| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <vector> |
| |
| #include <openssl/crypto.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../test/scoped_types.h" |
| #include "../test/stl_compat.h" |
| |
| |
| // kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field |
| // omitted. |
| static const uint8_t kECKeyWithoutPublic[] = { |
| 0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0, |
| 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e, |
| 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77, |
| 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, |
| }; |
| |
| // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where |
| // the private key is one. The private key is incorrectly encoded without zero |
| // padding. |
| static const uint8_t kECKeyMissingZeros[] = { |
| 0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a, |
| 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, |
| 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, |
| 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, |
| 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, |
| 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, |
| 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, |
| }; |
| |
| // kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where |
| // the private key is one. The private key is encoded with the required zero |
| // padding. |
| static const uint8_t kECKeyWithZeros[] = { |
| 0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, |
| 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, |
| 0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, |
| 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, |
| 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, |
| 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, |
| 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, |
| 0x37, 0xbf, 0x51, 0xf5, |
| }; |
| |
| // DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the |
| // result or nullptr on error. |
| static ScopedEC_KEY DecodeECPrivateKey(const uint8_t *in, size_t in_len) { |
| const uint8_t *inp = in; |
| ScopedEC_KEY ret(d2i_ECPrivateKey(NULL, &inp, in_len)); |
| if (!ret || inp != in + in_len) { |
| return nullptr; |
| } |
| return ret; |
| } |
| |
| // EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It |
| // returns true on success or false on error. |
| static bool EncodeECPrivateKey(std::vector<uint8_t> *out, EC_KEY *key) { |
| int len = i2d_ECPrivateKey(key, NULL); |
| out->resize(len); |
| uint8_t *outp = bssl::vector_data(out); |
| return i2d_ECPrivateKey(key, &outp) == len; |
| } |
| |
| bool Testd2i_ECPrivateKey() { |
| ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithoutPublic, |
| sizeof(kECKeyWithoutPublic)); |
| if (!key) { |
| fprintf(stderr, "Failed to parse private key.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| std::vector<uint8_t> out; |
| if (!EncodeECPrivateKey(&out, key.get())) { |
| fprintf(stderr, "Failed to serialize private key.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (std::vector<uint8_t>(kECKeyWithoutPublic, |
| kECKeyWithoutPublic + sizeof(kECKeyWithoutPublic)) != |
| out) { |
| fprintf(stderr, "Serialisation of key doesn't match original.\n"); |
| return false; |
| } |
| |
| const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get()); |
| if (pub_key == NULL) { |
| fprintf(stderr, "Public key missing.\n"); |
| return false; |
| } |
| |
| ScopedBIGNUM x(BN_new()); |
| ScopedBIGNUM y(BN_new()); |
| if (!x || !y) { |
| return false; |
| } |
| if (!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key.get()), |
| pub_key, x.get(), y.get(), NULL)) { |
| fprintf(stderr, "Failed to get public key in affine coordinates.\n"); |
| return false; |
| } |
| ScopedOpenSSLString x_hex(BN_bn2hex(x.get())); |
| ScopedOpenSSLString y_hex(BN_bn2hex(y.get())); |
| if (0 != strcmp( |
| x_hex.get(), |
| "c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681") || |
| 0 != strcmp( |
| y_hex.get(), |
| "e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88")) { |
| fprintf(stderr, "Incorrect public key: %s %s\n", x_hex.get(), y_hex.get()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestZeroPadding() { |
| // Check that the correct encoding round-trips. |
| ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithZeros, |
| sizeof(kECKeyWithZeros)); |
| std::vector<uint8_t> out; |
| if (!key || !EncodeECPrivateKey(&out, key.get())) { |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (std::vector<uint8_t>(kECKeyWithZeros, |
| kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) { |
| fprintf(stderr, "Serialisation of key was incorrect.\n"); |
| return false; |
| } |
| |
| // Keys without leading zeros also parse, but they encode correctly. |
| key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros)); |
| if (!key || !EncodeECPrivateKey(&out, key.get())) { |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (std::vector<uint8_t>(kECKeyWithZeros, |
| kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) { |
| fprintf(stderr, "Serialisation of key was incorrect.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| int main(void) { |
| CRYPTO_library_init(); |
| ERR_load_crypto_strings(); |
| |
| if (!Testd2i_ECPrivateKey() || |
| !TestZeroPadding()) { |
| fprintf(stderr, "failed\n"); |
| return 1; |
| } |
| |
| printf("PASS\n"); |
| return 0; |
| } |