blob: 836f0018f504a097ffb688b6f1404dd61eec6799 [file] [log] [blame]
#include <openssl/bn.h>
#if defined(OPENSSL_X86_64) && !defined(OPENSSL_WINDOWS)
#include "../internal.h"
/* x86_64 BIGNUM accelerator version 0.1, December 2002.
*
* Implemented by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
* project.
*
* Rights for redistribution and usage in source and binary forms are
* granted according to the OpenSSL license. Warranty of any kind is
* disclaimed.
*
* Q. Version 0.1? It doesn't sound like Andy, he used to assign real
* versions, like 1.0...
* A. Well, that's because this code is basically a quick-n-dirty
* proof-of-concept hack. As you can see it's implemented with
* inline assembler, which means that you're bound to GCC and that
* there might be enough room for further improvement.
*
* Q. Why inline assembler?
* A. x86_64 features own ABI which I'm not familiar with. This is
* why I decided to let the compiler take care of subroutine
* prologue/epilogue as well as register allocation. For reference.
* Win64 implements different ABI for AMD64, different from Linux.
*
* Q. How much faster does it get?
* A. 'apps/openssl speed rsa dsa' output with no-asm:
*
* sign verify sign/s verify/s
* rsa 512 bits 0.0006s 0.0001s 1683.8 18456.2
* rsa 1024 bits 0.0028s 0.0002s 356.0 6407.0
* rsa 2048 bits 0.0172s 0.0005s 58.0 1957.8
* rsa 4096 bits 0.1155s 0.0018s 8.7 555.6
* sign verify sign/s verify/s
* dsa 512 bits 0.0005s 0.0006s 2100.8 1768.3
* dsa 1024 bits 0.0014s 0.0018s 692.3 559.2
* dsa 2048 bits 0.0049s 0.0061s 204.7 165.0
*
* 'apps/openssl speed rsa dsa' output with this module:
*
* sign verify sign/s verify/s
* rsa 512 bits 0.0004s 0.0000s 2767.1 33297.9
* rsa 1024 bits 0.0012s 0.0001s 867.4 14674.7
* rsa 2048 bits 0.0061s 0.0002s 164.0 5270.0
* rsa 4096 bits 0.0384s 0.0006s 26.1 1650.8
* sign verify sign/s verify/s
* dsa 512 bits 0.0002s 0.0003s 4442.2 3786.3
* dsa 1024 bits 0.0005s 0.0007s 1835.1 1497.4
* dsa 2048 bits 0.0016s 0.0020s 620.4 504.6
*
* For the reference. IA-32 assembler implementation performs
* very much like 64-bit code compiled with no-asm on the same
* machine.
*/
#undef mul
#undef mul_add
#define asm __asm__
/*
* "m"(a), "+m"(r) is the way to favor DirectPath ยต-code;
* "g"(0) let the compiler to decide where does it
* want to keep the value of zero;
*/
#define mul_add(r, a, word, carry) \
do { \
register BN_ULONG high, low; \
asm("mulq %3" : "=a"(low), "=d"(high) : "a"(word), "m"(a) : "cc"); \
asm("addq %2,%0; adcq %3,%1" \
: "+r"(carry), "+d"(high) \
: "a"(low), "g"(0) \
: "cc"); \
asm("addq %2,%0; adcq %3,%1" \
: "+m"(r), "+d"(high) \
: "r"(carry), "g"(0) \
: "cc"); \
carry = high; \
} while (0)
