| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. */ |
| |
| #include <stdio.h> |
| #include <assert.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/rand.h> |
| |
| #include "ssl_locl.h" |
| |
| /* seed1 through seed5 are virtually concatenated */ |
| static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec, |
| int sec_len, |
| const void *seed1, int seed1_len, |
| const void *seed2, int seed2_len, |
| const void *seed3, int seed3_len, |
| const void *seed4, int seed4_len, |
| const void *seed5, int seed5_len, |
| unsigned char *out, int olen) |
| { |
| int chunk; |
| size_t j; |
| EVP_MD_CTX ctx, ctx_tmp, ctx_init; |
| EVP_PKEY *mac_key; |
| unsigned char A1[EVP_MAX_MD_SIZE]; |
| size_t A1_len; |
| int ret = 0; |
| |
| chunk=EVP_MD_size(md); |
| |
| EVP_MD_CTX_init(&ctx); |
| EVP_MD_CTX_init(&ctx_tmp); |
| EVP_MD_CTX_init(&ctx_init); |
| mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len); |
| if (!mac_key) |
| goto err; |
| if (!EVP_DigestSignInit(&ctx_init,NULL,md, NULL, mac_key)) |
| goto err; |
| if (!EVP_MD_CTX_copy_ex(&ctx,&ctx_init)) |
| goto err; |
| if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len)) |
| goto err; |
| if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len)) |
| goto err; |
| if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len)) |
| goto err; |
| if (seed4 && !EVP_DigestSignUpdate(&ctx,seed4,seed4_len)) |
| goto err; |
| if (seed5 && !EVP_DigestSignUpdate(&ctx,seed5,seed5_len)) |
| goto err; |
| A1_len = EVP_MAX_MD_SIZE; |
| if (!EVP_DigestSignFinal(&ctx,A1,&A1_len)) |
| goto err; |
| |
| for (;;) |
| { |
| /* Reinit mac contexts */ |
| if (!EVP_MD_CTX_copy_ex(&ctx,&ctx_init)) |
| goto err; |
| if (!EVP_DigestSignUpdate(&ctx,A1,A1_len)) |
| goto err; |
| if (olen>chunk && !EVP_MD_CTX_copy_ex(&ctx_tmp,&ctx)) |
| goto err; |
| if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len)) |
| goto err; |
| if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len)) |
| goto err; |
| if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len)) |
| goto err; |
| if (seed4 && !EVP_DigestSignUpdate(&ctx,seed4,seed4_len)) |
| goto err; |
| if (seed5 && !EVP_DigestSignUpdate(&ctx,seed5,seed5_len)) |
| goto err; |
| |
| if (olen > chunk) |
| { |
| j = olen; |
| if (!EVP_DigestSignFinal(&ctx,out,&j)) |
| goto err; |
| out+=j; |
| olen-=j; |
| /* calc the next A1 value */ |
| A1_len = EVP_MAX_MD_SIZE; |
| if (!EVP_DigestSignFinal(&ctx_tmp,A1,&A1_len)) |
| goto err; |
| } |
| else /* last one */ |
| { |
| A1_len = EVP_MAX_MD_SIZE; |
| if (!EVP_DigestSignFinal(&ctx,A1,&A1_len)) |
| goto err; |
| memcpy(out,A1,olen); |
| break; |
| } |
| } |
| ret = 1; |
| err: |
| EVP_PKEY_free(mac_key); |
| EVP_MD_CTX_cleanup(&ctx); |
| EVP_MD_CTX_cleanup(&ctx_tmp); |
| EVP_MD_CTX_cleanup(&ctx_init); |
| OPENSSL_cleanse(A1,sizeof(A1)); |
| return ret; |
| } |
| |
| /* seed1 through seed5 are virtually concatenated */ |
| static int tls1_PRF(long digest_mask, |
| const void *seed1, int seed1_len, |
| const void *seed2, int seed2_len, |
| const void *seed3, int seed3_len, |
| const void *seed4, int seed4_len, |
| const void *seed5, int seed5_len, |
| const unsigned char *sec, int slen, |
| unsigned char *out1, |
| unsigned char *out2, int olen) |
| { |
| int len,i,idx,count; |
| const unsigned char *S1; |
| long m; |
| const EVP_MD *md; |
| int ret = 0; |
| |
| /* Count number of digests and partition sec evenly */ |
| count=0; |
| for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) { |
| if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) count++; |
| } |
| len=slen/count; |
| if (count == 1) |
| slen = 0; |
| S1=sec; |
| memset(out1,0,olen); |
| for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) { |
| if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) { |
| if (!md) { |
| OPENSSL_PUT_ERROR(SSL, tls1_PRF, SSL_R_UNSUPPORTED_DIGEST_TYPE); |
| goto err; |
| } |
| if (!tls1_P_hash(md ,S1,len+(slen&1), |
| seed1,seed1_len,seed2,seed2_len,seed3,seed3_len,seed4,seed4_len,seed5,seed5_len, |
| out2,olen)) |
| goto err; |
| S1+=len; |
| for (i=0; i<olen; i++) |
| { |
| out1[i]^=out2[i]; |
| } |
| } |
| } |
| ret = 1; |
| err: |
| return ret; |
| } |
| |
| static int tls1_generate_key_block(SSL *s, unsigned char *km, |
| unsigned char *tmp, int num) |
| { |
| int ret; |
| ret = tls1_PRF(ssl_get_algorithm2(s), |
| TLS_MD_KEY_EXPANSION_CONST,TLS_MD_KEY_EXPANSION_CONST_SIZE, |
| s->s3->server_random,SSL3_RANDOM_SIZE, |
