| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 1999. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/pkcs8.h> |
| |
| #include <openssl/asn1.h> |
| #include <openssl/bn.h> |
| #include <openssl/cipher.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/x509.h> |
| |
| #include "../evp/internal.h" |
| |
| |
| #define PKCS12_KEY_ID 1 |
| #define PKCS12_IV_ID 2 |
| |
| static int ascii_to_ucs2(const char *ascii, size_t ascii_len, |
| uint8_t **out, size_t *out_len) { |
| uint8_t *unitmp; |
| size_t ulen, i; |
| |
| ulen = ascii_len * 2 + 2; |
| if (ulen < ascii_len) { |
| return 0; |
| } |
| unitmp = OPENSSL_malloc(ulen); |
| if (unitmp == NULL) { |
| return 0; |
| } |
| for (i = 0; i < ulen - 2; i += 2) { |
| unitmp[i] = 0; |
| unitmp[i + 1] = ascii[i >> 1]; |
| } |
| |
| /* Make result double null terminated */ |
| unitmp[ulen - 2] = 0; |
| unitmp[ulen - 1] = 0; |
| *out_len = ulen; |
| *out = unitmp; |
| return 1; |
| } |
| |
| static int pkcs12_key_gen_uni(uint8_t *pass, size_t pass_len, uint8_t *salt, |
| size_t salt_len, int id, int iterations, |
| size_t out_len, uint8_t *out, |
| const EVP_MD *md_type) { |
| uint8_t *B, *D, *I, *p, *Ai; |
| int Slen, Plen, Ilen, Ijlen; |
| int i, j, v; |
| size_t u; |
| int ret = 0; |
| BIGNUM *Ij, *Bpl1; /* These hold Ij and B + 1 */ |
| EVP_MD_CTX ctx; |
| |
| EVP_MD_CTX_init(&ctx); |
| v = EVP_MD_block_size(md_type); |
| u = EVP_MD_size(md_type); |
| D = OPENSSL_malloc(v); |
| Ai = OPENSSL_malloc(u); |
| B = OPENSSL_malloc(v + 1); |
| Slen = v * ((salt_len + v - 1) / v); |
| if (pass_len) |
| Plen = v * ((pass_len + v - 1) / v); |
| else |
| Plen = 0; |
| Ilen = Slen + Plen; |
| I = OPENSSL_malloc(Ilen); |
| Ij = BN_new(); |
| Bpl1 = BN_new(); |
| if (!D || !Ai || !B || !I || !Ij || !Bpl1) |
| goto err; |
| for (i = 0; i < v; i++) |
| D[i] = id; |
| p = I; |
| for (i = 0; i < Slen; i++) |
| *p++ = salt[i % salt_len]; |
| for (i = 0; i < Plen; i++) |
| *p++ = pass[i % pass_len]; |
| for (;;) { |
| if (!EVP_DigestInit_ex(&ctx, md_type, NULL) || |
| !EVP_DigestUpdate(&ctx, D, v) || |
| !EVP_DigestUpdate(&ctx, I, Ilen) || |
| !EVP_DigestFinal_ex(&ctx, Ai, NULL)) { |
| goto err; |
| } |
| for (j = 1; j < iterations; j++) { |
| if (!EVP_DigestInit_ex(&ctx, md_type, NULL) || |
| !EVP_DigestUpdate(&ctx, Ai, u) || |
| !EVP_DigestFinal_ex(&ctx, Ai, NULL)) { |
| goto err; |
| } |
| } |
| memcpy(out, Ai, out_len < u ? out_len : u); |
| if (u >= out_len) { |
| ret = 1; |
| goto end; |
| } |
| out_len -= u; |
| out += u; |
| for (j = 0; j < v; j++) |
| B[j] = Ai[j % u]; |
| /* Work out B + 1 first then can use B as tmp space */ |
| if (!BN_bin2bn(B, v, Bpl1)) |
| goto err; |
| if (!BN_add_word(Bpl1, 1)) |
| goto err; |
| for (j = 0; j < Ilen; j += v) { |
| if (!BN_bin2bn(I + j, v, Ij)) |
| goto err; |
| if (!BN_add(Ij, Ij, Bpl1)) |
| goto err; |
| if (!BN_bn2bin(Ij, B)) |
| goto err; |
| Ijlen = BN_num_bytes(Ij); |
| /* If more than 2^(v*8) - 1 cut off MSB */ |
| if (Ijlen > v) { |
| if (!BN_bn2bin(Ij, B)) |
| goto err; |
| memcpy(I + j, B + 1, v); |
| /* If less than v bytes pad with zeroes */ |
| } else if (Ijlen < v) { |
| memset(I + j, 0, v - Ijlen); |
| if (!BN_bn2bin(Ij, I + j + v - Ijlen)) |
| goto err; |
| } else if (!BN_bn2bin(Ij, I + j)) { |
| goto err; |
| } |
| } |
| } |
| |
| err: |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_uni, ERR_R_MALLOC_FAILURE); |
| |
| end: |
| OPENSSL_free(Ai); |
| OPENSSL_free(B); |
