blob: 1e7922733821b581c730b887f4bd5ce59c75d974 [file] [log] [blame]
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# March, June 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that
# it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
# function features so called "528B" variant utilizing additional
# 256+16 bytes of per-key storage [+512 bytes shared table].
# Performance results are for this streamed GHASH subroutine and are
# expressed in cycles per processed byte, less is better:
#
# gcc 3.4.x(*) assembler
#
# P4 28.6 14.0 +100%
# Opteron 19.3 7.7 +150%
# Core2 17.8 8.1(**) +120%
# Atom 31.6 16.8 +88%
# VIA Nano 21.8 10.1 +115%
#
# (*) comparison is not completely fair, because C results are
# for vanilla "256B" implementation, while assembler results
# are for "528B";-)
# (**) it's mystery [to me] why Core2 result is not same as for
# Opteron;
# May 2010
#
# Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
# See ghash-x86.pl for background information and details about coding
# techniques.
#
# Special thanks to David Woodhouse <dwmw2@infradead.org> for
# providing access to a Westmere-based system on behalf of Intel
# Open Source Technology Centre.
# December 2012
#
# Overhaul: aggregate Karatsuba post-processing, improve ILP in
# reduction_alg9, increase reduction aggregate factor to 4x. As for
# the latter. ghash-x86.pl discusses that it makes lesser sense to
# increase aggregate factor. Then why increase here? Critical path
# consists of 3 independent pclmulqdq instructions, Karatsuba post-
# processing and reduction. "On top" of this we lay down aggregated
# multiplication operations, triplets of independent pclmulqdq's. As
# issue rate for pclmulqdq is limited, it makes lesser sense to
# aggregate more multiplications than it takes to perform remaining
# non-multiplication operations. 2x is near-optimal coefficient for
# contemporary Intel CPUs (therefore modest improvement coefficient),
# but not for Bulldozer. Latter is because logical SIMD operations
# are twice as slow in comparison to Intel, so that critical path is
# longer. A CPU with higher pclmulqdq issue rate would also benefit
# from higher aggregate factor...
#
# Westmere 1.78(+13%)
# Sandy Bridge 1.80(+8%)
# Ivy Bridge 1.80(+7%)
# Haswell 0.55(+93%) (if system doesn't support AVX)
# Bulldozer 1.49(+27%)
# March 2013
#
# ... 8x aggregate factor AVX code path is using reduction algorithm
# suggested by Shay Gueron[1]. Even though contemporary AVX-capable
# CPUs such as Sandy and Ivy Bridge can execute it, the code performs
# sub-optimally in comparison to above mentioned version. But thanks
# to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
# it performs in 0.41 cycles per byte on Haswell processor.
#
# [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
$avx = ($1>=2.19) + ($1>=2.22);
}
if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
$avx = ($1>=2.09) + ($1>=2.10);
}
if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
`ml64 2>&1` =~ /Version ([0-9]+)\./) {
$avx = ($1>=10) + ($1>=11);
}
if (!$avx && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/) {
$avx = ($2>=3.0) + ($2>3.0);
}
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
$do4xaggr=1;
# common register layout
$nlo="%rax";
$nhi="%rbx";
$Zlo="%r8";
$Zhi="%r9";
$tmp="%r10";
$rem_4bit = "%r11";
$Xi="%rdi";
$Htbl="%rsi";
# per-function register layout
$cnt="%rcx";
$rem="%rdx";
sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or
$r =~ s/%[er]([sd]i)/%\1l/ or
$r =~ s/%[er](bp)/%\1l/ or
$r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }
sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
my $arg = pop;
$arg = "\$$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
}
{ my $N;
sub loop() {
my $inp = shift;
$N++;
$code.=<<___;
xor $nlo,$nlo
xor $nhi,$nhi
mov `&LB("$Zlo")`,`&LB("$nlo")`
mov `&LB("$Zlo")`,`&LB("$nhi")`
shl \$4,`&LB("$nlo")`
mov \$14,$cnt
mov 8($Htbl,$nlo),$Zlo
mov ($Htbl,$nlo),$Zhi
and \$0xf0,`&LB("$nhi")`
mov $Zlo,$rem
jmp .Loop$N
.align 16
.Loop$N:
shr \$4,$Zlo
and \$0xf,$rem
mov $Zhi,$tmp
mov ($inp,$cnt),`&LB("$nlo")`
shr \$4,$Zhi
xor 8($Htbl,$nhi),$Zlo
shl \$60,$tmp
xor ($Htbl,$nhi),$Zhi
mov `&LB("$nlo")`,`&LB("$nhi")`
xor ($rem_4bit,$rem,8),$Zhi
mov $Zlo,$rem
shl \$4,`&LB("$nlo")`
xor $tmp,$Zlo
dec $cnt
js .Lbreak$N
shr \$4,$Zlo
and \$0xf,$rem
mov $Zhi,$tmp
shr \$4,$Zhi
xor 8($Htbl,$nlo),$Zlo
shl \$60,$tmp
xor ($Htbl,$nlo),$Zhi
and \$0xf0,`&LB("$nhi")`
xor ($rem_4bit,$rem,8),$Zhi
mov $Zlo,$rem
xor $tmp,$Zlo
jmp .Loop$N
.align 16
.Lbreak$N:
shr \$4,$Zlo
and \$0xf,$rem
mov $Zhi,$tmp
shr \$4,$Zhi
xor 8($Htbl,$nlo),$Zlo
shl \$60,$tmp
xor ($Htbl,$nlo),$Zhi
and \$0xf0,`&LB("$nhi")`
xor ($rem_4bit,$rem,8),$Zhi
mov $Zlo,$rem
xor $tmp,$Zlo
shr \$4,$Zlo
and \$0xf,$rem
mov $Zhi,$tmp
shr \$4,$Zhi
xor 8($Htbl,$nhi),$Zlo
shl \$60,$tmp
xor ($Htbl,$nhi),$Zhi
xor $tmp,$Zlo
xor ($rem_4bit,$rem,8),$Zhi
bswap $Zlo
bswap $Zhi
___
}}
$code=<<___;
.text
.extern OPENSSL_ia32cap_P
.globl gcm_gmult_4bit
.type gcm_gmult_4bit,\@function,2
.align 16
gcm_gmult_4bit:
push %rbx
push %rbp # %rbp and %r12 are pushed exclusively in
push %r12 # order to reuse Win64 exception handler...