| s->s3->client_random,SSL3_RANDOM_SIZE, |
| NULL,0,NULL,0, |
| s->session->master_key,s->session->master_key_length, |
| km,tmp,num); |
| #ifdef KSSL_DEBUG |
| printf("tls1_generate_key_block() ==> %d byte master_key =\n\t", |
| s->session->master_key_length); |
| { |
| int i; |
| for (i=0; i < s->session->master_key_length; i++) |
| { |
| printf("%02X", s->session->master_key[i]); |
| } |
| printf("\n"); } |
| #endif /* KSSL_DEBUG */ |
| return ret; |
| } |
| |
| /* tls1_aead_ctx_init allocates |*aead_ctx|, if needed and returns 1. It |
| * returns 0 on malloc error. */ |
| static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx) |
| { |
| if (*aead_ctx != NULL) |
| EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx); |
| else |
| { |
| *aead_ctx = (SSL_AEAD_CTX*) OPENSSL_malloc(sizeof(SSL_AEAD_CTX)); |
| if (*aead_ctx == NULL) |
| { |
| OPENSSL_PUT_ERROR(SSL, tls1_aead_ctx_init, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int tls1_change_cipher_state_aead(SSL *s, char is_read, |
| const unsigned char *key, unsigned key_len, |
| const unsigned char *iv, unsigned iv_len, |
| const unsigned char *mac_secret, unsigned mac_secret_len) |
| { |
| const EVP_AEAD *aead = s->s3->tmp.new_aead; |
| SSL_AEAD_CTX *aead_ctx; |
| /* mac_key_and_key is used to merge the MAC and cipher keys for an AEAD |
| * which simulates pre-AEAD cipher suites. It needs to be large enough |
| * to cope with the largest pair of keys. */ |
| uint8_t mac_key_and_key[32 /* HMAC(SHA256) */ + 32 /* AES-256 */]; |
| |
| if (mac_secret_len > 0) |
| { |
| /* This is a "stateful" AEAD (for compatibility with pre-AEAD |
| * cipher suites). */ |
| if (mac_secret_len + key_len > sizeof(mac_key_and_key)) |
| { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| memcpy(mac_key_and_key, mac_secret, mac_secret_len); |
| memcpy(mac_key_and_key + mac_secret_len, key, key_len); |
| key = mac_key_and_key; |
| key_len += mac_secret_len; |
| } |
| |
| if (is_read) |
| { |
| if (!tls1_aead_ctx_init(&s->aead_read_ctx)) |
| return 0; |
| aead_ctx = s->aead_read_ctx; |
| } |
| else |
| { |
| if (!tls1_aead_ctx_init(&s->aead_write_ctx)) |
| return 0; |
| aead_ctx = s->aead_write_ctx; |
| } |
| |
| if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len, |
| EVP_AEAD_DEFAULT_TAG_LENGTH, NULL /* engine */)) |
| return 0; |
| if (iv_len > sizeof(aead_ctx->fixed_nonce)) |
| { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| memcpy(aead_ctx->fixed_nonce, iv, iv_len); |
| aead_ctx->fixed_nonce_len = iv_len; |
| aead_ctx->variable_nonce_len = 8; /* correct for all true AEADs so far. */ |
| if (s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD) |
| aead_ctx->variable_nonce_len = 0; |
| aead_ctx->variable_nonce_included_in_record = |
| (s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0; |
| if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead)) |
| { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| aead_ctx->tag_len = EVP_AEAD_max_overhead(aead); |
| |
| return 1; |
| } |
| |
| /* tls1_change_cipher_state_cipher performs the work needed to switch cipher |
| * states when using EVP_CIPHER. The argument |is_read| is true iff this |
| * function is being called due to reading, as opposed to writing, a |
| * ChangeCipherSpec message. In order to support export ciphersuites, |
| * use_client_keys indicates whether the key material provided is in the |
| * "client write" direction. */ |
| static int tls1_change_cipher_state_cipher( |
| SSL *s, char is_read, char use_client_keys, |
| const unsigned char *mac_secret, unsigned mac_secret_len, |
| const unsigned char *key, unsigned key_len, |
| const unsigned char *iv, unsigned iv_len) |
| { |
| const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc; |
| EVP_CIPHER_CTX *cipher_ctx; |
| EVP_MD_CTX *mac_ctx; |
| |
| if (is_read) |
| { |
| if (s->enc_read_ctx != NULL && !SSL_IS_DTLS(s)) |
| EVP_CIPHER_CTX_cleanup(s->enc_read_ctx); |
| else if ((s->enc_read_ctx=EVP_CIPHER_CTX_new()) == NULL) |
| goto err; |
| |
| cipher_ctx = s->enc_read_ctx; |
| mac_ctx = ssl_replace_hash(&s->read_hash, NULL); |
| |
| memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_len); |
| s->s3->read_mac_secret_size = mac_secret_len; |
| } |
| else |
| { |
| /* When updating the write contexts for DTLS, we do not wish to |
| * free the old ones because DTLS stores pointers to them in |
| * order to implement retransmission. */ |
| |
| if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) |
