_check_tlen(&plen, NULL, NULL, &inf, &cst, |
| &p, inlen, tag, aclass, opt, ctx); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| return 0; |
| } else if (ret == -1) |
| return -1; |
| ret = 0; |
| /* SEQUENCE, SET and "OTHER" are left in encoded form */ |
| if ((utype == V_ASN1_SEQUENCE) |
| || (utype == V_ASN1_SET) || (utype == V_ASN1_OTHER)) { |
| /* |
| * Clear context cache for type OTHER because the auto clear when we |
| * have a exact match wont work |
| */ |
| if (utype == V_ASN1_OTHER) { |
| asn1_tlc_clear(ctx); |
| } |
| /* SEQUENCE and SET must be constructed */ |
| else if (!cst) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_TYPE_NOT_CONSTRUCTED); |
| return 0; |
| } |
| |
| cont = *in; |
| /* If indefinite length constructed find the real end */ |
| if (inf) { |
| if (!asn1_find_end(&p, plen, inf)) |
| goto err; |
| len = p - cont; |
| } else { |
| len = p - cont + plen; |
| p += plen; |
| } |
| } else if (cst) { |
| if (utype == V_ASN1_NULL || utype == V_ASN1_BOOLEAN |
| || utype == V_ASN1_OBJECT || utype == V_ASN1_INTEGER |
| || utype == V_ASN1_ENUMERATED) { |
| /* These types only have primitive encodings. */ |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_TYPE_NOT_PRIMITIVE); |
| return 0; |
| } |
| |
| /* Free any returned 'buf' content */ |
| free_cont = 1; |
| /* |
| * Should really check the internal tags are correct but some things |
| * may get this wrong. The relevant specs say that constructed string |
| * types should be OCTET STRINGs internally irrespective of the type. |
| * So instead just check for UNIVERSAL class and ignore the tag. |
| */ |
| if (!asn1_collect(&buf, &p, plen, inf, -1, V_ASN1_UNIVERSAL, 0)) { |
| goto err; |
| } |
| len = buf.length; |
| /* Append a final null to string */ |
| if (!BUF_MEM_grow_clean(&buf, len + 1)) { |
| OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| buf.data[len] = 0; |
| cont = (const unsigned char *)buf.data; |
| } else { |
| cont = p; |
| len = plen; |
| p += plen; |
| } |
| |
| /* We now have content length and type: translate into a structure */ |
| /* asn1_ex_c2i may reuse allocated buffer, and so sets free_cont to 0 */ |
| if (!asn1_ex_c2i(pval, cont, len, utype, &free_cont, it)) |
| goto err; |
| |
| *in = p; |
| ret = 1; |
| err: |
| if (free_cont && buf.data) |
| OPENSSL_free(buf.data); |
| return ret; |
| } |
| |
| /* Translate ASN1 content octets into a structure */ |
| |
| int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, |
| int utype, char *free_cont, const ASN1_ITEM *it) |
| { |
| ASN1_VALUE **opval = NULL; |
| ASN1_STRING *stmp; |
| ASN1_TYPE *typ = NULL; |
| int ret = 0; |
| const ASN1_PRIMITIVE_FUNCS *pf; |
| ASN1_INTEGER **tint; |
| pf = it->funcs; |
| |
| if (pf && pf->prim_c2i) |
| return pf->prim_c2i(pval, cont, len, utype, free_cont, it); |
| /* If ANY type clear type and set pointer to internal value */ |
| if (it->utype == V_ASN1_ANY) { |
| if (!*pval) { |
| typ = ASN1_TYPE_new(); |
| if (typ == NULL) |
| goto err; |
| *pval = (ASN1_VALUE *)typ; |
| } else |
| typ = (ASN1_TYPE *)*pval; |
| |
| if (utype != typ->type) |
| ASN1_TYPE_set(typ, utype, NULL); |
| opval = pval; |
| pval = &typ->value.asn1_value; |
| } |
| switch (utype) { |
| case V_ASN1_OBJECT: |
| if (!c2i_ASN1_OBJECT((ASN1_OBJECT **)pval, &cont, len)) |
| goto err; |
| break; |
| |
| case V_ASN1_NULL: |
| if (len) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NULL_IS_WRONG_LENGTH); |
| goto err; |
| } |
| *pval = (ASN1_VALUE *)1; |
| break; |
| |
| case V_ASN1_BOOLEAN: |
| if (len != 1) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BOOLEAN_IS_WRONG_LENGTH); |
| goto err; |
| } else { |
| ASN1_BOOLEAN *tbool; |
| tbool = (ASN1_BOOLEAN *)pval; |
| *tbool = *cont; |
| } |
| break; |
| |
| case V_ASN1_BIT_STRING: |
| if (!c2i_ASN1_BIT_STRING((ASN1_BIT_STRING **)pval, &cont, len)) |
| goto err; |
| break; |
| |
| case V_ASN1_INTEGER: |
| case V_ASN1_ENUMERATED: |
| tint = (ASN1_INTEGER **)pval; |
| if (!c2i_ASN1_INTEGER(tint, &cont, len)) |
| goto err; |