.Lgmult_prologue:
movzb 15($Xi),$Zlo
lea .Lrem_4bit(%rip),$rem_4bit
___
&loop ($Xi);
$code.=<<___;
mov $Zlo,8($Xi)
mov $Zhi,($Xi)
mov 16(%rsp),%rbx
lea 24(%rsp),%rsp
.Lgmult_epilogue:
ret
.size gcm_gmult_4bit,.-gcm_gmult_4bit
___
# per-function register layout
$inp="%rdx";
$len="%rcx";
$rem_8bit=$rem_4bit;
$code.=<<___;
.globl gcm_ghash_4bit
.type gcm_ghash_4bit,\@function,4
.align 16
gcm_ghash_4bit:
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
sub \$280,%rsp
.Lghash_prologue:
mov $inp,%r14 # reassign couple of args
mov $len,%r15
___
{ my $inp="%r14";
my $dat="%edx";
my $len="%r15";
my @nhi=("%ebx","%ecx");
my @rem=("%r12","%r13");
my $Hshr4="%rbp";
&sub ($Htbl,-128); # size optimization
&lea ($Hshr4,"16+128(%rsp)");
{ my @lo =($nlo,$nhi);
my @hi =($Zlo,$Zhi);
&xor ($dat,$dat);
for ($i=0,$j=-2;$i<18;$i++,$j++) {
&mov ("$j(%rsp)",&LB($dat)) if ($i>1);
&or ($lo[0],$tmp) if ($i>1);
&mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17);
&shr ($lo[1],4) if ($i>0 && $i<17);
&mov ($tmp,$hi[1]) if ($i>0 && $i<17);
&shr ($hi[1],4) if ($i>0 && $i<17);
&mov ("8*$j($Hshr4)",$hi[0]) if ($i>1);
&mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16);
&shl (&LB($dat),4) if ($i>0 && $i<17);
&mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1);
&mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16);
&shl ($tmp,60) if ($i>0 && $i<17);
push (@lo,shift(@lo));
push (@hi,shift(@hi));
}
}
&add ($Htbl,-128);
&mov ($Zlo,"8($Xi)");
&mov ($Zhi,"0($Xi)");
&add ($len,$inp); # pointer to the end of data
&lea ($rem_8bit,".Lrem_8bit(%rip)");
&jmp (".Louter_loop");
$code.=".align 16\n.Louter_loop:\n";
&xor ($Zhi,"($inp)");
&mov ("%rdx","8($inp)");
&lea ($inp,"16($inp)");
&xor ("%rdx",$Zlo);
&mov ("($Xi)",$Zhi);
&mov ("8($Xi)","%rdx");
&shr ("%rdx",32);
&xor ($nlo,$nlo);
&rol ($dat,8);
&mov (&LB($nlo),&LB($dat));
&movz ($nhi[0],&LB($dat));
&shl (&LB($nlo),4);
&shr ($nhi[0],4);
for ($j=11,$i=0;$i<15;$i++) {
&rol ($dat,8);
&xor ($Zlo,"8($Htbl,$nlo)") if ($i>0);
&xor ($Zhi,"($Htbl,$nlo)") if ($i>0);
&mov ($Zlo,"8($Htbl,$nlo)") if ($i==0);
&mov ($Zhi,"($Htbl,$nlo)") if ($i==0);
&mov (&LB($nlo),&LB($dat));
&xor ($Zlo,$tmp) if ($i>0);
&movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0);
&movz ($nhi[1],&LB($dat));
&shl (&LB($nlo),4);
&movzb ($rem[0],"(%rsp,$nhi[0])");
&shr ($nhi[1],4) if ($i<14);
&and ($nhi[1],0xf0) if ($i==14);
&shl ($rem[1],48) if ($i>0);
&xor ($rem[0],$Zlo);
&mov ($tmp,$Zhi);
&xor ($Zhi,$rem[1]) if ($i>0);
&shr ($Zlo,8);
&movz ($rem[0],&LB($rem[0]));
&mov ($dat,"$j($Xi)") if (--$j%4==0);
&shr ($Zhi,8);
&xor ($Zlo,"-128($Hshr4,$nhi[0],8)");
&shl ($tmp,56);
&xor ($Zhi,"($Hshr4,$nhi[0],8)");
unshift (@nhi,pop(@nhi)); # "rotate" registers
unshift (@rem,pop(@rem));
}
&movzw ($rem[1],"($rem_8bit,$rem[1],2)");
&xor ($Zlo,"8($Htbl,$nlo)");
&xor ($Zhi,"($Htbl,$nlo)");
&shl ($rem[1],48);
&xor ($Zlo,$tmp);
&xor ($Zhi,$rem[1]);
&movz ($rem[0],&LB($Zlo));
&shr ($Zlo,4);
&mov ($tmp,$Zhi);
&shl (&LB($rem[0]),4);
&shr ($Zhi,4);
&xor ($Zlo,"8($Htbl,$nhi[0])");
&movzw ($rem[0],"($rem_8bit,$rem[0],2)");
&shl ($tmp,60);
&xor ($Zhi,"($Htbl,$nhi[0])");
&xor ($Zlo,$tmp);
&shl ($rem[0],48);
&bswap ($Zlo);
&xor ($Zhi,$rem[0]);
&bswap ($Zhi);
&cmp ($inp,$len);
&jb (".Louter_loop");
}
$code.=<<___;
mov $Zlo,8($Xi)
mov $Zhi,($Xi)
lea 280(%rsp),%rsi
mov 0(%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lghash_epilogue:
ret
.size gcm_ghash_4bit,.-gcm_ghash_4bit
___
######################################################################
# PCLMULQDQ version.
@_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
("%rdi","%rsi","%rdx","%rcx"); # Unix order
($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2";
($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
sub clmul64x64_T2 { # minimal register pressure
my ($Xhi,$Xi,$Hkey,$HK)=@_;
if (!defined($HK)) { $HK = $T2;
$code.=<<___;
movdqa $Xi,$Xhi #
pshufd \$0b01001110,$Xi,$T1
pshufd \$0b01001110,$Hkey,$T2
pxor $Xi,$T1 #
pxor $Hkey,$T2
___
} else {
$code.=<<___;
movdqa $Xi,$Xhi #
pshufd \$0b01001110,$Xi,$T1
pxor $Xi,$T1 #
___
}
$code.=<<___;
pclmulqdq \$0x00,$Hkey,$Xi #######
pclmulqdq \$0x11,$Hkey,$Xhi #######
pclmulqdq \$0x00,$HK,$T1 #######
pxor $Xi,$T1 #
pxor $Xhi,$T1 #
movdqa $T1,$T2 #
psrldq \$8,$T1
pslldq \$8,$T2 #
pxor $T1,$Xhi
pxor $T2,$Xi #
___
}
sub reduction_alg9 { # 17/11 times faster than Intel version
my ($Xhi,$Xi) = @_;
$code.=<<___;
# 1st phase
movdqa $Xi,$T2 #
movdqa $Xi,$T1
psllq \$5,$Xi
pxor $Xi,$T1 #
psllq \$1,$Xi
pxor $T1,$Xi #
psllq \$57,$Xi #
movdqa $Xi,$T1 #
pslldq \$8,$Xi
psrldq \$8,$T1 #
pxor $T2,$Xi
pxor $T1,$Xhi #
# 2nd phase
movdqa $Xi,$T2
psrlq \$1,$Xi
pxor $T2,$Xhi #
pxor $Xi,$T2
psrlq \$5,$Xi
pxor $T2,$Xi #
psrlq \$1,$Xi #
pxor $Xhi,$Xi #
___
}
{ my ($Htbl,$Xip)=@_4args;
my $HK="%xmm6";
$code.=<<___;
.globl gcm_init_clmul
.type gcm_init_clmul,\@abi-omnipotent
.align 16
gcm_init_clmul:
.L_init_clmul:
___
$code.=<<___ if ($win64);
.LSEH_begin_gcm_init_clmul:
# I can't trust assembler to use specific encoding:-(
.byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp
.byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
___
$code.=<<___;
movdqu ($Xip),$Hkey
pshufd \$0b01001110,$Hkey,$Hkey # dword swap
# <<1 twist
pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
movdqa $Hkey,$T1
psllq \$1,$Hkey
pxor $T3,$T3 #
psrlq \$63,$T1
pcmpgtd $T2,$T3 # broadcast carry bit
pslldq \$8,$T1
por $T1,$Hkey # H<<=1
# magic reduction
pand .L0x1c2_polynomial(%rip),$T3
pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial
# calculate H^2
pshufd \$0b01001110,$Hkey,$HK
movdqa $Hkey,$Xi
pxor $Hkey,$HK
___
&clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK);
&reduction_alg9 ($Xhi,$Xi);
$code.=<<___;
pshufd \$0b01001110,$Hkey,$T1
pshufd \$0b01001110,$Xi,$T2
pxor $Hkey,$T1 # Karatsuba pre-processing
movdqu $Hkey,0x00($Htbl) # save H
pxor $Xi,$T2 # Karatsuba pre-processing
movdqu $Xi,0x10($Htbl) # save H^2
palignr \$8,$T1,$T2 # low part is H.lo^H.hi...
movdqu $T2,0x20($Htbl) # save Karatsuba "salt"
___
if ($do4xaggr) {
&clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^3
&reduction_alg9 ($Xhi,$Xi);
$code.=<<___;
movdqa $Xi,$T3
___
&clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^4
&reduction_alg9 ($Xhi,$Xi);
$code.=<<___;
pshufd \$0b01001110,$T3,$T1
pshufd \$0b01001110,$Xi,$T2
pxor $T3,$T1 # Karatsuba pre-processing
movdqu $T3,0x30($Htbl) # save H^3
pxor $Xi,$T2 # Karatsuba pre-processing
movdqu $Xi,0x40($Htbl) # save H^4
palignr \$8,$T1,$T2 # low part is H^3.lo^H^3.hi...
movdqu $T2,0x50($Htbl) # save Karatsuba "salt"
___
}
$code.=<<___ if ($win64);
movaps (%rsp),%xmm6
lea 0x18(%rsp),%rsp
.LSEH_end_gcm_init_clmul:
___
$code.=<<___;
ret
.size gcm_init_clmul,.-gcm_init_clmul
___
}
{ my ($Xip,$Htbl)=@_4args;
$code.=<<___;
.globl gcm_gmult_clmul
.type gcm_gmult_clmul,\@abi-omnipotent
.align 16
gcm_gmult_clmul:
.L_gmult_clmul:
movdqu ($Xip),$Xi
movdqa .Lbswap_mask(%rip),$T3
movdqu ($Htbl),$Hkey
movdqu 0x20($Htbl),$T2
pshufb $T3,$Xi
___
&clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2);
$code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
# experimental alternative. special thing about is that there
# no dependency between the two multiplications...
mov \$`0xE1<<1`,%eax
mov \$0xA040608020C0E000,%r10 # ((7..0)·0xE0)&0xff
mov \$0x07,%r11d
movq %rax,$T1
movq %r10,$T2
movq %r11,$T3 # borrow $T3
pand $Xi,$T3
pshufb $T3,$T2 # ($Xi&7)·0xE0
movq %rax,$T3
pclmulqdq \$0x00,$Xi,$T1 # ·(0xE1<<1)
pxor $Xi,$T2
pslldq \$15,$T2
paddd $T2,$T2 # <<(64+56+1)
pxor $T2,$Xi
pclmulqdq \$0x01,$T3,$Xi
movdqa .Lbswap_mask(%rip),$T3 # reload $T3
psrldq \$1,$T1
pxor $T1,$Xhi
pslldq \$7,$Xi
pxor $Xhi,$Xi
___
$code.=<<___;
pshufb $T3,$Xi
movdqu $Xi,($Xip)
ret
.size gcm_gmult_clmul,.-gcm_gmult_clmul
___
}
{ my ($Xip,$Htbl,$inp,$len)=@_4args;
my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