| EVP_CIPHER_CTX_cleanup(s->enc_write_ctx); |
| else if ((s->enc_write_ctx=OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL) |
| goto err; |
| else |
| /* make sure it's intialized in case we exit later with an error */ |
| EVP_CIPHER_CTX_init(s->enc_write_ctx); |
| |
| cipher_ctx = s->enc_write_ctx; |
| if (SSL_IS_DTLS(s)) |
| { |
| /* This is the same as ssl_replace_hash, but doesn't |
| * free the old |s->write_hash|. */ |
| mac_ctx = EVP_MD_CTX_create(); |
| if (!mac_ctx) |
| goto err; |
| s->write_hash = mac_ctx; |
| } |
| else |
| mac_ctx = ssl_replace_hash(&s->write_hash, NULL); |
| |
| memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_len); |
| s->s3->write_mac_secret_size = mac_secret_len; |
| } |
| |
| EVP_PKEY *mac_key = |
| EVP_PKEY_new_mac_key(s->s3->tmp.new_mac_pkey_type, |
| NULL, mac_secret, mac_secret_len); |
| if (!mac_key) |
| return 0; |
| EVP_DigestSignInit(mac_ctx, NULL, s->s3->tmp.new_hash, NULL, mac_key); |
| EVP_PKEY_free(mac_key); |
| |
| EVP_CipherInit_ex(cipher_ctx, cipher, NULL /* engine */, key, iv, !is_read); |
| |
| return 1; |
| |
| err: |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_cipher, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| int tls1_change_cipher_state(SSL *s, int which) |
| { |
| /* is_read is true if we have just read a ChangeCipherSpec message - |
| * i.e. we need to update the read cipherspec. Otherwise we have just |
| * written one. */ |
| const char is_read = (which & SSL3_CC_READ) != 0; |
| /* use_client_keys is true if we wish to use the keys for the "client |
| * write" direction. This is the case if we're a client sending a |
| * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec. */ |
| const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE || |
| which == SSL3_CHANGE_CIPHER_SERVER_READ; |
| const unsigned char *client_write_mac_secret, *server_write_mac_secret, *mac_secret; |
| const unsigned char *client_write_key, *server_write_key, *key; |
| const unsigned char *client_write_iv, *server_write_iv, *iv; |
| const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc; |
| const EVP_AEAD *aead = s->s3->tmp.new_aead; |
| unsigned key_len, iv_len, mac_secret_len; |
| const unsigned char *key_data; |
| |
| /* Reset sequence number to zero. |
| * TODO(davidben): Is this redundant with dtls1_reset_seq_numbers? */ |
| if (SSL_IS_DTLS(s)) |
| memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8); |
| |
| /* key_arg is used for SSLv2. We don't need it for TLS. */ |
| s->session->key_arg_length = 0; |
| |
| mac_secret_len = s->s3->tmp.new_mac_secret_size; |
| |
| if (aead != NULL) |
| { |
| key_len = EVP_AEAD_key_length(aead); |
| /* For "stateful" AEADs (i.e. compatibility with pre-AEAD |
| * cipher suites) the key length reported by |
| * |EVP_AEAD_key_length| will include the MAC key bytes. */ |
| if (key_len < mac_secret_len) |
| { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| key_len -= mac_secret_len; |
| iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->s3->tmp.new_cipher); |
| } |
| else |
| { |
| key_len = EVP_CIPHER_key_length(cipher); |
| |
| if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) |
| iv_len = EVP_GCM_TLS_FIXED_IV_LEN; |
| else |
| iv_len = EVP_CIPHER_iv_length(cipher); |
| } |
| |
| key_data = s->s3->tmp.key_block; |
| client_write_mac_secret = key_data; key_data += mac_secret_len; |
| server_write_mac_secret = key_data; key_data += mac_secret_len; |
| client_write_key = key_data; key_data += key_len; |
| server_write_key = key_data; key_data += key_len; |
| client_write_iv = key_data; key_data += iv_len; |
| server_write_iv = key_data; key_data += iv_len; |
| |
| if (use_client_keys) |
| { |
| mac_secret = client_write_mac_secret; |
| key = client_write_key; |
| iv = client_write_iv; |
| } |
| else |
| { |
| mac_secret = server_write_mac_secret; |
| key = server_write_key; |
| iv = server_write_iv; |
| } |
| |
| if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length) |
| { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| if (aead != NULL) |
| { |
| if (!tls1_change_cipher_state_aead(s, is_read, |
| key, key_len, iv, iv_len, |
| mac_secret, mac_secret_len)) |
| return 0; |
| } |
| else |
| { |
| if (!tls1_change_cipher_state_cipher(s, is_read, use_client_keys, |
| mac_secret, mac_secret_len, |
| key, key_len, |
| iv, iv_len)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int tls1_setup_key_block(SSL *s) |
| { |