| OPENSSL_free(D); |
| OPENSSL_free(I); |
| BN_free(Ij); |
| BN_free(Bpl1); |
| EVP_MD_CTX_cleanup(&ctx); |
| |
| return ret; |
| } |
| |
| static int pkcs12_key_gen_asc(const char *pass, size_t pass_len, uint8_t *salt, |
| size_t salt_len, int id, int iterations, |
| int out_len, uint8_t *out, |
| const EVP_MD *md_type) { |
| int ret; |
| uint8_t *ucs2_pass = NULL; |
| size_t ucs2_pass_len = 0; |
| |
| if (pass && !ascii_to_ucs2(pass, pass_len, &ucs2_pass, &ucs2_pass_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_asc, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| ret = pkcs12_key_gen_uni(ucs2_pass, ucs2_pass_len, salt, salt_len, id, |
| iterations, out_len, out, md_type); |
| |
| if (ucs2_pass) { |
| OPENSSL_cleanse(ucs2_pass, ucs2_pass_len); |
| OPENSSL_free(ucs2_pass); |
| } |
| |
| return ret; |
| } |
| |
| static int pkcs12_pbe_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, |
| size_t pass_len, ASN1_TYPE *param, |
| const EVP_CIPHER *cipher, const EVP_MD *md, |
| int is_encrypt) { |
| PBEPARAM *pbe; |
| int salt_len, iterations, ret; |
| uint8_t *salt; |
| const uint8_t *pbuf; |
| uint8_t key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH]; |
| |
| /* Extract useful info from parameter */ |
| if (param == NULL || param->type != V_ASN1_SEQUENCE || |
| param->value.sequence == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| pbuf = param->value.sequence->data; |
| pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length); |
| if (pbe == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (!pbe->iter) { |
| iterations = 1; |
| } else { |
| iterations = ASN1_INTEGER_get(pbe->iter); |
| } |
| salt = pbe->salt->data; |
| salt_len = pbe->salt->length; |
| if (!pkcs12_key_gen_asc(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, |
| iterations, EVP_CIPHER_key_length(cipher), key, md)) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR); |
| PBEPARAM_free(pbe); |
| return 0; |
| } |
| if (!pkcs12_key_gen_asc(pass, pass_len, salt, salt_len, PKCS12_IV_ID, |
| iterations, EVP_CIPHER_iv_length(cipher), iv, md)) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR); |
| PBEPARAM_free(pbe); |
| return 0; |
| } |
| PBEPARAM_free(pbe); |
| ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); |
| OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
| OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); |
| return ret; |
| } |
| |
| typedef int (*keygen_func)(EVP_CIPHER_CTX *ctx, const char *pass, |
| size_t pass_len, ASN1_TYPE *param, |
| const EVP_CIPHER *cipher, const EVP_MD *md, |
| int is_encrypt); |
| |
| struct pbe_suite { |
| int pbe_nid; |
| int cipher_nid; |
| int md_nid; |
| keygen_func keygen; |
| }; |
| |
| static const struct pbe_suite kBuiltinPBE[] = { |
| { |
| NID_pbe_WithSHA1And128BitRC4, NID_rc4, NID_sha1, pkcs12_pbe_keyivgen, |
| }, |
| { |
| NID_pbe_WithSHA1And3_Key_TripleDES_CBC, NID_des_ede3_cbc, NID_sha1, |
| pkcs12_pbe_keyivgen, |
| }, |
| }; |
| |
| static int pbe_cipher_init(ASN1_OBJECT *pbe_obj, const char *pass, |
| size_t pass_len, ASN1_TYPE *param, |
| EVP_CIPHER_CTX *ctx, int is_encrypt) { |
| const EVP_CIPHER *cipher; |
| const EVP_MD *md; |
| unsigned i; |
| |
| const struct pbe_suite *suite = NULL; |
| const int pbe_nid = OBJ_obj2nid(pbe_obj); |
| |
| for (i = 0; i < sizeof(kBuiltinPBE) / sizeof(struct pbe_suite); i++) { |
| suite = &kBuiltinPBE[i]; |
| if (suite->pbe_nid == pbe_nid) { |