#define mul(r, a, word, carry) \
do { \
register BN_ULONG high, low; \
asm("mulq %3" : "=a"(low), "=d"(high) : "a"(word), "g"(a) : "cc"); \
asm("addq %2,%0; adcq %3,%1" \
: "+r"(carry), "+d"(high) \
: "a"(low), "g"(0) \
: "cc"); \
(r) = carry, carry = high; \
} while (0)
#undef sqr
#define sqr(r0, r1, a) asm("mulq %2" : "=a"(r0), "=d"(r1) : "a"(a) : "cc");
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
BN_ULONG w) {
BN_ULONG c1 = 0;
if (num <= 0)
return (c1);
while (num & ~3) {
mul_add(rp[0], ap[0], w, c1);
mul_add(rp[1], ap[1], w, c1);
mul_add(rp[2], ap[2], w, c1);
mul_add(rp[3], ap[3], w, c1);
ap += 4;
rp += 4;
num -= 4;
}
if (num) {
mul_add(rp[0], ap[0], w, c1);
if (--num == 0)
return c1;
mul_add(rp[1], ap[1], w, c1);
if (--num == 0)
return c1;
mul_add(rp[2], ap[2], w, c1);
return c1;
}
return (c1);
}
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) {
BN_ULONG c1 = 0;
if (num <= 0)
return (c1);
while (num & ~3) {
mul(rp[0], ap[0], w, c1);
mul(rp[1], ap[1], w, c1);
mul(rp[2], ap[2], w, c1);
mul(rp[3], ap[3], w, c1);
ap += 4;
rp += 4;
num -= 4;
}
if (num) {
mul(rp[0], ap[0], w, c1);
if (--num == 0)
return c1;
mul(rp[1], ap[1], w, c1);
if (--num == 0)
return c1;
mul(rp[2], ap[2], w, c1);
}
return (c1);
}
void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) {
if (n <= 0)
return;
while (n & ~3) {
sqr(r[0], r[1], a[0]);
sqr(r[2], r[3], a[1]);
sqr(r[4], r[5], a[2]);
sqr(r[6], r[7], a[3]);
a += 4;
r += 8;
n -= 4;
}
if (n) {
sqr(r[0], r[1], a[0]);
if (--n == 0)
return;
sqr(r[2], r[3], a[1]);
if (--n == 0)
return;
sqr(r[4], r[5], a[2]);
}
}
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
BN_ULONG ret, waste;
asm("divq %4" : "=a"(ret), "=d"(waste) : "a"(l), "d"(h), "g"(d) : "cc");
return ret;
}
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
int n) {
BN_ULONG ret;
size_t i = 0;
if (n <= 0)
return 0;
asm(" subq %0,%0 \n" /* clear carry */
" jmp 1f \n"
".p2align 4 \n"
"1: movq (%4,%2,8),%0 \n"
" adcq (%5,%2,8),%0 \n"
" movq %0,(%3,%2,8) \n"
" lea 1(%2),%2 \n"
" loop 1b \n"
" sbbq %0,%0 \n"
: "=&r"(ret), "+c"(n), "+r"(i)
: "r"(rp), "r"(ap), "r"(bp)
: "cc");
return ret & 1;
}
#ifndef SIMICS
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
int n) {
BN_ULONG ret;
size_t i = 0;
if (n <= 0)
return 0;
asm(" subq %0,%0 \n" /* clear borrow */
" jmp 1f \n"
".p2align 4 \n"
"1: movq (%4,%2,8),%0 \n"
" sbbq (%5,%2,8),%0 \n"
" movq %0,(%3,%2,8) \n"
" lea 1(%2),%2 \n"
" loop 1b \n"
" sbbq %0,%0 \n"
: "=&r"(ret), "+c"(n), "+r"(i)
: "r"(rp), "r"(ap), "r"(bp)
: "cc");
return ret & 1;
}
#else
/* Simics 1.4<7 has buggy sbbq:-( */
#define BN_MASK2 0xffffffffffffffffL
BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) {