my ($T1,$T2,$T3)=map("%xmm$_",(8..10));
$code.=<<___;
.globl gcm_ghash_clmul
.type gcm_ghash_clmul,\@abi-omnipotent
.align 32
gcm_ghash_clmul:
.L_ghash_clmul:
___
$code.=<<___ if ($win64);
lea -0x88(%rsp),%rax
.LSEH_begin_gcm_ghash_clmul:
# I can't trust assembler to use specific encoding:-(
.byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp
.byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax)
.byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax)
.byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax)
.byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax)
.byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax)
.byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax)
.byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax)
.byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax)
.byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax)
.byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax)
___
$code.=<<___;
movdqa .Lbswap_mask(%rip),$T3
movdqu ($Xip),$Xi
movdqu ($Htbl),$Hkey
movdqu 0x20($Htbl),$HK
pshufb $T3,$Xi
sub \$0x10,$len
jz .Lodd_tail
movdqu 0x10($Htbl),$Hkey2
___
if ($do4xaggr) {
my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));
$code.=<<___;
mov OPENSSL_ia32cap_P+4(%rip),%eax
cmp \$0x30,$len
jb .Lskip4x
and \$`1<<26|1<<22`,%eax # isolate MOVBE+XSAVE
cmp \$`1<<22`,%eax # check for MOVBE without XSAVE
je .Lskip4x
sub \$0x30,$len
mov \$0xA040608020C0E000,%rax # ((7..0)·0xE0)&0xff
movdqu 0x30($Htbl),$Hkey3
movdqu 0x40($Htbl),$Hkey4
#######
# Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
#
movdqu 0x30($inp),$Xln
movdqu 0x20($inp),$Xl
pshufb $T3,$Xln
pshufb $T3,$Xl
movdqa $Xln,$Xhn
pshufd \$0b01001110,$Xln,$Xmn
pxor $Xln,$Xmn
pclmulqdq \$0x00,$Hkey,$Xln
pclmulqdq \$0x11,$Hkey,$Xhn
pclmulqdq \$0x00,$HK,$Xmn
movdqa $Xl,$Xh
pshufd \$0b01001110,$Xl,$Xm
pxor $Xl,$Xm
pclmulqdq \$0x00,$Hkey2,$Xl
pclmulqdq \$0x11,$Hkey2,$Xh
pclmulqdq \$0x10,$HK,$Xm
xorps $Xl,$Xln
xorps $Xh,$Xhn
movups 0x50($Htbl),$HK
xorps $Xm,$Xmn
movdqu 0x10($inp),$Xl
movdqu 0($inp),$T1
pshufb $T3,$Xl
pshufb $T3,$T1
movdqa $Xl,$Xh
pshufd \$0b01001110,$Xl,$Xm
pxor $T1,$Xi
pxor $Xl,$Xm
pclmulqdq \$0x00,$Hkey3,$Xl
movdqa $Xi,$Xhi
pshufd \$0b01001110,$Xi,$T1
pxor $Xi,$T1
pclmulqdq \$0x11,$Hkey3,$Xh
pclmulqdq \$0x00,$HK,$Xm
xorps $Xl,$Xln
xorps $Xh,$Xhn
lea 0x40($inp),$inp
sub \$0x40,$len
jc .Ltail4x
jmp .Lmod4_loop
.align 32
.Lmod4_loop:
pclmulqdq \$0x00,$Hkey4,$Xi
xorps $Xm,$Xmn
movdqu 0x30($inp),$Xl
pshufb $T3,$Xl
pclmulqdq \$0x11,$Hkey4,$Xhi
xorps $Xln,$Xi
movdqu 0x20($inp),$Xln
movdqa $Xl,$Xh
pclmulqdq \$0x10,$HK,$T1
pshufd \$0b01001110,$Xl,$Xm
xorps $Xhn,$Xhi
pxor $Xl,$Xm
pshufb $T3,$Xln
movups 0x20($Htbl),$HK
xorps $Xmn,$T1
pclmulqdq \$0x00,$Hkey,$Xl
pshufd \$0b01001110,$Xln,$Xmn
pxor $Xi,$T1 # aggregated Karatsuba post-processing
movdqa $Xln,$Xhn
pxor $Xhi,$T1 #
pxor $Xln,$Xmn
movdqa $T1,$T2 #
pclmulqdq \$0x11,$Hkey,$Xh
pslldq \$8,$T1
psrldq \$8,$T2 #
pxor $T1,$Xi
movdqa .L7_mask(%rip),$T1
pxor $T2,$Xhi #
movq %rax,$T2
pand $Xi,$T1 # 1st phase
pshufb $T1,$T2 #
pxor $Xi,$T2 #
pclmulqdq \$0x00,$HK,$Xm
psllq \$57,$T2 #
movdqa $T2,$T1 #
pslldq \$8,$T2
pclmulqdq \$0x00,$Hkey2,$Xln
psrldq \$8,$T1 #
pxor $T2,$Xi
pxor $T1,$Xhi #
movdqu 0($inp),$T1
movdqa $Xi,$T2 # 2nd phase
psrlq \$1,$Xi
pclmulqdq \$0x11,$Hkey2,$Xhn
xorps $Xl,$Xln
movdqu 0x10($inp),$Xl
pshufb $T3,$Xl
pclmulqdq \$0x10,$HK,$Xmn
xorps $Xh,$Xhn
movups 0x50($Htbl),$HK
pshufb $T3,$T1
pxor $T2,$Xhi #
pxor $Xi,$T2
psrlq \$5,$Xi
movdqa $Xl,$Xh
pxor $Xm,$Xmn
pshufd \$0b01001110,$Xl,$Xm
pxor $T2,$Xi #
pxor $T1,$Xhi
pxor $Xl,$Xm
pclmulqdq \$0x00,$Hkey3,$Xl
psrlq \$1,$Xi #
pxor $Xhi,$Xi #
movdqa $Xi,$Xhi
pclmulqdq \$0x11,$Hkey3,$Xh
xorps $Xl,$Xln
pshufd \$0b01001110,$Xi,$T1
pxor $Xi,$T1
pclmulqdq \$0x00,$HK,$Xm
xorps $Xh,$Xhn
lea 0x40($inp),$inp
sub \$0x40,$len
jnc .Lmod4_loop
.Ltail4x:
pclmulqdq \$0x00,$Hkey4,$Xi
pclmulqdq \$0x11,$Hkey4,$Xhi
pclmulqdq \$0x10,$HK,$T1
xorps $Xm,$Xmn
xorps $Xln,$Xi
xorps $Xhn,$Xhi
pxor $Xi,$Xhi # aggregated Karatsuba post-processing
pxor $Xmn,$T1
pxor $Xhi,$T1 #
pxor $Xi,$Xhi
movdqa $T1,$T2 #
psrldq \$8,$T1
pslldq \$8,$T2 #
pxor $T1,$Xhi
pxor $T2,$Xi #
___
&reduction_alg9($Xhi,$Xi);
$code.=<<___;
add \$0x40,$len
jz .Ldone
movdqu 0x20($Htbl),$HK
sub \$0x10,$len
jz .Lodd_tail
.Lskip4x:
___
}
$code.=<<___;
#######
# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
# [(H*Ii+1) + (H*Xi+1)] mod P =
# [(H*Ii+1) + H^2*(Ii+Xi)] mod P
#
movdqu ($inp),$T1 # Ii