| unsigned char *p1,*p2=NULL; |
| const EVP_CIPHER *c = NULL; |
| const EVP_MD *hash = NULL; |
| const EVP_AEAD *aead = NULL; |
| int num; |
| int mac_type= NID_undef,mac_secret_size=0; |
| int ret=0; |
| unsigned key_len, iv_len; |
| |
| #ifdef KSSL_DEBUG |
| printf ("tls1_setup_key_block()\n"); |
| #endif /* KSSL_DEBUG */ |
| |
| if (s->s3->tmp.key_block_length != 0) |
| return(1); |
| |
| if (s->session->cipher && |
| ((s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) || |
| (s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD))) |
| { |
| if (!ssl_cipher_get_evp_aead(s->session, &aead)) |
| goto cipher_unavailable_err; |
| key_len = EVP_AEAD_key_length(aead); |
| iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher); |
| if (!ssl_cipher_get_mac(s->session, &hash, &mac_type, &mac_secret_size)) |
| goto cipher_unavailable_err; |
| /* For "stateful" AEADs (i.e. compatibility with pre-AEAD |
| * cipher suites) the key length reported by |
| * |EVP_AEAD_key_length| will include the MAC key bytes. */ |
| if (key_len < mac_secret_size) |
| { |
| OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| key_len -= mac_secret_size; |
| } |
| else |
| { |
| if (!ssl_cipher_get_evp(s->session,&c,&hash,&mac_type,&mac_secret_size)) |
| goto cipher_unavailable_err; |
| key_len = EVP_CIPHER_key_length(c); |
| |
| if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) |
| iv_len = EVP_GCM_TLS_FIXED_IV_LEN; |
| else |
| iv_len = EVP_CIPHER_iv_length(c); |
| } |
| |
| s->s3->tmp.new_aead=aead; |
| s->s3->tmp.new_sym_enc=c; |
| s->s3->tmp.new_hash=hash; |
| s->s3->tmp.new_mac_pkey_type = mac_type; |
| s->s3->tmp.new_mac_secret_size = mac_secret_size; |
| |
| num=key_len+mac_secret_size+iv_len; |
| num*=2; |
| |
| ssl3_cleanup_key_block(s); |
| |
| if ((p1=(unsigned char *)OPENSSL_malloc(num)) == NULL) |
| { |
| OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| s->s3->tmp.key_block_length=num; |
| s->s3->tmp.key_block=p1; |
| |
| if ((p2=(unsigned char *)OPENSSL_malloc(num)) == NULL) |
| { |
| OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| #ifdef TLS_DEBUG |
| printf("client random\n"); |
| { int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->client_random[z],((z+1)%16)?' ':'\n'); } |
| printf("server random\n"); |
| { int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->server_random[z],((z+1)%16)?' ':'\n'); } |
| printf("pre-master\n"); |
| { int z; for (z=0; z<s->session->master_key_length; z++) printf("%02X%c",s->session->master_key[z],((z+1)%16)?' ':'\n'); } |
| #endif |
| if (!tls1_generate_key_block(s,p1,p2,num)) |
| goto err; |
| #ifdef TLS_DEBUG |
| printf("\nkey block\n"); |
| { int z; for (z=0; z<num; z++) printf("%02X%c",p1[z],((z+1)%16)?' ':'\n'); } |
| #endif |
| |
| if (s->method->version <= TLS1_VERSION && |
| (s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0) |
| { |
| /* enable vulnerability countermeasure for CBC ciphers with |
| * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt) |
| */ |
| s->s3->need_record_splitting = 1; |
| |
| if (s->session->cipher != NULL) |
| { |
| #ifndef OPENSSL_NO_RC4 |
| if (s->session->cipher->algorithm_enc == SSL_RC4) |
| s->s3->need_record_splitting = 0; |
| #endif |
| } |
| } |
| |
| ret = 1; |
| err: |
| if (p2) |
| { |
| OPENSSL_cleanse(p2,num); |
| OPENSSL_free(p2); |
| } |
| return(ret); |
| |
| cipher_unavailable_err: |
| OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); |
| return 0; |
| } |
| |
| /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. |
| * |
| * Returns: |
| * 0: (in non-constant time) if the record is publically invalid (i.e. too |
| * short etc). |
| * 1: if the record's padding is valid / the encryption was successful. |
| * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, |
| * an internal error occured. |
| */ |
| int tls1_enc(SSL *s, int send) |
| { |
| SSL3_RECORD *rec; |
| EVP_CIPHER_CTX *ds; |
| unsigned long l; |
| int bs,i,j,k,pad=0,ret,mac_size=0; |
| const EVP_CIPHER *enc; |
| const SSL_AEAD_CTX *aead; |
| |
| if (send) |
| rec = &s->s3->wrec; |
| else |
| rec = &s->s3->rrec; |
| |
| if (send) |
| aead = s->aead_write_ctx; |
| else |
| aead = s->aead_read_ctx; |
| |
| if (aead) |
| { |
| unsigned char ad[13], *seq, *in, *out, nonce[16]; |
| unsigned nonce_used; |
| size_t n; |
| |
| seq = send ? s->s3->write_sequence : s->s3->read_sequence; |
| |
| if (SSL_IS_DTLS(s)) |
| { |
| unsigned char dtlsseq[9], *p = dtlsseq; |
| |
| s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p); |