| /* Fixup type to match the expected form */ |
| (*tint)->type = utype | ((*tint)->type & V_ASN1_NEG); |
| break; |
| |
| case V_ASN1_OCTET_STRING: |
| case V_ASN1_NUMERICSTRING: |
| case V_ASN1_PRINTABLESTRING: |
| case V_ASN1_T61STRING: |
| case V_ASN1_VIDEOTEXSTRING: |
| case V_ASN1_IA5STRING: |
| case V_ASN1_UTCTIME: |
| case V_ASN1_GENERALIZEDTIME: |
| case V_ASN1_GRAPHICSTRING: |
| case V_ASN1_VISIBLESTRING: |
| case V_ASN1_GENERALSTRING: |
| case V_ASN1_UNIVERSALSTRING: |
| case V_ASN1_BMPSTRING: |
| case V_ASN1_UTF8STRING: |
| case V_ASN1_OTHER: |
| case V_ASN1_SET: |
| case V_ASN1_SEQUENCE: |
| default: |
| if (utype == V_ASN1_BMPSTRING && (len & 1)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BMPSTRING_IS_WRONG_LENGTH); |
| goto err; |
| } |
| if (utype == V_ASN1_UNIVERSALSTRING && (len & 3)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNIVERSALSTRING_IS_WRONG_LENGTH); |
| goto err; |
| } |
| /* All based on ASN1_STRING and handled the same */ |
| if (!*pval) { |
| stmp = ASN1_STRING_type_new(utype); |
| if (!stmp) { |
| OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| *pval = (ASN1_VALUE *)stmp; |
| } else { |
| stmp = (ASN1_STRING *)*pval; |
| stmp->type = utype; |
| } |
| /* If we've already allocated a buffer use it */ |
| if (*free_cont) { |
| if (stmp->data) |
| OPENSSL_free(stmp->data); |
| stmp->data = (unsigned char *)cont; /* UGLY CAST! RL */ |
| stmp->length = len; |
| *free_cont = 0; |
| } else { |
| if (!ASN1_STRING_set(stmp, cont, len)) { |
| OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); |
| ASN1_STRING_free(stmp); |
| *pval = NULL; |
| goto err; |
| } |
| } |
| break; |
| } |
| /* If ASN1_ANY and NULL type fix up value */ |
| if (typ && (utype == V_ASN1_NULL)) |
| typ->value.ptr = NULL; |
| |
| ret = 1; |
| err: |
| if (!ret) { |
| ASN1_TYPE_free(typ); |
| if (opval) |
| *opval = NULL; |
| } |
| return ret; |
| } |
| |
| /* |
| * This function finds the end of an ASN1 structure when passed its maximum |
| * length, whether it is indefinite length and a pointer to the content. This |
| * is more efficient than calling asn1_collect because it does not recurse on |
| * each indefinite length header. |
| */ |
| |
| static int asn1_find_end(const unsigned char **in, long len, char inf) |
| { |
| int expected_eoc; |
| long plen; |
| const unsigned char *p = *in, *q; |
| /* If not indefinite length constructed just add length */ |
| if (inf == 0) { |
| *in += len; |
| return 1; |
| } |
| expected_eoc = 1; |
| /* |
| * Indefinite length constructed form. Find the end when enough EOCs are |
| * found. If more indefinite length constructed headers are encountered |
| * increment the expected eoc count otherwise just skip to the end of the |
| * data. |
| */ |
| while (len > 0) { |
| if (asn1_check_eoc(&p, len)) { |
| expected_eoc--; |
| if (expected_eoc == 0) |
| break; |
| len -= 2; |
| continue; |
| } |
| q = p; |
| /* Just read in a header: only care about the length */ |
| if (!asn1_check_tlen(&plen, NULL, NULL, &inf, NULL, &p, len, |
| -1, 0, 0, NULL)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| return 0; |
| } |
| if (inf) |
| expected_eoc++; |
| else |
| p += plen; |
| len -= p - q; |
| } |
| if (expected_eoc) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); |
| return 0; |
| } |
| *in = p; |
| return 1; |
| } |
| |
| /* |
| * This function collects the asn1 data from a constructred string type into |
| * a buffer. The values of 'in' and 'len' should refer to the contents of the |
| * constructed type and 'inf' should be set if it is indefinite length. |
| */ |
| |
| #ifndef ASN1_MAX_STRING_NEST |
| /* |
| * This determines how many levels of recursion are permitted in ASN1 string |
| * types. If it is not limited stack overflows can occur. If set to zero no |
| * recursion is allowed at all. Although zero should be adequate examples |
| * exist that require a value of 1. So 5 should be more than enough. |
| */ |
| # define ASN1_MAX_STRING_NEST 5 |
| #endif |
| |