BN_ULONG t1, t2;
int c = 0;
if (n <= 0)
return ((BN_ULONG)0);
for (;;) {
t1 = a[0];
t2 = b[0];
r[0] = (t1 - t2 - c) & BN_MASK2;
if (t1 != t2)
c = (t1 < t2);
if (--n <= 0)
break;
t1 = a[1];
t2 = b[1];
r[1] = (t1 - t2 - c) & BN_MASK2;
if (t1 != t2)
c = (t1 < t2);
if (--n <= 0)
break;
t1 = a[2];
t2 = b[2];
r[2] = (t1 - t2 - c) & BN_MASK2;
if (t1 != t2)
c = (t1 < t2);
if (--n <= 0)
break;
t1 = a[3];
t2 = b[3];
r[3] = (t1 - t2 - c) & BN_MASK2;
if (t1 != t2)
c = (t1 < t2);
if (--n <= 0)
break;
a += 4;
b += 4;
r += 4;
}
return (c);
}
#endif
/* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
/* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
/* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0)
*/
#if 0
/* original macros are kept for reference purposes */
#define mul_add_c(a, b, c0, c1, c2) \
{ \
BN_ULONG ta = (a), tb = (b); \
t1 = ta * tb; \
t2 = BN_UMULT_HIGH(ta, tb); \
c0 += t1; \
t2 += (c0 < t1) ? 1 : 0; \
c1 += t2; \
c2 += (c1 < t2) ? 1 : 0; \
}
#define mul_add_c2(a, b, c0, c1, c2) \
{ \
BN_ULONG ta = (a), tb = (b), t0; \
t1 = BN_UMULT_HIGH(ta, tb); \
t0 = ta * tb; \
t2 = t1 + t1; \
c2 += (t2 < t1) ? 1 : 0; \
t1 = t0 + t0; \
t2 += (t1 < t0) ? 1 : 0; \
c0 += t1; \
t2 += (c0 < t1) ? 1 : 0; \
c1 += t2; \
c2 += (c1 < t2) ? 1 : 0; \
}
#else
#define mul_add_c(a, b, c0, c1, c2) \
do { \
asm("mulq %3" : "=a"(t1), "=d"(t2) : "a"(a), "m"(b) : "cc"); \
asm("addq %2,%0; adcq %3,%1" \
: "+r"(c0), "+d"(t2) \
: "a"(t1), "g"(0) \
: "cc"); \
asm("addq %2,%0; adcq %3,%1" \
: "+r"(c1), "+r"(c2) \
: "d"(t2), "g"(0) \
: "cc"); \
} while (0)
#define sqr_add_c(a, i, c0, c1, c2) \
do { \
asm("mulq %2" : "=a"(t1), "=d"(t2) : "a"(a[i]) : "cc"); \
asm("addq %2,%0; adcq %3,%1" \
: "+r"(c0), "+d"(t2) \
: "a"(t1), "g"(0) \
: "cc"); \
asm("addq %2,%0; adcq %3,%1" \
: "+r"(c1), "+r"(c2) \
: "d"(t2), "g"(0) \
: "cc"); \
} while (0)
#define mul_add_c2(a, b, c0, c1, c2) \
do { \
asm("mulq %3" : "=a"(t1), "=d"(t2) : "a"(a), "m"(b) : "cc"); \
asm("addq %0,%0; adcq %2,%1" : "+d"(t2), "+r"(c2) : "g"(0) : "cc"); \
asm("addq %0,%0; adcq %2,%1" : "+a"(t1), "+d"(t2) : "g"(0) : "cc"); \
asm("addq %2,%0; adcq %3,%1" \
: "+r"(c0), "+d"(t2) \
: "a"(t1), "g"(0) \
: "cc"); \
asm("addq %2,%0; adcq %3,%1" \
: "+r"(c1), "+r"(c2) \
: "d"(t2), "g"(0) \
: "cc"); \
} while (0)
#endif
#define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2)
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) {
BN_ULONG t1, t2;
BN_ULONG c1, c2, c3;
c1 = 0;
c2 = 0;
c3 = 0;
mul_add_c(a[0], b[0], c1, c2, c3);
r[0] = c1;
c1 = 0;
mul_add_c(a[0], b[1], c2, c3, c1);
mul_add_c(a[1], b[0], c2, c3, c1);
r[1] = c2;
c2 = 0;
mul_add_c(a[2], b[0], c3, c1, c2);
mul_add_c(a[1], b[1], c3, c1, c2);