movdqu 16($inp),$Xln # Ii+1
pshufb $T3,$T1
pshufb $T3,$Xln
pxor $T1,$Xi # Ii+Xi
movdqa $Xln,$Xhn
pshufd \$0b01001110,$Xln,$Xmn
pxor $Xln,$Xmn
pclmulqdq \$0x00,$Hkey,$Xln
pclmulqdq \$0x11,$Hkey,$Xhn
pclmulqdq \$0x00,$HK,$Xmn
lea 32($inp),$inp # i+=2
nop
sub \$0x20,$len
jbe .Leven_tail
nop
jmp .Lmod_loop
.align 32
.Lmod_loop:
movdqa $Xi,$Xhi
movdqa $Xmn,$T1
pshufd \$0b01001110,$Xi,$Xmn #
pxor $Xi,$Xmn #
pclmulqdq \$0x00,$Hkey2,$Xi
pclmulqdq \$0x11,$Hkey2,$Xhi
pclmulqdq \$0x10,$HK,$Xmn
pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
pxor $Xhn,$Xhi
movdqu ($inp),$T2 # Ii
pxor $Xi,$T1 # aggregated Karatsuba post-processing
pshufb $T3,$T2
movdqu 16($inp),$Xln # Ii+1
pxor $Xhi,$T1
pxor $T2,$Xhi # "Ii+Xi", consume early
pxor $T1,$Xmn
pshufb $T3,$Xln
movdqa $Xmn,$T1 #
psrldq \$8,$T1
pslldq \$8,$Xmn #
pxor $T1,$Xhi
pxor $Xmn,$Xi #
movdqa $Xln,$Xhn #
movdqa $Xi,$T2 # 1st phase
movdqa $Xi,$T1
psllq \$5,$Xi
pxor $Xi,$T1 #
pclmulqdq \$0x00,$Hkey,$Xln #######
psllq \$1,$Xi
pxor $T1,$Xi #
psllq \$57,$Xi #
movdqa $Xi,$T1 #
pslldq \$8,$Xi
psrldq \$8,$T1 #
pxor $T2,$Xi
pshufd \$0b01001110,$Xhn,$Xmn
pxor $T1,$Xhi #
pxor $Xhn,$Xmn #
movdqa $Xi,$T2 # 2nd phase
psrlq \$1,$Xi
pclmulqdq \$0x11,$Hkey,$Xhn #######
pxor $T2,$Xhi #
pxor $Xi,$T2
psrlq \$5,$Xi
pxor $T2,$Xi #
lea 32($inp),$inp
psrlq \$1,$Xi #
pclmulqdq \$0x00,$HK,$Xmn #######
pxor $Xhi,$Xi #
sub \$0x20,$len
ja .Lmod_loop
.Leven_tail:
movdqa $Xi,$Xhi
movdqa $Xmn,$T1
pshufd \$0b01001110,$Xi,$Xmn #
pxor $Xi,$Xmn #
pclmulqdq \$0x00,$Hkey2,$Xi
pclmulqdq \$0x11,$Hkey2,$Xhi
pclmulqdq \$0x10,$HK,$Xmn
pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
pxor $Xhn,$Xhi
pxor $Xi,$T1
pxor $Xhi,$T1
pxor $T1,$Xmn
movdqa $Xmn,$T1 #
psrldq \$8,$T1
pslldq \$8,$Xmn #
pxor $T1,$Xhi
pxor $Xmn,$Xi #
___
&reduction_alg9 ($Xhi,$Xi);
$code.=<<___;
test $len,$len
jnz .Ldone
.Lodd_tail:
movdqu ($inp),$T1 # Ii
pshufb $T3,$T1
pxor $T1,$Xi # Ii+Xi
___
&clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H*(Ii+Xi)
&reduction_alg9 ($Xhi,$Xi);
$code.=<<___;
.Ldone:
pshufb $T3,$Xi
movdqu $Xi,($Xip)
___
$code.=<<___ if ($win64);
movaps (%rsp),%xmm6
movaps 0x10(%rsp),%xmm7
movaps 0x20(%rsp),%xmm8
movaps 0x30(%rsp),%xmm9
movaps 0x40(%rsp),%xmm10
movaps 0x50(%rsp),%xmm11
movaps 0x60(%rsp),%xmm12
movaps 0x70(%rsp),%xmm13
movaps 0x80(%rsp),%xmm14
movaps 0x90(%rsp),%xmm15
lea 0xa8(%rsp),%rsp
.LSEH_end_gcm_ghash_clmul:
___
$code.=<<___;
ret
.size gcm_ghash_clmul,.-gcm_ghash_clmul
___
}
$code.=<<___;
.globl gcm_init_avx
.type gcm_init_avx,\@abi-omnipotent
.align 32
gcm_init_avx:
___
if ($avx) {
my ($Htbl,$Xip)=@_4args;
my $HK="%xmm6";
$code.=<<___ if ($win64);
.LSEH_begin_gcm_init_avx:
# I can't trust assembler to use specific encoding:-(
.byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp
.byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
___
$code.=<<___;
vzeroupper
vmovdqu ($Xip),$Hkey
vpshufd \$0b01001110,$Hkey,$Hkey # dword swap
# <<1 twist
vpshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
vpsrlq \$63,$Hkey,$T1
vpsllq \$1,$Hkey,$Hkey
vpxor $T3,$T3,$T3 #
vpcmpgtd $T2,$T3,$T3 # broadcast carry bit
vpslldq \$8,$T1,$T1
vpor $T1,$Hkey,$Hkey # H<<=1
# magic reduction
vpand .L0x1c2_polynomial(%rip),$T3,$T3
vpxor $T3,$Hkey,$Hkey # if(carry) H^=0x1c2_polynomial
vpunpckhqdq $Hkey,$Hkey,$HK
vmovdqa $Hkey,$Xi
vpxor $Hkey,$HK,$HK
mov \$4,%r10 # up to H^8
jmp .Linit_start_avx
___
sub clmul64x64_avx {
my ($Xhi,$Xi,$Hkey,$HK)=@_;
if (!defined($HK)) { $HK = $T2;
$code.=<<___;
vpunpckhqdq $Xi,$Xi,$T1
vpunpckhqdq $Hkey,$Hkey,$T2
vpxor $Xi,$T1,$T1 #
vpxor $Hkey,$T2,$T2
___
} else {
$code.=<<___;
vpunpckhqdq $Xi,$Xi,$T1
vpxor $Xi,$T1,$T1 #
___
}
$code.=<<___;
vpclmulqdq \$0x11,$Hkey,$Xi,$Xhi #######
vpclmulqdq \$0x00,$Hkey,$Xi,$Xi #######
vpclmulqdq \$0x00,$HK,$T1,$T1 #######
vpxor $Xi,$Xhi,$T2 #
vpxor $T2,$T1,$T1 #
vpslldq \$8,$T1,$T2 #
vpsrldq \$8,$T1,$T1
vpxor $T2,$Xi,$Xi #
vpxor $T1,$Xhi,$Xhi
___
}
sub reduction_avx {
my ($Xhi,$Xi) = @_;
$code.=<<___;
vpsllq \$57,$Xi,$T1 # 1st phase
vpsllq \$62,$Xi,$T2
vpxor $T1,$T2,$T2 #
vpsllq \$63,$Xi,$T1
vpxor $T1,$T2,$T2 #
vpslldq \$8,$T2,$T1 #
vpsrldq \$8,$T2,$T2
vpxor $T1,$Xi,$Xi #
vpxor $T2,$Xhi,$Xhi
vpsrlq \$1,$Xi,$T2 # 2nd phase
vpxor $Xi,$Xhi,$Xhi
vpxor $T2,$Xi,$Xi #
vpsrlq \$5,$T2,$T2
vpxor $T2,$Xi,$Xi #
vpsrlq \$1,$Xi,$Xi #
vpxor $Xhi,$Xi,$Xi #
___
}
$code.=<<___;
.align 32
.Linit_loop_avx:
vpalignr \$8,$T1,$T2,$T3 # low part is H.lo^H.hi...