| static int asn1_collect(BUF_MEM *buf, const unsigned char **in, long len, |
| char inf, int tag, int aclass, int depth) |
| { |
| const unsigned char *p, *q; |
| long plen; |
| char cst, ininf; |
| p = *in; |
| inf &= 1; |
| /* |
| * If no buffer and not indefinite length constructed just pass over the |
| * encoded data |
| */ |
| if (!buf && !inf) { |
| *in += len; |
| return 1; |
| } |
| while (len > 0) { |
| q = p; |
| /* Check for EOC */ |
| if (asn1_check_eoc(&p, len)) { |
| /* |
| * EOC is illegal outside indefinite length constructed form |
| */ |
| if (!inf) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNEXPECTED_EOC); |
| return 0; |
| } |
| inf = 0; |
| break; |
| } |
| |
| if (!asn1_check_tlen(&plen, NULL, NULL, &ininf, &cst, &p, |
| len, tag, aclass, 0, NULL)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); |
| return 0; |
| } |
| |
| /* If indefinite length constructed update max length */ |
| if (cst) { |
| if (depth >= ASN1_MAX_STRING_NEST) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_STRING); |
| return 0; |
| } |
| if (!asn1_collect(buf, &p, plen, ininf, tag, aclass, depth + 1)) |
| return 0; |
| } else if (plen && !collect_data(buf, &p, plen)) |
| return 0; |
| len -= p - q; |
| } |
| if (inf) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); |
| return 0; |
| } |
| *in = p; |
| return 1; |
| } |
| |
| static int collect_data(BUF_MEM *buf, const unsigned char **p, long plen) |
| { |
| int len; |
| if (buf) { |
| len = buf->length; |
| if (!BUF_MEM_grow_clean(buf, len + plen)) { |
| OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| OPENSSL_memcpy(buf->data + len, *p, plen); |
| } |
| *p += plen; |
| return 1; |
| } |
| |
| /* Check for ASN1 EOC and swallow it if found */ |
| |
| static int asn1_check_eoc(const unsigned char **in, long len) |
| { |
| const unsigned char *p; |
| if (len < 2) |
| return 0; |
| p = *in; |
| if (!p[0] && !p[1]) { |
| *in += 2; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Check an ASN1 tag and length: a bit like ASN1_get_object but it sets the |
| * length for indefinite length constructed form, we don't know the exact |
| * length but we can set an upper bound to the amount of data available minus |
| * the header length just read. |
| */ |
| |
| static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass, |
| char *inf, char *cst, |
| const unsigned char **in, long len, |
| int exptag, int expclass, char opt, ASN1_TLC *ctx) |
| { |
| int i; |
| int ptag, pclass; |
| long plen; |
| const unsigned char *p, *q; |
| p = *in; |
| q = p; |
| |
| if (ctx && ctx->valid) { |
| i = ctx->ret; |
| plen = ctx->plen; |
| pclass = ctx->pclass; |
| ptag = ctx->ptag; |
| p += ctx->hdrlen; |
| } else { |
| i = ASN1_get_object(&p, &plen, &ptag, &pclass, len); |
| if (ctx) { |
| ctx->ret = i; |
| ctx->plen = plen; |
| ctx->pclass = pclass; |
| ctx->ptag = ptag; |
| ctx->hdrlen = p - q; |
| ctx->valid = 1; |
| /* |
| * If definite length, and no error, length + header can't exceed |
| * total amount of data available. |
| */ |
| if (!(i & 0x81) && ((plen + ctx->hdrlen) > len)) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_TOO_LONG); |
| asn1_tlc_clear(ctx); |
| return 0; |
| } |
| } |
| } |
| |
| if (i & 0x80) { |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_OBJECT_HEADER); |
| asn1_tlc_clear(ctx); |
| return 0; |
| } |
| if (exptag >= 0) { |
| if ((exptag != ptag) || (expclass != pclass)) { |
| /* |
| * If type is OPTIONAL, not an error: indicate missing type. |
| */ |
| if (opt) |
| return -1; |
| asn1_tlc_clear(ctx); |
| OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_TAG); |
| return 0; |
| } |
| /* |
| * We have a tag and class match: assume we are going to do something |
| * with it |
| */ |
| asn1_tlc_clear(ctx); |
| } |
| |
| if (i & 1) |
| plen = len - (p - q); |
| |
| if (inf) |
| *inf = i & 1; |
| |
| if (cst) |
| *cst = i & V_ASN1_CONSTRUCTED; |
| |
| if (olen) |
| *olen = plen; |
| |
| if (oclass) |
| *oclass = pclass; |
| |
| if (otag) |
| *otag = ptag; |
| |
| *in = p; |
| return 1; |
| } |