mul_add_c(a[0], b[2], c3, c1, c2);
r[2] = c3;
c3 = 0;
mul_add_c(a[0], b[3], c1, c2, c3);
mul_add_c(a[1], b[2], c1, c2, c3);
mul_add_c(a[2], b[1], c1, c2, c3);
mul_add_c(a[3], b[0], c1, c2, c3);
r[3] = c1;
c1 = 0;
mul_add_c(a[4], b[0], c2, c3, c1);
mul_add_c(a[3], b[1], c2, c3, c1);
mul_add_c(a[2], b[2], c2, c3, c1);
mul_add_c(a[1], b[3], c2, c3, c1);
mul_add_c(a[0], b[4], c2, c3, c1);
r[4] = c2;
c2 = 0;
mul_add_c(a[0], b[5], c3, c1, c2);
mul_add_c(a[1], b[4], c3, c1, c2);
mul_add_c(a[2], b[3], c3, c1, c2);
mul_add_c(a[3], b[2], c3, c1, c2);
mul_add_c(a[4], b[1], c3, c1, c2);
mul_add_c(a[5], b[0], c3, c1, c2);
r[5] = c3;
c3 = 0;
mul_add_c(a[6], b[0], c1, c2, c3);
mul_add_c(a[5], b[1], c1, c2, c3);
mul_add_c(a[4], b[2], c1, c2, c3);
mul_add_c(a[3], b[3], c1, c2, c3);
mul_add_c(a[2], b[4], c1, c2, c3);
mul_add_c(a[1], b[5], c1, c2, c3);
mul_add_c(a[0], b[6], c1, c2, c3);
r[6] = c1;
c1 = 0;
mul_add_c(a[0], b[7], c2, c3, c1);
mul_add_c(a[1], b[6], c2, c3, c1);
mul_add_c(a[2], b[5], c2, c3, c1);
mul_add_c(a[3], b[4], c2, c3, c1);
mul_add_c(a[4], b[3], c2, c3, c1);
mul_add_c(a[5], b[2], c2, c3, c1);
mul_add_c(a[6], b[1], c2, c3, c1);
mul_add_c(a[7], b[0], c2, c3, c1);
r[7] = c2;
c2 = 0;
mul_add_c(a[7], b[1], c3, c1, c2);
mul_add_c(a[6], b[2], c3, c1, c2);
mul_add_c(a[5], b[3], c3, c1, c2);
mul_add_c(a[4], b[4], c3, c1, c2);
mul_add_c(a[3], b[5], c3, c1, c2);
mul_add_c(a[2], b[6], c3, c1, c2);
mul_add_c(a[1], b[7], c3, c1, c2);
r[8] = c3;
c3 = 0;
mul_add_c(a[2], b[7], c1, c2, c3);
mul_add_c(a[3], b[6], c1, c2, c3);
mul_add_c(a[4], b[5], c1, c2, c3);
mul_add_c(a[5], b[4], c1, c2, c3);
mul_add_c(a[6], b[3], c1, c2, c3);
mul_add_c(a[7], b[2], c1, c2, c3);
r[9] = c1;
c1 = 0;
mul_add_c(a[7], b[3], c2, c3, c1);
mul_add_c(a[6], b[4], c2, c3, c1);
mul_add_c(a[5], b[5], c2, c3, c1);
mul_add_c(a[4], b[6], c2, c3, c1);
mul_add_c(a[3], b[7], c2, c3, c1);
r[10] = c2;
c2 = 0;
mul_add_c(a[4], b[7], c3, c1, c2);
mul_add_c(a[5], b[6], c3, c1, c2);
mul_add_c(a[6], b[5], c3, c1, c2);
mul_add_c(a[7], b[4], c3, c1, c2);
r[11] = c3;
c3 = 0;
mul_add_c(a[7], b[5], c1, c2, c3);
mul_add_c(a[6], b[6], c1, c2, c3);
mul_add_c(a[5], b[7], c1, c2, c3);
r[12] = c1;
c1 = 0;
mul_add_c(a[6], b[7], c2, c3, c1);
mul_add_c(a[7], b[6], c2, c3, c1);
r[13] = c2;
c2 = 0;
mul_add_c(a[7], b[7], c3, c1, c2);
r[14] = c3;
r[15] = c1;
}
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) {
BN_ULONG t1, t2;
BN_ULONG c1, c2, c3;
c1 = 0;
c2 = 0;
c3 = 0;
mul_add_c(a[0], b[0], c1, c2, c3);
r[0] = c1;
c1 = 0;
mul_add_c(a[0], b[1], c2, c3, c1);
mul_add_c(a[1], b[0], c2, c3, c1);
r[1] = c2;
c2 = 0;
mul_add_c(a[2], b[0], c3, c1, c2);
mul_add_c(a[1], b[1], c3, c1, c2);
