blob: 94f739cefcd2caae2a37b70a4186a26f910d5e01 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/obj.h>
#include <limits.h>
#include <string.h>
#include <openssl/asn1.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/lhash.h>
#include <openssl/mem.h>
#include <openssl/thread.h>
#include "obj_dat.h"
#include "../internal.h"
static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT;
/* These globals are protected by |global_added_lock|. */
static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL;
static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL;
static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL;
static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL;
static struct CRYPTO_STATIC_MUTEX global_next_nid_lock =
CRYPTO_STATIC_MUTEX_INIT;
static unsigned global_next_nid = NUM_NID;
static int obj_next_nid(void) {
int ret;
CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock);
ret = global_next_nid++;
CRYPTO_STATIC_MUTEX_unlock(&global_next_nid_lock);
return ret;
}
ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) {
ASN1_OBJECT *r;
unsigned char *data = NULL;
char *sn = NULL, *ln = NULL;
if (o == NULL) {
return NULL;
}
if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) {
/* TODO(fork): this is a little dangerous. */
return (ASN1_OBJECT *)o;
}
r = ASN1_OBJECT_new();
if (r == NULL) {
OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB);
return NULL;
}
r->ln = r->sn = NULL;
data = OPENSSL_malloc(o->length);
if (data == NULL) {
goto err;
}
if (o->data != NULL) {
memcpy(data, o->data, o->length);
}
/* once data is attached to an object, it remains const */
r->data = data;
r->length = o->length;
r->nid = o->nid;
if (o->ln != NULL) {
ln = OPENSSL_strdup(o->ln);
if (ln == NULL) {
goto err;
}
}
if (o->sn != NULL) {
sn = OPENSSL_strdup(o->sn);
if (sn == NULL) {
goto err;
}
}
r->sn = sn;
r->ln = ln;
r->flags =
o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
ASN1_OBJECT_FLAG_DYNAMIC_DATA);
return r;
err:
OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
OPENSSL_free(ln);
OPENSSL_free(sn);
OPENSSL_free(data);
OPENSSL_free(r);
return NULL;
}
int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
int ret;
ret = a->length - b->length;
if (ret) {
return ret;
}
return memcmp(a->data, b->data, a->length);
}
/* obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is
* an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an
* unsigned int in the array. */
static int obj_cmp(const void *key, const void *element) {
unsigned nid = *((const unsigned*) element);
const ASN1_OBJECT *a = key;
const ASN1_OBJECT *b = &kObjects[nid];
if (a->length < b->length) {
return -1;
} else if (a->length > b->length) {
return 1;
}
return memcmp(a->data, b->data, a->length);
}
int OBJ_obj2nid(const ASN1_OBJECT *obj) {
const unsigned int *nid_ptr;
if (obj == NULL) {
return NID_undef;
}
if (obj->nid != 0) {
return obj->nid;
}
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
if (global_added_by_data != NULL) {
ASN1_OBJECT *match;
match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj);
if (match != NULL) {
CRYPTO_STATIC_MUTEX_unlock(&global_added_lock);
return match->nid;
}
}
CRYPTO_STATIC_MUTEX_unlock(&global_added_lock);
nid_ptr = bsearch(obj, kNIDsInOIDOrder, NUM_OBJ, sizeof(unsigned), obj_cmp);
if (nid_ptr == NULL) {
return NID_undef;
}
return kObjects[*nid_ptr].nid;
}
int OBJ_cbs2nid(const CBS *cbs) {
ASN1_OBJECT obj;
memset(&obj, 0, sizeof(obj));
obj.data = CBS_data(cbs);
obj.length = CBS_len(cbs);
return OBJ_obj2nid(&obj);
}
/* short_name_cmp is called to search the kNIDsInShortNameOrder array. The
* |key| argument is name that we're looking for and |element| is a pointer to
* an unsigned int in the array. */
static int short_name_cmp(const void *key, const void *element) {
const char *name = (const char *) key;
unsigned nid = *((unsigned*) element);
return strcmp(name, kObjects[nid].sn);
}
int OBJ_sn2nid(const char *short_name) {
const unsigned int *nid_ptr;
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
if (global_added_by_short_name != NULL) {
ASN1_OBJECT *match, template;
template.sn = short_name;