vmovdqu $T3,-0x10($Htbl) # save Karatsuba "salt"
___
&clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^3,5,7
&reduction_avx ($Xhi,$Xi);
$code.=<<___;
.Linit_start_avx:
vmovdqa $Xi,$T3
___
&clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^2,4,6,8
&reduction_avx ($Xhi,$Xi);
$code.=<<___;
vpshufd \$0b01001110,$T3,$T1
vpshufd \$0b01001110,$Xi,$T2
vpxor $T3,$T1,$T1 # Karatsuba pre-processing
vmovdqu $T3,0x00($Htbl) # save H^1,3,5,7
vpxor $Xi,$T2,$T2 # Karatsuba pre-processing
vmovdqu $Xi,0x10($Htbl) # save H^2,4,6,8
lea 0x30($Htbl),$Htbl
sub \$1,%r10
jnz .Linit_loop_avx
vpalignr \$8,$T2,$T1,$T3 # last "salt" is flipped
vmovdqu $T3,-0x10($Htbl)
vzeroupper
___
$code.=<<___ if ($win64);
movaps (%rsp),%xmm6
lea 0x18(%rsp),%rsp
.LSEH_end_gcm_init_avx:
___
$code.=<<___;
ret
.size gcm_init_avx,.-gcm_init_avx
___
} else {
$code.=<<___;
jmp .L_init_clmul
.size gcm_init_avx,.-gcm_init_avx
___
}
$code.=<<___;
.globl gcm_gmult_avx
.type gcm_gmult_avx,\@abi-omnipotent
.align 32
gcm_gmult_avx:
jmp .L_gmult_clmul
.size gcm_gmult_avx,.-gcm_gmult_avx
___
$code.=<<___;
.globl gcm_ghash_avx
.type gcm_ghash_avx,\@abi-omnipotent
.align 32
gcm_ghash_avx:
___
if ($avx) {
my ($Xip,$Htbl,$inp,$len)=@_4args;
my ($Xlo,$Xhi,$Xmi,
$Zlo,$Zhi,$Zmi,
$Hkey,$HK,$T1,$T2,
$Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));
$code.=<<___ if ($win64);
lea -0x88(%rsp),%rax
.LSEH_begin_gcm_ghash_avx:
# I can't trust assembler to use specific encoding:-(
.byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp
.byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax)
.byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax)
.byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax)
.byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax)
.byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax)
.byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax)
.byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax)
.byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax)
.byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax)
.byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax)
___
$code.=<<___;
vzeroupper
vmovdqu ($Xip),$Xi # load $Xi
lea .L0x1c2_polynomial(%rip),%r10
lea 0x40($Htbl),$Htbl # size optimization
vmovdqu .Lbswap_mask(%rip),$bswap
vpshufb $bswap,$Xi,$Xi
cmp \$0x80,$len
jb .Lshort_avx
sub \$0x80,$len
vmovdqu 0x70($inp),$Ii # I[7]
vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
vpshufb $bswap,$Ii,$Ii
vmovdqu 0x20-0x40($Htbl),$HK
vpunpckhqdq $Ii,$Ii,$T2
vmovdqu 0x60($inp),$Ij # I[6]
vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
vpxor $Ii,$T2,$T2
vpshufb $bswap,$Ij,$Ij
vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
vpunpckhqdq $Ij,$Ij,$T1
vmovdqu 0x50($inp),$Ii # I[5]
vpclmulqdq \$0x00,$HK,$T2,$Xmi
vpxor $Ij,$T1,$T1
vpshufb $bswap,$Ii,$Ii
vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
vpunpckhqdq $Ii,$Ii,$T2
vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
vpxor $Ii,$T2,$T2
vmovdqu 0x40($inp),$Ij # I[4]
vpclmulqdq \$0x10,$HK,$T1,$Zmi
vmovdqu 0x50-0x40($Htbl),$HK
vpshufb $bswap,$Ij,$Ij
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
vpxor $Xhi,$Zhi,$Zhi
vpunpckhqdq $Ij,$Ij,$T1
vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x00,$HK,$T2,$Xmi
vpxor $Ij,$T1,$T1
vmovdqu 0x30($inp),$Ii # I[3]
vpxor $Zlo,$Xlo,$Xlo
vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
vpxor $Zhi,$Xhi,$Xhi
vpshufb $bswap,$Ii,$Ii
vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
vpxor $Zmi,$Xmi,$Xmi
vpunpckhqdq $Ii,$Ii,$T2
vpclmulqdq \$0x10,$HK,$T1,$Zmi
vmovdqu 0x80-0x40($Htbl),$HK
vpxor $Ii,$T2,$T2
vmovdqu 0x20($inp),$Ij # I[2]
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
vpxor $Xhi,$Zhi,$Zhi
vpshufb $bswap,$Ij,$Ij
vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
vpxor $Xmi,$Zmi,$Zmi
vpunpckhqdq $Ij,$Ij,$T1
vpclmulqdq \$0x00,$HK,$T2,$Xmi
vpxor $Ij,$T1,$T1
vmovdqu 0x10($inp),$Ii # I[1]
vpxor $Zlo,$Xlo,$Xlo
vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
vpxor $Zhi,$Xhi,$Xhi
vpshufb $bswap,$Ii,$Ii
vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
vpxor $Zmi,$Xmi,$Xmi
vpunpckhqdq $Ii,$Ii,$T2
vpclmulqdq \$0x10,$HK,$T1,$Zmi
vmovdqu 0xb0-0x40($Htbl),$HK
vpxor $Ii,$T2,$T2
vmovdqu ($inp),$Ij # I[0]
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
vpxor $Xhi,$Zhi,$Zhi
vpshufb $bswap,$Ij,$Ij
vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x10,$HK,$T2,$Xmi
lea 0x80($inp),$inp
cmp \$0x80,$len
jb .Ltail_avx
vpxor $Xi,$Ij,$Ij # accumulate $Xi
sub \$0x80,$len
jmp .Loop8x_avx
.align 32
.Loop8x_avx:
vpunpckhqdq $Ij,$Ij,$T1
vmovdqu 0x70($inp),$Ii # I[7]
vpxor $Xlo,$Zlo,$Zlo
vpxor $Ij,$T1,$T1
vpclmulqdq \$0x00,$Hkey,$Ij,$Xi
vpshufb $bswap,$Ii,$Ii
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x11,$Hkey,$Ij,$Xo
vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
vpunpckhqdq $Ii,$Ii,$T2
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x00,$HK,$T1,$Tred
vmovdqu 0x20-0x40($Htbl),$HK
vpxor $Ii,$T2,$T2
vmovdqu 0x60($inp),$Ij # I[6]
vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
vpxor $Zlo,$Xi,$Xi # collect result
vpshufb $bswap,$Ij,$Ij
vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
vxorps $Zhi,$Xo,$Xo
vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
vpunpckhqdq $Ij,$Ij,$T1
vpclmulqdq \$0x00,$HK, $T2,$Xmi
vpxor $Zmi,$Tred,$Tred
vxorps $Ij,$T1,$T1
vmovdqu 0x50($inp),$Ii # I[5]
