blob: ce40aa5c78a8ae1a504b7ab404e54eda4a676371 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#ifndef OPENSSL_HEADER_EVP_H
#define OPENSSL_HEADER_EVP_H
#include <openssl/base.h>
#include <openssl/stack.h>
/* OpenSSL included digest and cipher functions in this header so we include
* them for users that still expect that. */
#include <openssl/cipher.h>
#include <openssl/digest.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/thread.h>
#if defined(__cplusplus)
extern "C" {
#endif
/* EVP abstracts over public/private key algorithms. */
/* Public key objects. */
/* EVP_PKEY_new creates a new, empty public-key object and returns it or NULL
* on allocation failure. */
EVP_PKEY *EVP_PKEY_new();
/* EVP_PKEY_free frees all data referenced by |pkey| and then frees |pkey|
* itself. */
void EVP_PKEY_free(EVP_PKEY *pkey);
/* EVP_PKEY_cmp compares |a| and |b| and returns one if they are equal, zero if
* not and a negative number on error.
*
* WARNING: this differs from the traditional return value of a "cmp"
* function. */
int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b);
/* EVP_PKEY_dup adds one to the reference count of |pkey| and returns
* |pkey|. */
EVP_PKEY *EVP_PKEY_dup(EVP_PKEY *pkey);
/* EVP_PKEY_copy_parameters sets the parameters of |to| to equal the parameters
* of |from|. It returns one on success and zero on error. */
int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from);
/* EVP_PKEY_missing_parameters returns one if |pkey| is missing needed
* parameters or zero if not, or if the algorithm doesn't take parameters. */
int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey);
/* EVP_PKEY_size returns the "size", in bytes, of |pkey|. For example, for an
* RSA key this returns the number of bytes needed to represent the modulus. */
int EVP_PKEY_size(const EVP_PKEY *pkey);
/* EVP_PKEY_bits returns the "size", in bits, of |pkey|. For example, for an
* RSA key, this returns the bit length of the modulus. */
int EVP_PKEY_bits(EVP_PKEY *pkey);
/* EVP_PKEY_id returns the type of |pkey|, which is one of the |EVP_PKEY_*|
* values. */
int EVP_PKEY_id(const EVP_PKEY *pkey);
/* EVP_PKEY_type returns a canonicalised form of |NID|. For example,
* |EVP_PKEY_RSA2| will be turned into |EVP_PKEY_RSA|. */
int EVP_PKEY_type(int nid);
/* EVP_PKEY_new_mac_key allocates a fresh |EVP_PKEY| of the given type (e.g.
* |EVP_PKEY_HMAC|), sets |mac_key| as the MAC key and "generates" a new key,
* suitable for signing. It returns the fresh |EVP_PKEY|, or NULL on error. */
EVP_PKEY *EVP_PKEY_new_mac_key(int type, ENGINE *engine, const uint8_t *mac_key,
size_t mac_key_len);
/* Getting and setting concrete public key types.
*
* The following functions get and set the underlying public key in an
* |EVP_PKEY| object. The |set1| functions take a additional reference to the
* underlying key and return one on success or zero on error. The |assign|
* functions adopt the caller's reference. The getters return a fresh reference
* to the underlying object. */
int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key);
int EVP_PKEY_assign_RSA(EVP_PKEY *pkey, RSA *key);
RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey);
int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, struct dsa_st *key);
int EVP_PKEY_assign_DSA(EVP_PKEY *pkey, DSA *key);
struct dsa_st *EVP_PKEY_get1_DSA(EVP_PKEY *pkey);
int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, struct ec_key_st *key);
int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey, EC_KEY *key);
struct ec_key_st *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey);
int EVP_PKEY_set1_DH(EVP_PKEY *pkey, struct dh_st *key);
int EVP_PKEY_assign_DH(EVP_PKEY *pkey, DH *key);
struct dh_st *EVP_PKEY_get1_DH(EVP_PKEY *pkey);
#define EVP_PKEY_NONE NID_undef
#define EVP_PKEY_RSA NID_rsaEncryption
#define EVP_PKEY_RSA2 NID_rsa
#define EVP_PKEY_DSA NID_dsa
#define EVP_PKEY_DH NID_dhKeyAgreement
#define EVP_PKEY_DHX NID_dhpublicnumber
#define EVP_PKEY_EC NID_X9_62_id_ecPublicKey
#define EVP_PKEY_HMAC NID_hmac
/* EVP_PKEY_assign sets the underlying key of |pkey| to |key|, which must be of
* the given type. The |type| argument should be one of the |EVP_PKEY_*|
* values. */
int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key);
/* EVP_PKEY_set_type sets the type of |pkey| to |type|, which should be one of
* the |EVP_PKEY_*| values. It returns one if sucessful or zero otherwise. If
* |pkey| is NULL, it simply reports whether the type is known. */
int EVP_PKEY_set_type(EVP_PKEY *pkey, int type);
/* EVP_PKEY_cmp_parameters compares the parameters of |a| and |b|. It returns
* one if they match, zero if not, or a negative number of on error.