match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template);
if (match != NULL) {
CRYPTO_STATIC_MUTEX_unlock(&global_added_lock);
return match->nid;
}
}
CRYPTO_STATIC_MUTEX_unlock(&global_added_lock);
nid_ptr = bsearch(short_name, kNIDsInShortNameOrder, NUM_SN, sizeof(unsigned), short_name_cmp);
if (nid_ptr == NULL) {
return NID_undef;
}
return kObjects[*nid_ptr].nid;
}
/* long_name_cmp is called to search the kNIDsInLongNameOrder array. The
* |key| argument is name that we're looking for and |element| is a pointer to
* an unsigned int in the array. */
static int long_name_cmp(const void *key, const void *element) {
const char *name = (const char *) key;
unsigned nid = *((unsigned*) element);
return strcmp(name, kObjects[nid].ln);
}
int OBJ_ln2nid(const char *long_name) {
const unsigned int *nid_ptr;
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
if (global_added_by_long_name != NULL) {
ASN1_OBJECT *match, template;
template.ln = long_name;
match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template);
if (match != NULL) {
CRYPTO_STATIC_MUTEX_unlock(&global_added_lock);
return match->nid;
}
}
CRYPTO_STATIC_MUTEX_unlock(&global_added_lock);
nid_ptr = bsearch(long_name, kNIDsInLongNameOrder, NUM_LN, sizeof(unsigned), long_name_cmp);
if (nid_ptr == NULL) {
return NID_undef;
}
return kObjects[*nid_ptr].nid;
}
int OBJ_txt2nid(const char *s) {
ASN1_OBJECT *obj;
int nid;
obj = OBJ_txt2obj(s, 0 /* search names */);
nid = OBJ_obj2nid(obj);
ASN1_OBJECT_free(obj);
return nid;
}
OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) {
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
CBB oid;
if (obj == NULL ||
!CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, obj->data, obj->length) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
const ASN1_OBJECT *OBJ_nid2obj(int nid) {
if (nid >= 0 && nid < NUM_NID) {
if (nid != NID_undef && kObjects[nid].nid == NID_undef) {
goto err;
}
return &kObjects[nid];
}
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
if (global_added_by_nid != NULL) {
ASN1_OBJECT *match, template;
template.nid = nid;
match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template);
if (match != NULL) {
CRYPTO_STATIC_MUTEX_unlock(&global_added_lock);
return match;
}
}
CRYPTO_STATIC_MUTEX_unlock(&global_added_lock);
err:
OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID);
return NULL;
}
const char *OBJ_nid2sn(int nid) {
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
if (obj == NULL) {
return NULL;
}
return obj->sn;
}
const char *OBJ_nid2ln(int nid) {
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
if (obj == NULL) {
return NULL;
}
return obj->ln;
}
ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) {
int nid = NID_undef;
ASN1_OBJECT *op = NULL;
unsigned char *buf;
unsigned char *p;
const unsigned char *bufp;
int contents_len, total_len;
if (!dont_search_names) {
nid = OBJ_sn2nid(s);
if (nid == NID_undef) {
nid = OBJ_ln2nid(s);
}
if (nid != NID_undef) {
return (ASN1_OBJECT*) OBJ_nid2obj(nid);
}
}
/* Work out size of content octets */
contents_len = a2d_ASN1_OBJECT(NULL, 0, s, -1);
if (contents_len <= 0) {
return NULL;
}
/* Work out total size */
total_len = ASN1_object_size(0, contents_len, V_ASN1_OBJECT);
buf = OPENSSL_malloc(total_len);
if (buf == NULL) {
OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
return NULL;
}
p = buf;
/* Write out tag+length */
ASN1_put_object(&p, 0, contents_len, V_ASN1_OBJECT, V_ASN1_UNIVERSAL);
/* Write out contents */
a2d_ASN1_OBJECT(p, contents_len, s, -1);
bufp = buf;
op = d2i_ASN1_OBJECT(NULL, &bufp, total_len);
OPENSSL_free(buf);
return op;
}
int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj, int dont_return_name) {
int i, n = 0, len, nid, first, use_bn;
BIGNUM *bl;
unsigned long l;
const unsigned char *p;
char tbuf[DECIMAL_SIZE(i) + DECIMAL_SIZE(l) + 2];
if (out && out_len > 0) {
out[0] = 0;
}
if (obj == NULL || obj->data == NULL) {
return 0;
}
if (!dont_return_name && (nid = OBJ_obj2nid(obj)) != NID_undef) {
const char *s;
s = OBJ_nid2ln(nid);
if (s == NULL) {
s = OBJ_nid2sn(nid);
}
if (s) {
if (out) {
BUF_strlcpy(out, s, out_len);
}