| break; |
| } |
| } |
| |
| if (suite == NULL) { |
| char obj_str[80]; |
| OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_ALGORITHM); |
| if (!pbe_obj) { |
| strncpy(obj_str, "NULL", sizeof(obj_str)); |
| } else { |
| i2t_ASN1_OBJECT(obj_str, sizeof(obj_str), pbe_obj); |
| } |
| ERR_add_error_data(2, "TYPE=", obj_str); |
| return 0; |
| } |
| |
| if (suite->cipher_nid == -1) { |
| cipher = NULL; |
| } else { |
| cipher = EVP_get_cipherbynid(suite->cipher_nid); |
| if (!cipher) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_CIPHER); |
| return 0; |
| } |
| } |
| |
| if (suite->md_nid == -1) { |
| md = NULL; |
| } else { |
| md = EVP_get_digestbynid(suite->md_nid); |
| if (!md) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_DIGEST); |
| return 0; |
| } |
| } |
| |
| if (!suite->keygen(ctx, pass, pass_len, param, cipher, md, is_encrypt)) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_KEYGEN_FAILURE); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int pbe_crypt(const X509_ALGOR *algor, const char *pass, size_t pass_len, |
| uint8_t *in, size_t in_len, uint8_t **out, size_t *out_len, |
| int is_encrypt) { |
| uint8_t *buf; |
| int n, ret = 0; |
| EVP_CIPHER_CTX ctx; |
| unsigned block_size; |
| |
| EVP_CIPHER_CTX_init(&ctx); |
| |
| if (!pbe_cipher_init(algor->algorithm, pass, pass_len, algor->parameter, &ctx, |
| is_encrypt)) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_UNKNOWN_CIPHER_ALGORITHM); |
| return 0; |
| } |
| block_size = EVP_CIPHER_CTX_block_size(&ctx); |
| |
| if (in_len + block_size < in_len) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_TOO_LONG); |
| goto err; |
| } |
| |
| buf = OPENSSL_malloc(in_len + block_size); |
| if (buf == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (!EVP_CipherUpdate(&ctx, buf, &n, in, in_len)) { |
| OPENSSL_free(buf); |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB); |
| goto err; |
| } |
| *out_len = n; |
| |
| if (!EVP_CipherFinal_ex(&ctx, buf + n, &n)) { |
| OPENSSL_free(buf); |
| OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB); |
| goto err; |
| } |
| *out_len += n; |
| *out = buf; |
| ret = 1; |
| |
| err: |
| EVP_CIPHER_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| static void *pkcs12_item_decrypt_d2i(X509_ALGOR *algor, const ASN1_ITEM *it, |
| const char *pass, size_t pass_len, |
| ASN1_OCTET_STRING *oct) { |
| uint8_t *out; |
| const uint8_t *p; |
| void *ret; |
| size_t out_len; |
| |
| if (!pbe_crypt(algor, pass, pass_len, oct->data, oct->length, &out, &out_len, |
| 0 /* decrypt */)) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_CRYPT_ERROR); |
| return NULL; |
| } |
| p = out; |
| ret = ASN1_item_d2i(NULL, &p, out_len, it); |
| OPENSSL_cleanse(out, out_len); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_DECODE_ERROR); |
| } |
| OPENSSL_free(out); |
| return ret; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, |
| int pass_len) { |
| if (pass && pass_len == -1) { |
| pass_len = strlen(pass); |
| } |
| return pkcs12_item_decrypt_d2i(pkcs8->algor, |
| ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass, |
| pass_len, pkcs8->digest); |
| } |
| |
| static ASN1_OCTET_STRING *pkcs12_item_i2d_encrypt(X509_ALGOR *algor, |
| const ASN1_ITEM *it, |
| const char *pass, |
| size_t passlen, void *obj) { |
| ASN1_OCTET_STRING *oct; |
| uint8_t *in = NULL; |
| int in_len; |
| size_t crypt_len; |
| |
| oct = M_ASN1_OCTET_STRING_new(); |