vpxor $Xi,$Tred,$Tred # aggregated Karatsuba post-processing
vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
vpxor $Xo,$Tred,$Tred
vpslldq \$8,$Tred,$T2
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
vpsrldq \$8,$Tred,$Tred
vpxor $T2, $Xi, $Xi
vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
vpshufb $bswap,$Ii,$Ii
vxorps $Tred,$Xo, $Xo
vpxor $Xhi,$Zhi,$Zhi
vpunpckhqdq $Ii,$Ii,$T2
vpclmulqdq \$0x10,$HK, $T1,$Zmi
vmovdqu 0x50-0x40($Htbl),$HK
vpxor $Ii,$T2,$T2
vpxor $Xmi,$Zmi,$Zmi
vmovdqu 0x40($inp),$Ij # I[4]
vpalignr \$8,$Xi,$Xi,$Tred # 1st phase
vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
vpshufb $bswap,$Ij,$Ij
vpxor $Zlo,$Xlo,$Xlo
vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
vpunpckhqdq $Ij,$Ij,$T1
vpxor $Zhi,$Xhi,$Xhi
vpclmulqdq \$0x00,$HK, $T2,$Xmi
vxorps $Ij,$T1,$T1
vpxor $Zmi,$Xmi,$Xmi
vmovdqu 0x30($inp),$Ii # I[3]
vpclmulqdq \$0x10,(%r10),$Xi,$Xi
vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
vpshufb $bswap,$Ii,$Ii
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
vpunpckhqdq $Ii,$Ii,$T2
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x10,$HK, $T1,$Zmi
vmovdqu 0x80-0x40($Htbl),$HK
vpxor $Ii,$T2,$T2
vpxor $Xmi,$Zmi,$Zmi
vmovdqu 0x20($inp),$Ij # I[2]
vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
vpshufb $bswap,$Ij,$Ij
vpxor $Zlo,$Xlo,$Xlo
vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
vpunpckhqdq $Ij,$Ij,$T1
vpxor $Zhi,$Xhi,$Xhi
vpclmulqdq \$0x00,$HK, $T2,$Xmi
vpxor $Ij,$T1,$T1
vpxor $Zmi,$Xmi,$Xmi
vxorps $Tred,$Xi,$Xi
vmovdqu 0x10($inp),$Ii # I[1]
vpalignr \$8,$Xi,$Xi,$Tred # 2nd phase
vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
vpshufb $bswap,$Ii,$Ii
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
vpclmulqdq \$0x10,(%r10),$Xi,$Xi
vxorps $Xo,$Tred,$Tred
vpunpckhqdq $Ii,$Ii,$T2
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x10,$HK, $T1,$Zmi
vmovdqu 0xb0-0x40($Htbl),$HK
vpxor $Ii,$T2,$T2
vpxor $Xmi,$Zmi,$Zmi
vmovdqu ($inp),$Ij # I[0]
vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
vpshufb $bswap,$Ij,$Ij
vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8
vpxor $Tred,$Ij,$Ij
vpclmulqdq \$0x10,$HK, $T2,$Xmi
vpxor $Xi,$Ij,$Ij # accumulate $Xi
lea 0x80($inp),$inp
sub \$0x80,$len
jnc .Loop8x_avx
add \$0x80,$len
jmp .Ltail_no_xor_avx
.align 32
.Lshort_avx:
vmovdqu -0x10($inp,$len),$Ii # very last word
lea ($inp,$len),$inp
vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
vmovdqu 0x20-0x40($Htbl),$HK
vpshufb $bswap,$Ii,$Ij
vmovdqa $Xlo,$Zlo # subtle way to zero $Zlo,
vmovdqa $Xhi,$Zhi # $Zhi and
vmovdqa $Xmi,$Zmi # $Zmi
sub \$0x10,$len
jz .Ltail_avx
vpunpckhqdq $Ij,$Ij,$T1
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
vpxor $Ij,$T1,$T1
vmovdqu -0x20($inp),$Ii
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
vpshufb $bswap,$Ii,$Ij
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x00,$HK,$T1,$Xmi
vpsrldq \$8,$HK,$HK
sub \$0x10,$len
jz .Ltail_avx
vpunpckhqdq $Ij,$Ij,$T1
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
vpxor $Ij,$T1,$T1
vmovdqu -0x30($inp),$Ii
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
vpshufb $bswap,$Ii,$Ij
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x00,$HK,$T1,$Xmi
vmovdqu 0x50-0x40($Htbl),$HK
sub \$0x10,$len
jz .Ltail_avx
vpunpckhqdq $Ij,$Ij,$T1
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
vpxor $Ij,$T1,$T1
vmovdqu -0x40($inp),$Ii
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
vpshufb $bswap,$Ii,$Ij
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x00,$HK,$T1,$Xmi
vpsrldq \$8,$HK,$HK
sub \$0x10,$len
jz .Ltail_avx
vpunpckhqdq $Ij,$Ij,$T1
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
vpxor $Ij,$T1,$T1
vmovdqu -0x50($inp),$Ii
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
vpshufb $bswap,$Ii,$Ij
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x00,$HK,$T1,$Xmi
vmovdqu 0x80-0x40($Htbl),$HK
sub \$0x10,$len
jz .Ltail_avx
vpunpckhqdq $Ij,$Ij,$T1
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
vpxor $Ij,$T1,$T1
vmovdqu -0x60($inp),$Ii
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
vpshufb $bswap,$Ii,$Ij
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x00,$HK,$T1,$Xmi
vpsrldq \$8,$HK,$HK
sub \$0x10,$len
jz .Ltail_avx
vpunpckhqdq $Ij,$Ij,$T1
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
vpxor $Ij,$T1,$T1
vmovdqu -0x70($inp),$Ii
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
vpshufb $bswap,$Ii,$Ij
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x00,$HK,$T1,$Xmi
vmovq 0xb8-0x40($Htbl),$HK
sub \$0x10,$len
jmp .Ltail_avx
.align 32
.Ltail_avx:
vpxor $Xi,$Ij,$Ij # accumulate $Xi
.Ltail_no_xor_avx:
vpunpckhqdq $Ij,$Ij,$T1
vpxor $Xlo,$Zlo,$Zlo
vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
vpxor $Ij,$T1,$T1
vpxor $Xhi,$Zhi,$Zhi
vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
vpxor $Xmi,$Zmi,$Zmi
vpclmulqdq \$0x00,$HK,$T1,$Xmi
vmovdqu (%r10),$Tred
vpxor $Xlo,$Zlo,$Xi
vpxor $Xhi,$Zhi,$Xo
vpxor $Xmi,$Zmi,$Zmi
vpxor $Xi, $Zmi,$Zmi # aggregated Karatsuba post-processing
vpxor $Xo, $Zmi,$Zmi
vpslldq \$8, $Zmi,$T2
vpsrldq \$8, $Zmi,$Zmi
vpxor $T2, $Xi, $Xi
vpxor $Zmi,$Xo, $Xo
vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 1st phase
vpalignr \$8,$Xi,$Xi,$Xi
vpxor $T2,$Xi,$Xi
vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 2nd phase
vpalignr \$8,$Xi,$Xi,$Xi
vpxor $Xo,$Xi,$Xi
vpxor $T2,$Xi,$Xi
cmp \$0,$len
jne .Lshort_avx
vpshufb $bswap,$Xi,$Xi