return strlen(s);
}
}
len = obj->length;
p = obj->data;
first = 1;
bl = NULL;
while (len > 0) {
l = 0;
use_bn = 0;
for (;;) {
unsigned char c = *p++;
len--;
if (len == 0 && (c & 0x80)) {
goto err;
}
if (use_bn) {
if (!BN_add_word(bl, c & 0x7f)) {
goto err;
}
} else {
l |= c & 0x7f;
}
if (!(c & 0x80)) {
break;
}
if (!use_bn && (l > (ULONG_MAX >> 7L))) {
if (!bl && !(bl = BN_new())) {
goto err;
}
if (!BN_set_word(bl, l)) {
goto err;
}
use_bn = 1;
}
if (use_bn) {
if (!BN_lshift(bl, bl, 7)) {
goto err;
}
} else {
l <<= 7L;
}
}
if (first) {
first = 0;
if (l >= 80) {
i = 2;
if (use_bn) {
if (!BN_sub_word(bl, 80)) {
goto err;
}
} else {
l -= 80;
}
} else {
i = (int)(l / 40);
l -= (long)(i * 40);
}
if (out && out_len > 1) {
*out++ = i + '0';
*out = '0';
out_len--;
}
n++;
}
if (use_bn) {
char *bndec;
bndec = BN_bn2dec(bl);
if (!bndec) {
goto err;
}
i = strlen(bndec);
if (out) {
if (out_len > 1) {
*out++ = '.';
*out = 0;
out_len--;
}
BUF_strlcpy(out, bndec, out_len);
if (i > out_len) {
out += out_len;
out_len = 0;
} else {
out += i;
out_len -= i;
}
}
n++;
n += i;
OPENSSL_free(bndec);
} else {
BIO_snprintf(tbuf, sizeof(tbuf), ".%lu", l);
i = strlen(tbuf);
if (out && out_len > 0) {
BUF_strlcpy(out, tbuf, out_len);
if (i > out_len) {
out += out_len;
out_len = 0;
} else {
out += i;
out_len -= i;
}
}
n += i;
}
}
BN_free(bl);
return n;
err:
BN_free(bl);
return -1;
}
static uint32_t hash_nid(const ASN1_OBJECT *obj) {
return obj->nid;
}
static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
return a->nid - b->nid;
}
static uint32_t hash_data(const ASN1_OBJECT *obj) {
return OPENSSL_hash32(obj->data, obj->length);
}
static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
int i = a->length - b->length;
if (i) {
return i;
}
return memcmp(a->data, b->data, a->length);
}
static uint32_t hash_short_name(const ASN1_OBJECT *obj) {
return lh_strhash(obj->sn);
}
static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
return strcmp(a->sn, b->sn);
}
static uint32_t hash_long_name(const ASN1_OBJECT *obj) {
return lh_strhash(obj->ln);
}
static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
return strcmp(a->ln, b->ln);
}
/* obj_add_object inserts |obj| into the various global hashes for run-time
* added objects. It returns one on success or zero otherwise. */
static int obj_add_object(ASN1_OBJECT *obj) {
int ok;
ASN1_OBJECT *old_object;
obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
ASN1_OBJECT_FLAG_DYNAMIC_DATA);
CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock);
if (global_added_by_nid == NULL) {
global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid);
global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data);
global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name);
global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name);
}
/* We don't pay attention to |old_object| (which contains any previous object
* that was evicted from the hashes) because we don't have a reference count
* on ASN1_OBJECT values. Also, we should never have duplicates nids and so
* should always have objects in |global_added_by_nid|. */
ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj);
if (obj->length != 0 && obj->data != NULL) {
ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj);
}
if (obj->sn != NULL) {
ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj);
}
if (obj->ln != NULL) {
ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj);
}
CRYPTO_STATIC_MUTEX_unlock(&global_added_lock);
return ok;
}
int OBJ_create(const char *oid, const char *short_name, const char *long_name) {
int ret = NID_undef;
ASN1_OBJECT *op = NULL;
unsigned char *buf = NULL;
int len;
len = a2d_ASN1_OBJECT(NULL, 0, oid, -1);
if (len <= 0) {
goto err;
}
buf = OPENSSL_malloc(len);
if (buf == NULL) {
OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
goto err;
}
len = a2d_ASN1_OBJECT(buf, len, oid, -1);
if (len == 0) {
goto err;
}
op = (ASN1_OBJECT *)ASN1_OBJECT_create(obj_next_nid(), buf, len, short_name,
long_name);
if (op == NULL) {
goto err;
}
if (obj_add_object(op)) {
ret = op->nid;
}
op = NULL;
err:
ASN1_OBJECT_free(op);
OPENSSL_free(buf);
return ret;
}