| memcpy(p, &seq[2], 6); |
| memcpy(ad, dtlsseq, 8); |
| } |
| else |
| { |
| memcpy(ad, seq, 8); |
| for (i=7; i>=0; i--) /* increment */ |
| { |
| ++seq[i]; |
| if (seq[i] != 0) |
| break; |
| } |
| } |
| |
| ad[8] = rec->type; |
| ad[9] = (unsigned char)(s->version>>8); |
| ad[10] = (unsigned char)(s->version); |
| |
| if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce) || |
| aead->variable_nonce_len > 8) |
| return -1; /* internal error - should never happen. */ |
| |
| memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len); |
| nonce_used = aead->fixed_nonce_len; |
| |
| if (send) |
| { |
| size_t len = rec->length; |
| size_t eivlen = 0; |
| in = rec->input; |
| out = rec->data; |
| |
| /* When sending we use the sequence number as the |
| * variable part of the nonce. */ |
| if (aead->variable_nonce_len > 8) |
| return -1; |
| memcpy(nonce + nonce_used, ad, aead->variable_nonce_len); |
| nonce_used += aead->variable_nonce_len; |
| |
| /* in do_ssl3_write, rec->input is moved forward by |
| * variable_nonce_len in order to leave space for the |
| * variable nonce. Thus we can copy the sequence number |
| * bytes into place without overwriting any of the |
| * plaintext. */ |
| if (aead->variable_nonce_included_in_record) |
| { |
| memcpy(out, ad, aead->variable_nonce_len); |
| len -= aead->variable_nonce_len; |
| eivlen = aead->variable_nonce_len; |
| } |
| |
| ad[11] = len >> 8; |
| ad[12] = len & 0xff; |
| |
| if (!EVP_AEAD_CTX_seal( |
| &aead->ctx, |
| out + eivlen, &n, len + aead->tag_len, |
| nonce, nonce_used, |
| in + eivlen, len, |
| ad, sizeof(ad))) |
| { |
| return -1; |
| } |
| if (aead->variable_nonce_included_in_record) |
| n += aead->variable_nonce_len; |
| } |
| else |
| { |
| /* receive */ |
| size_t len = rec->length; |
| |
| if (rec->data != rec->input) |
| return -1; /* internal error - should never happen. */ |
| out = in = rec->input; |
| |
| if (len < aead->variable_nonce_len) |
| return 0; |
| memcpy(nonce + nonce_used, |
| aead->variable_nonce_included_in_record ? in : ad, |
| aead->variable_nonce_len); |
| nonce_used += aead->variable_nonce_len; |
| |
| if (aead->variable_nonce_included_in_record) |
| { |
| in += aead->variable_nonce_len; |
| len -= aead->variable_nonce_len; |
| out += aead->variable_nonce_len; |
| } |
| |
| if (len < aead->tag_len) |
| return 0; |
| len -= aead->tag_len; |
| |
| ad[11] = len >> 8; |
| ad[12] = len & 0xff; |
| |
| if (!EVP_AEAD_CTX_open( |
| &aead->ctx, |
| out, &n, len, |
| nonce, nonce_used, |
| in, len + aead->tag_len, |
| ad, sizeof(ad))) |
| { |
| return -1; |
| } |
| |
| rec->data = rec->input = out; |
| } |
| |
| rec->length = n; |
| return 1; |
| } |
| |
| if (send) |
| { |
| ds=s->enc_write_ctx; |
| rec= &(s->s3->wrec); |
| if (s->enc_write_ctx == NULL) |
| enc=NULL; |
| else |
| { |
| int ivlen; |
| enc=EVP_CIPHER_CTX_cipher(s->enc_write_ctx); |
| /* For TLSv1.1 and later explicit IV */ |
| if (SSL_USE_EXPLICIT_IV(s) |
| && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) |
| ivlen = EVP_CIPHER_iv_length(enc); |
| else |
| ivlen = 0; |
| if (ivlen > 1) |
| { |
| if ( rec->data != rec->input) |
| /* we can't write into the input stream: |
| * Can this ever happen?? (steve) |
| */ |
| fprintf(stderr, |
| "%s:%d: rec->data != rec->input\n", |
| __FILE__, __LINE__); |
| else if (RAND_bytes(rec->input, ivlen) <= 0) |
| return -1; |
| } |
| } |
| } |
| else |
| { |
| ds=s->enc_read_ctx; |
| rec= &(s->s3->rrec); |
| if (s->enc_read_ctx == NULL) |
| enc=NULL; |
| else |
| enc=EVP_CIPHER_CTX_cipher(s->enc_read_ctx); |
| } |
| |
| #ifdef KSSL_DEBUG |
| printf("tls1_enc(%d)\n", send); |
| #endif /* KSSL_DEBUG */ |
| |
| if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) |
| { |
| memmove(rec->data,rec->input,rec->length); |
| rec->input=rec->data; |
| ret = 1; |
| } |
| else |
| { |
| l=rec->length; |
| bs=EVP_CIPHER_block_size(ds->cipher); |
| |
| if ((bs != 1) && send) |
| { |
| i=bs-((int)l%bs); |
| |
| /* Add weird padding of upto 256 bytes */ |
| |
| /* we need to add 'i' padding bytes of value j */ |
| j=i-1; |
| if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) |
| { |
| if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) |
| j++; |
| } |
| for (k=(int)l; k<(int)(l+i); k++) |
| rec->input[k]=j; |
| l+=i; |
| rec->length+=i; |
| } |
| |
| #ifdef KSSL_DEBUG |
| { |
| unsigned long ui; |
| printf("EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n", |