mul_add_c(a[0], b[2], c3, c1, c2);
r[2] = c3;
c3 = 0;
mul_add_c(a[0], b[3], c1, c2, c3);
mul_add_c(a[1], b[2], c1, c2, c3);
mul_add_c(a[2], b[1], c1, c2, c3);
mul_add_c(a[3], b[0], c1, c2, c3);
r[3] = c1;
c1 = 0;
mul_add_c(a[3], b[1], c2, c3, c1);
mul_add_c(a[2], b[2], c2, c3, c1);
mul_add_c(a[1], b[3], c2, c3, c1);
r[4] = c2;
c2 = 0;
mul_add_c(a[2], b[3], c3, c1, c2);
mul_add_c(a[3], b[2], c3, c1, c2);
r[5] = c3;
c3 = 0;
mul_add_c(a[3], b[3], c1, c2, c3);
r[6] = c1;
r[7] = c2;
}
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) {
BN_ULONG t1, t2;
BN_ULONG c1, c2, c3;
c1 = 0;
c2 = 0;
c3 = 0;
sqr_add_c(a, 0, c1, c2, c3);
r[0] = c1;
c1 = 0;
sqr_add_c2(a, 1, 0, c2, c3, c1);
r[1] = c2;
c2 = 0;
sqr_add_c(a, 1, c3, c1, c2);
sqr_add_c2(a, 2, 0, c3, c1, c2);
r[2] = c3;
c3 = 0;
sqr_add_c2(a, 3, 0, c1, c2, c3);
sqr_add_c2(a, 2, 1, c1, c2, c3);
r[3] = c1;
c1 = 0;
sqr_add_c(a, 2, c2, c3, c1);
sqr_add_c2(a, 3, 1, c2, c3, c1);
sqr_add_c2(a, 4, 0, c2, c3, c1);
r[4] = c2;
c2 = 0;
sqr_add_c2(a, 5, 0, c3, c1, c2);
sqr_add_c2(a, 4, 1, c3, c1, c2);
sqr_add_c2(a, 3, 2, c3, c1, c2);
r[5] = c3;
c3 = 0;
sqr_add_c(a, 3, c1, c2, c3);
sqr_add_c2(a, 4, 2, c1, c2, c3);
sqr_add_c2(a, 5, 1, c1, c2, c3);
sqr_add_c2(a, 6, 0, c1, c2, c3);
r[6] = c1;
c1 = 0;
sqr_add_c2(a, 7, 0, c2, c3, c1);
sqr_add_c2(a, 6, 1, c2, c3, c1);
sqr_add_c2(a, 5, 2, c2, c3, c1);
sqr_add_c2(a, 4, 3, c2, c3, c1);
r[7] = c2;
c2 = 0;
sqr_add_c(a, 4, c3, c1, c2);
sqr_add_c2(a, 5, 3, c3, c1, c2);
sqr_add_c2(a, 6, 2, c3, c1, c2);
sqr_add_c2(a, 7, 1, c3, c1, c2);
r[8] = c3;
c3 = 0;
sqr_add_c2(a, 7, 2, c1, c2, c3);
sqr_add_c2(a, 6, 3, c1, c2, c3);
sqr_add_c2(a, 5, 4, c1, c2, c3);
r[9] = c1;
c1 = 0;
sqr_add_c(a, 5, c2, c3, c1);
sqr_add_c2(a, 6, 4, c2, c3, c1);
sqr_add_c2(a, 7, 3, c2, c3, c1);
r[10] = c2;
c2 = 0;
sqr_add_c2(a, 7, 4, c3, c1, c2);
sqr_add_c2(a, 6, 5, c3, c1, c2);
r[11] = c3;
c3 = 0;
sqr_add_c(a, 6, c1, c2, c3);
sqr_add_c2(a, 7, 5, c1, c2, c3);
r[12] = c1;
c1 = 0;
sqr_add_c2(a, 7, 6, c2, c3, c1);
r[13] = c2;
c2 = 0;
sqr_add_c(a, 7, c3, c1, c2);
r[14] = c3;
r[15] = c1;
}
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) {
BN_ULONG t1, t2;
BN_ULONG c1, c2, c3;
c1 = 0;
c2 = 0;
c3 = 0;
sqr_add_c(a, 0, c1, c2, c3);
r[0] = c1;
c1 = 0;
sqr_add_c2(a, 1, 0, c2, c3, c1);
r[1] = c2;
c2 = 0;
sqr_add_c(a, 1, c3, c1, c2);
sqr_add_c2(a, 2, 0, c3, c1, c2);
r[2] = c3;
c3 = 0;
sqr_add_c2(a, 3, 0, c1, c2, c3);
sqr_add_c2(a, 2, 1, c1, c2, c3);
r[3] = c1;
c1 = 0;
sqr_add_c(a, 2, c2, c3, c1);
sqr_add_c2(a, 3, 1, c2, c3, c1);
r[4] = c2;
c2 = 0;
sqr_add_c2(a, 3, 2, c3, c1, c2);
r[5] = c3;
c3 = 0;
sqr_add_c(a, 3, c1, c2, c3);
r[6] = c1;
r[7] = c2;
}
#endif /* defined(OPENSSL_X86_64) && !defined(OPENSSL_WINDOWS) */