vmovdqu $Xi,($Xip)
vzeroupper
___
$code.=<<___ if ($win64);
movaps (%rsp),%xmm6
movaps 0x10(%rsp),%xmm7
movaps 0x20(%rsp),%xmm8
movaps 0x30(%rsp),%xmm9
movaps 0x40(%rsp),%xmm10
movaps 0x50(%rsp),%xmm11
movaps 0x60(%rsp),%xmm12
movaps 0x70(%rsp),%xmm13
movaps 0x80(%rsp),%xmm14
movaps 0x90(%rsp),%xmm15
lea 0xa8(%rsp),%rsp
.LSEH_end_gcm_ghash_avx:
___
$code.=<<___;
ret
.size gcm_ghash_avx,.-gcm_ghash_avx
___
} else {
$code.=<<___;
jmp .L_ghash_clmul
.size gcm_ghash_avx,.-gcm_ghash_avx
___
}
$code.=<<___;
.align 64
.Lbswap_mask:
.byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
.L0x1c2_polynomial:
.byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
.L7_mask:
.long 7,0,7,0
.L7_mask_poly:
.long 7,0,`0xE1<<1`,0
.align 64
.type .Lrem_4bit,\@object
.Lrem_4bit:
.long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
.long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
.long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
.long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
.type .Lrem_8bit,\@object
.Lrem_8bit:
.value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
.value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
.value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
.value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
.value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
.value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
.value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
.value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
.value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
.value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
.value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
.value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
.value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
.value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
.value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
.value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
.value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
.value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
.value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
.value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
.value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
.value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
.value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
.value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
.value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
.value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
.value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
.value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
.value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
.value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
.value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
.value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
.asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align 64
___
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type se_handler,\@abi-omnipotent
.align 16
se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<prologue label
jb .Lin_prologue
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lin_prologue
lea 24(%rax),%rax # adjust "rsp"
mov -8(%rax),%rbx
mov -16(%rax),%rbp
mov -24(%rax),%r12
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
.Lin_prologue:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$`1232/8`,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size se_handler,.-se_handler
.section .pdata
.align 4
.rva .LSEH_begin_gcm_gmult_4bit
.rva .LSEH_end_gcm_gmult_4bit
.rva .LSEH_info_gcm_gmult_4bit
.rva .LSEH_begin_gcm_ghash_4bit
.rva .LSEH_end_gcm_ghash_4bit
.rva .LSEH_info_gcm_ghash_4bit
.rva .LSEH_begin_gcm_init_clmul
.rva .LSEH_end_gcm_init_clmul
.rva .LSEH_info_gcm_init_clmul
.rva .LSEH_begin_gcm_ghash_clmul
.rva .LSEH_end_gcm_ghash_clmul
.rva .LSEH_info_gcm_ghash_clmul
___
$code.=<<___ if ($avx);
.rva .LSEH_begin_gcm_init_avx
.rva .LSEH_end_gcm_init_avx
.rva .LSEH_info_gcm_init_clmul
.rva .LSEH_begin_gcm_ghash_avx
.rva .LSEH_end_gcm_ghash_avx
.rva .LSEH_info_gcm_ghash_clmul
___
$code.=<<___;
.section .xdata
.align 8
.LSEH_info_gcm_gmult_4bit:
.byte 9,0,0,0
.rva se_handler
.rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData
.LSEH_info_gcm_ghash_4bit:
.byte 9,0,0,0
.rva se_handler
.rva .Lghash_prologue,.Lghash_epilogue # HandlerData
.LSEH_info_gcm_init_clmul:
.byte 0x01,0x08,0x03,0x00
.byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6
.byte 0x04,0x22,0x00,0x00 #sub rsp,0x18
.LSEH_info_gcm_ghash_clmul:
.byte 0x01,0x33,0x16,0x00
.byte 0x33,0xf8,0x09,0x00 #movaps 0x90(rsp),xmm15
.byte 0x2e,0xe8,0x08,0x00 #movaps 0x80(rsp),xmm14
.byte 0x29,0xd8,0x07,0x00 #movaps 0x70(rsp),xmm13
.byte 0x24,0xc8,0x06,0x00 #movaps 0x60(rsp),xmm12
.byte 0x1f,0xb8,0x05,0x00 #movaps 0x50(rsp),xmm11
.byte 0x1a,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
.byte 0x15,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
.byte 0x10,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
.byte 0x0c,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
.byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6
.byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8
___
}
$code =~ s/\`([^\`]*)\`/eval($1)/gem;
print $code;
close STDOUT;