| ds,rec->data,rec->input,l); |
| printf("\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%d %d], %d iv_len\n", |
| ds->buf_len, ds->cipher->key_len, |
| DES_KEY_SZ, DES_SCHEDULE_SZ, |
| ds->cipher->iv_len); |
| printf("\t\tIV: "); |
| for (i=0; i<ds->cipher->iv_len; i++) printf("%02X", ds->iv[i]); |
| printf("\n"); |
| printf("\trec->input="); |
| for (ui=0; ui<l; ui++) printf(" %02x", rec->input[ui]); |
| printf("\n"); |
| } |
| #endif /* KSSL_DEBUG */ |
| |
| if (!send) |
| { |
| if (l == 0 || l%bs != 0) |
| return 0; |
| } |
| |
| i = EVP_Cipher(ds,rec->data,rec->input,l); |
| if ((EVP_CIPHER_flags(ds->cipher)&EVP_CIPH_FLAG_CUSTOM_CIPHER) |
| ?(i<0) |
| :(i==0)) |
| return -1; /* AEAD can fail to verify MAC */ |
| if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send) |
| { |
| rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| } |
| |
| #ifdef KSSL_DEBUG |
| { |
| unsigned long i; |
| printf("\trec->data="); |
| for (i=0; i<l; i++) |
| printf(" %02x", rec->data[i]); printf("\n"); |
| } |
| #endif /* KSSL_DEBUG */ |
| |
| ret = 1; |
| if (EVP_MD_CTX_md(s->read_hash) != NULL) |
| mac_size = EVP_MD_CTX_size(s->read_hash); |
| if ((bs != 1) && !send) |
| ret = tls1_cbc_remove_padding(s, rec, bs, mac_size); |
| if (pad && !send) |
| rec->length -= pad; |
| } |
| return ret; |
| } |
| |
| int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out) |
| { |
| unsigned int ret; |
| EVP_MD_CTX ctx, *d=NULL; |
| int i; |
| |
| if (s->s3->handshake_buffer) |
| if (!ssl3_digest_cached_records(s)) |
| return 0; |
| |
| for (i=0;i<SSL_MAX_DIGEST;i++) |
| { |
| if (s->s3->handshake_dgst[i]&&EVP_MD_CTX_type(s->s3->handshake_dgst[i])==md_nid) |
| { |
| d=s->s3->handshake_dgst[i]; |
| break; |
| } |
| } |
| if (!d) { |
| OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST); |
| return 0; |
| } |
| |
| EVP_MD_CTX_init(&ctx); |
| EVP_MD_CTX_copy_ex(&ctx,d); |
| EVP_DigestFinal_ex(&ctx,out,&ret); |
| EVP_MD_CTX_cleanup(&ctx); |
| return((int)ret); |
| } |
| |
| /* tls1_handshake_digest calculates the current handshake hash and writes it to |
| * |out|, which has space for |out_len| bytes. It returns the number of bytes |
| * written or -1 in the event of an error. This function works on a copy of the |
| * underlying digests so can be called multiple times and prior to the final |
| * update etc. */ |
| int tls1_handshake_digest(SSL *s, unsigned char *out, size_t out_len) |
| { |
| const EVP_MD *md; |
| EVP_MD_CTX ctx; |
| int i, err = 0, len = 0; |
| long mask; |
| |
| EVP_MD_CTX_init(&ctx); |
| |
| for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) |
| { |
| int hash_size; |
| unsigned int digest_len; |
| EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i]; |
| |
| if ((mask & ssl_get_algorithm2(s)) == 0) |
| continue; |
| |
| hash_size = EVP_MD_size(md); |
| if (!hdgst || hash_size < 0 || (size_t)hash_size > out_len) |
| { |
| err = 1; |
| break; |
| } |
| |
| if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) || |
| !EVP_DigestFinal_ex(&ctx, out, &digest_len) || |
| digest_len != (unsigned int)hash_size) /* internal error */ |
| { |
| err = 1; |
| break; |
| } |
| out += digest_len; |
| out_len -= digest_len; |
| len += digest_len; |
| } |
| |
| EVP_MD_CTX_cleanup(&ctx); |
| |
| if (err != 0) |
| return -1; |
| return len; |
| } |
| |
| int tls1_final_finish_mac(SSL *s, |
| const char *str, int slen, unsigned char *out) |
| { |
| unsigned char buf[2*EVP_MAX_MD_SIZE]; |
| unsigned char buf2[12]; |
| int err=0; |
| int digests_len; |
| |
| if (s->s3->handshake_buffer) |
| if (!ssl3_digest_cached_records(s)) |
| return 0; |
| |
| digests_len = tls1_handshake_digest(s, buf, sizeof(buf)); |
| if (digests_len < 0) |
| { |
| err = 1; |
| digests_len = 0; |
| } |
| |
| if (!tls1_PRF(ssl_get_algorithm2(s), |
| str,slen, buf, digests_len, NULL,0, NULL,0, NULL,0, |
| s->session->master_key,s->session->master_key_length, |
| out,buf2,sizeof buf2)) |
| err = 1; |
| |
| if (err) |
| return 0; |
| else |
| return sizeof buf2; |
| } |
| |
| int tls1_mac(SSL *ssl, unsigned char *md, int send) |
| { |
| SSL3_RECORD *rec; |
| unsigned char *seq; |
| EVP_MD_CTX *hash; |
| size_t md_size, orig_len; |
| int i; |
| EVP_MD_CTX hmac, *mac_ctx; |
| unsigned char header[13]; |
| int t; |
| |
| if (send) |
| { |
| rec= &(ssl->s3->wrec); |
| seq= &(ssl->s3->write_sequence[0]); |
| hash=ssl->write_hash; |
| } |
| else |
| { |
| rec= &(ssl->s3->rrec); |
| seq= &(ssl->s3->read_sequence[0]); |