| if (oct == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| in_len = ASN1_item_i2d(obj, &in, it); |
| if (!in) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCODE_ERROR); |
| return NULL; |
| } |
| if (!pbe_crypt(algor, pass, passlen, in, in_len, &oct->data, &crypt_len, |
| 1 /* encrypt */)) { |
| OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCRYPT_ERROR); |
| OPENSSL_free(in); |
| return NULL; |
| } |
| oct->length = crypt_len; |
| OPENSSL_cleanse(in, in_len); |
| OPENSSL_free(in); |
| return oct; |
| } |
| |
| X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, |
| int pass_len, uint8_t *salt, size_t salt_len, |
| int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
| X509_SIG *pkcs8 = NULL; |
| X509_ALGOR *pbe; |
| |
| if (pass && pass_len == -1) { |
| pass_len = strlen(pass); |
| } |
| |
| pkcs8 = X509_SIG_new(); |
| if (pkcs8 == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (pbe_nid == -1) { |
| pbe = PKCS5_pbe2_set(cipher, iterations, salt, salt_len); |
| } else { |
| pbe = PKCS5_pbe_set(pbe_nid, iterations, salt, salt_len); |
| } |
| |
| if (!pbe) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, ERR_R_ASN1_LIB); |
| goto err; |
| } |
| |
| X509_ALGOR_free(pkcs8->algor); |
| pkcs8->algor = pbe; |
| M_ASN1_OCTET_STRING_free(pkcs8->digest); |
| pkcs8->digest = pkcs12_item_i2d_encrypt( |
| pbe, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass, pass_len, p8inf); |
| if (!pkcs8->digest) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, PKCS8_R_ENCRYPT_ERROR); |
| goto err; |
| } |
| |
| return pkcs8; |
| |
| err: |
| X509_SIG_free(pkcs8); |
| return NULL; |
| } |
| |
| EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { |
| EVP_PKEY *pkey = NULL; |
| ASN1_OBJECT *algoid; |
| char obj_tmp[80]; |
| |
| if (!PKCS8_pkey_get0(&algoid, NULL, NULL, NULL, p8)) |
| return NULL; |
| |
| pkey = EVP_PKEY_new(); |
| if (pkey == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| |
| if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(algoid))) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, |
| PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); |
| i2t_ASN1_OBJECT(obj_tmp, 80, algoid); |
| ERR_add_error_data(2, "TYPE=", obj_tmp); |
| goto error; |
| } |
| |
| if (pkey->ameth->priv_decode) { |
| if (!pkey->ameth->priv_decode(pkey, p8)) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_PRIVATE_KEY_DECODE_ERROR); |
| goto error; |
| } |
| } else { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_METHOD_NOT_SUPPORTED); |
| goto error; |
| } |
| |
| return pkey; |
| |
| error: |
| EVP_PKEY_free(pkey); |
| return NULL; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { |
| PKCS8_PRIV_KEY_INFO *p8; |
| |
| p8 = PKCS8_PRIV_KEY_INFO_new(); |
| if (p8 == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| p8->broken = PKCS8_OK; |
| |
| if (pkey->ameth) { |
| if (pkey->ameth->priv_encode) { |
| if (!pkey->ameth->priv_encode(p8, pkey)) { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, |
| PKCS8_R_PRIVATE_KEY_ENCODE_ERROR); |
| goto error; |
| } |
| } else { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, PKCS8_R_METHOD_NOT_SUPPORTED); |
| goto error; |
| } |
| } else { |
| OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, |
| PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); |
| goto error; |
| } |
| return p8; |
| |
| error: |
| PKCS8_PRIV_KEY_INFO_free(p8); |
| return NULL; |
| } |