| hash=ssl->read_hash; |
| } |
| |
| t=EVP_MD_CTX_size(hash); |
| assert(t >= 0); |
| md_size=t; |
| |
| if (!EVP_MD_CTX_copy(&hmac,hash)) |
| return -1; |
| mac_ctx = &hmac; |
| |
| if (SSL_IS_DTLS(ssl)) |
| { |
| unsigned char dtlsseq[8],*p=dtlsseq; |
| |
| s2n(send?ssl->d1->w_epoch:ssl->d1->r_epoch, p); |
| memcpy (p,&seq[2],6); |
| |
| memcpy(header, dtlsseq, 8); |
| } |
| else |
| memcpy(header, seq, 8); |
| |
| /* kludge: tls1_cbc_remove_padding passes padding length in rec->type */ |
| orig_len = rec->length+md_size+((unsigned int)rec->type>>8); |
| rec->type &= 0xff; |
| |
| header[8]=rec->type; |
| header[9]=(unsigned char)(ssl->version>>8); |
| header[10]=(unsigned char)(ssl->version); |
| header[11]=(rec->length)>>8; |
| header[12]=(rec->length)&0xff; |
| |
| if (!send && |
| EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| ssl3_cbc_record_digest_supported(mac_ctx)) |
| { |
| /* This is a CBC-encrypted record. We must avoid leaking any |
| * timing-side channel information about how many blocks of |
| * data we are hashing because that gives an attacker a |
| * timing-oracle. */ |
| ssl3_cbc_digest_record( |
| mac_ctx, |
| md, &md_size, |
| header, rec->input, |
| rec->length + md_size, orig_len, |
| ssl->s3->read_mac_secret, |
| ssl->s3->read_mac_secret_size, |
| 0 /* not SSLv3 */); |
| } |
| else |
| { |
| EVP_DigestSignUpdate(mac_ctx,header,sizeof(header)); |
| EVP_DigestSignUpdate(mac_ctx,rec->input,rec->length); |
| t=EVP_DigestSignFinal(mac_ctx,md,&md_size); |
| assert(t > 0); |
| } |
| |
| EVP_MD_CTX_cleanup(&hmac); |
| |
| if (!SSL_IS_DTLS(ssl)) |
| { |
| for (i=7; i>=0; i--) |
| { |
| ++seq[i]; |
| if (seq[i] != 0) break; |
| } |
| } |
| |
| return(md_size); |
| } |
| |
| int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, |
| int len) |
| { |
| unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH]; |
| const void *co = NULL, *so = NULL; |
| int col = 0, sol = 0; |
| |
| |
| #ifdef KSSL_DEBUG |
| printf ("tls1_generate_master_secret(%p,%p, %p, %d)\n", s,out, p,len); |
| #endif /* KSSL_DEBUG */ |
| |
| tls1_PRF(ssl_get_algorithm2(s), |
| TLS_MD_MASTER_SECRET_CONST,TLS_MD_MASTER_SECRET_CONST_SIZE, |
| s->s3->client_random,SSL3_RANDOM_SIZE, |
| co, col, |
| s->s3->server_random,SSL3_RANDOM_SIZE, |
| so, sol, |
| p,len, |
| s->session->master_key,buff,sizeof buff); |
| #ifdef SSL_DEBUG |
| fprintf(stderr, "Premaster Secret:\n"); |
| BIO_dump_fp(stderr, (char *)p, len); |
| fprintf(stderr, "Client Random:\n"); |
| BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE); |
| fprintf(stderr, "Server Random:\n"); |
| BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE); |
| fprintf(stderr, "Master Secret:\n"); |
| BIO_dump_fp(stderr, (char *)s->session->master_key, SSL3_MASTER_SECRET_SIZE); |
| #endif |
| |
| #ifdef OPENSSL_SSL_TRACE_CRYPTO |
| if (s->msg_callback) |
| { |
| s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER, |
| p, len, s, s->msg_callback_arg); |
| s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM, |
| s->s3->client_random, SSL3_RANDOM_SIZE, |
| s, s->msg_callback_arg); |
| s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM, |
| s->s3->server_random, SSL3_RANDOM_SIZE, |
| s, s->msg_callback_arg); |
| s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER, |
| s->session->master_key, |
| SSL3_MASTER_SECRET_SIZE, |
| s, s->msg_callback_arg); |
| } |
| #endif |
| |
| #ifdef KSSL_DEBUG |
| printf ("tls1_generate_master_secret() complete\n"); |
| #endif /* KSSL_DEBUG */ |
| return(SSL3_MASTER_SECRET_SIZE); |
| } |
| |
| int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, |
| const char *label, size_t llen, const unsigned char *context, |
| size_t contextlen, int use_context) |
| { |
| unsigned char *buff; |
| unsigned char *val = NULL; |
| size_t vallen, currentvalpos; |
| int rv; |
| |
| #ifdef KSSL_DEBUG |
| printf ("tls1_export_keying_material(%p,%p,%d,%s,%d,%p,%d)\n", s, out, olen, label, llen, p, plen); |
| #endif /* KSSL_DEBUG */ |
| |
| buff = OPENSSL_malloc(olen); |
| if (buff == NULL) goto err2; |
| |
| /* construct PRF arguments |
| * we construct the PRF argument ourself rather than passing separate |
| * values into the TLS PRF to ensure that the concatenation of values |
| * does not create a prohibited label. |
| */ |
| vallen = llen + SSL3_RANDOM_SIZE * 2; |
| if (use_context) |
| { |
| vallen += 2 + contextlen; |
| } |
| |
| val = OPENSSL_malloc(vallen); |
| if (val == NULL) goto err2; |
| currentvalpos = 0; |
| memcpy(val + currentvalpos, (unsigned char *) label, llen); |
| currentvalpos += llen; |
| memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE); |
| currentvalpos += SSL3_RANDOM_SIZE; |
| memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE); |
| currentvalpos += SSL3_RANDOM_SIZE; |
| |
| if (use_context) |
| { |
| val[currentvalpos] = (contextlen >> 8) & 0xff; |
| currentvalpos++; |
| val[currentvalpos] = contextlen & 0xff; |
| currentvalpos++; |
| if ((contextlen > 0) || (context != NULL)) |
| { |
| memcpy(val + currentvalpos, context, contextlen); |
| } |
| } |
| |
| /* disallow prohibited labels |
| * note that SSL3_RANDOM_SIZE > max(prohibited label len) = |
| * 15, so size of val > max(prohibited label len) = 15 and the |
| * comparisons won't have buffer overflow |
| */ |
| if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, |
| TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1; |
| if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, |
| TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1; |
| if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, |
| TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1; |
| if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, |
| TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1; |
| |
| rv = tls1_PRF(ssl_get_algorithm2(s), |
| val, vallen, |
| NULL, 0, |
| NULL, 0, |
| NULL, 0, |
| NULL, 0, |
| s->session->master_key,s->session->master_key_length, |
| out,buff,olen); |
| |
| #ifdef KSSL_DEBUG |
| printf ("tls1_export_keying_material() complete\n"); |
| #endif /* KSSL_DEBUG */ |
| goto ret; |
| err1: |
| OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); |
| rv = 0; |
| goto ret; |
| err2: |
| OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE); |
| rv = 0; |
| ret: |
| if (buff != NULL) OPENSSL_free(buff); |
| if (val != NULL) OPENSSL_free(val); |
| return(rv); |
| } |
| |
| int tls1_alert_code(int code) |
| { |
| switch (code) |
| { |
| case SSL_AD_CLOSE_NOTIFY: return(SSL3_AD_CLOSE_NOTIFY); |
| case SSL_AD_UNEXPECTED_MESSAGE: return(SSL3_AD_UNEXPECTED_MESSAGE); |
| case SSL_AD_BAD_RECORD_MAC: return(SSL3_AD_BAD_RECORD_MAC); |
| case SSL_AD_DECRYPTION_FAILED: return(TLS1_AD_DECRYPTION_FAILED); |
| case SSL_AD_RECORD_OVERFLOW: return(TLS1_AD_RECORD_OVERFLOW); |
| case SSL_AD_DECOMPRESSION_FAILURE:return(SSL3_AD_DECOMPRESSION_FAILURE); |
| case SSL_AD_HANDSHAKE_FAILURE: return(SSL3_AD_HANDSHAKE_FAILURE); |
| case SSL_AD_NO_CERTIFICATE: return(-1); |
| case SSL_AD_BAD_CERTIFICATE: return(SSL3_AD_BAD_CERTIFICATE); |
| case SSL_AD_UNSUPPORTED_CERTIFICATE:return(SSL3_AD_UNSUPPORTED_CERTIFICATE); |
| case SSL_AD_CERTIFICATE_REVOKED:return(SSL3_AD_CERTIFICATE_REVOKED); |
| case SSL_AD_CERTIFICATE_EXPIRED:return(SSL3_AD_CERTIFICATE_EXPIRED); |
| case SSL_AD_CERTIFICATE_UNKNOWN:return(SSL3_AD_CERTIFICATE_UNKNOWN); |
| case SSL_AD_ILLEGAL_PARAMETER: return(SSL3_AD_ILLEGAL_PARAMETER); |
| case SSL_AD_UNKNOWN_CA: return(TLS1_AD_UNKNOWN_CA); |
| case SSL_AD_ACCESS_DENIED: return(TLS1_AD_ACCESS_DENIED); |
| case SSL_AD_DECODE_ERROR: return(TLS1_AD_DECODE_ERROR); |
| case SSL_AD_DECRYPT_ERROR: return(TLS1_AD_DECRYPT_ERROR); |
| case SSL_AD_EXPORT_RESTRICTION: return(TLS1_AD_EXPORT_RESTRICTION); |
| case SSL_AD_PROTOCOL_VERSION: return(TLS1_AD_PROTOCOL_VERSION); |
| case SSL_AD_INSUFFICIENT_SECURITY:return(TLS1_AD_INSUFFICIENT_SECURITY); |
| case SSL_AD_INTERNAL_ERROR: return(TLS1_AD_INTERNAL_ERROR); |
| case SSL_AD_USER_CANCELLED: return(TLS1_AD_USER_CANCELLED); |
| case SSL_AD_NO_RENEGOTIATION: return(TLS1_AD_NO_RENEGOTIATION); |
| case SSL_AD_UNSUPPORTED_EXTENSION: return(TLS1_AD_UNSUPPORTED_EXTENSION); |
| case SSL_AD_CERTIFICATE_UNOBTAINABLE: return(TLS1_AD_CERTIFICATE_UNOBTAINABLE); |
| case SSL_AD_UNRECOGNIZED_NAME: return(TLS1_AD_UNRECOGNIZED_NAME); |
| case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return(TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE); |
| case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return(TLS1_AD_BAD_CERTIFICATE_HASH_VALUE); |
| case SSL_AD_UNKNOWN_PSK_IDENTITY:return(TLS1_AD_UNKNOWN_PSK_IDENTITY); |
| case SSL_AD_INAPPROPRIATE_FALLBACK:return(SSL3_AD_INAPPROPRIATE_FALLBACK); |
| #if 0 /* not appropriate for TLS, not used for DTLS */ |
| case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE: return |
| (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE); |
| #endif |
| default: return(-1); |
| } |
| } |