*
* WARNING: the return value differs from the usual return value convention. */
int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b);
/* ASN.1 functions */
/* d2i_PrivateKey parses an ASN.1, DER-encoded, private key from |len| bytes at
* |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in
* |*out|. If |*out| is already non-NULL on entry then the result is written
* directly into |*out|, otherwise a fresh |EVP_PKEY| is allocated. On
* successful exit, |*inp| is advanced past the DER structure. It returns the
* result or NULL on error. */
EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp,
long len);
/* d2i_AutoPrivateKey acts the same as |d2i_PrivateKey|, but detects the type
* of the private key. */
EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len);
/* i2d_PrivateKey marshals a private key from |key| to an ASN.1, DER
* structure. If |outp| is not NULL then the result is written to |*outp| and
* |*outp| is advanced just past the output. It returns the number of bytes in
* the result, whether written or not, or a negative value on error. */
int i2d_PrivateKey(const EVP_PKEY *key, uint8_t **outp);
/* i2d_PublicKey marshals a public key from |key| to an ASN.1, DER
* structure. If |outp| is not NULL then the result is written to |*outp| and
* |*outp| is advanced just past the output. It returns the number of bytes in
* the result, whether written or not, or a negative value on error. */
int i2d_PublicKey(EVP_PKEY *key, uint8_t **outp);
/* Signing */
/* EVP_DigestSignInit sets up |ctx| for a signing operation with |type| and
* |pkey|. The |ctx| argument must have been initialised with
* |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing
* operation will be written to |*pctx|; this can be used to set alternative
* signing options.
*
* It returns one on success, or <= 0 on error. WARNING: this differs from the
* usual OpenSSL return convention. */
int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, const EVP_MD *type,
ENGINE *e, EVP_PKEY *pkey);
/* EVP_DigestSignUpdate appends |len| bytes from |data| to the data which will
* be signed in |EVP_DigestSignFinal|. It returns one on success and zero
* otherwise. */
int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *data, size_t len);
/* EVP_DigestSignFinal signs the data that has been included by one or more
* calls to |EVP_DigestSignUpdate|. If |out_sig| is NULL then |*out_sig_len| is
* set to the maximum number of output bytes. Otherwise, on entry,
* |*out_sig_len| must contain the length of the |out_sig| buffer. If the call
* is successful, the signature is written to |out_sig| and |*out_sig_len| is
* set to its length.
*
* It returns one on success and <= 0 on error. WARNING: this differs from the
* usual, OpenSSL return value convention. */
int EVP_DigestSignFinal(EVP_MD_CTX *ctx, uint8_t *out_sig, size_t *out_sig_len);
/* Verifying */
/* EVP_DigestVerifyInit sets up |ctx| for a signature verification operation
* with |type| and |pkey|. The |ctx| argument must have been initialised with
* |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing
* operation will be written to |*pctx|; this can be used to set alternative
* signing options.
*
* It returns one on success, or <= 0 on error. WARNING: this differs from the
* usual OpenSSL return convention. */
int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey);
/* EVP_DigestVerifyUpdate appends |len| bytes from |data| to the data which
* will be verified by |EVP_DigestVerifyFinal|. It returns one on success and
* zero otherwise. */
int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *data, size_t len);
/* EVP_DigestVerifyFinal verifies that |sig_len| bytes of |sig| are a valid
* signature for the data that has been included by one or more calls to
* |EVP_DigestVerifyUpdate|.
*
* It returns one on success and <= 0 on error. WARNING: this differs from the
* usual return value convention. */
int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig,
size_t sig_len);
/* Signing (old functions) */
/* EVP_SignInit_ex configures |ctx|, which must already have been initialised,
* for a fresh signing operation using the hash function |type|. It returns one
* on success and zero otherwise.
*
* (In order to initialise |ctx|, either obtain it initialised with
* |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) */
int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
/* EVP_SignInit is a deprecated version of |EVP_SignInit_ex|.
*
* TODO(fork): remove. */
int EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type);
/* EVP_SignUpdate appends |len| bytes from |data| to the data which will be
* signed in |EVP_SignFinal|. */
int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *data, size_t len);
/* EVP_SignFinal signs the data that has been included by one or more calls to
* |EVP_SignUpdate|, using the key |pkey|, and writes it to |sig|. On entry,
* |sig| must point to at least |EVP_PKEY_size(pkey)| bytes of space. The
* actual size of the signature is written to |*out_sig_len|.
*
* It returns one on success and zero otherwise.
*
* It does not modify |ctx|, thus it's possible to continue to use |ctx| in
* order to sign a longer message. */
int EVP_SignFinal(const EVP_MD_CTX *ctx, uint8_t *sig,
unsigned int *out_sig_len, EVP_PKEY *pkey);
/* Verifying (old functions) */
/* EVP_VerifyInit_ex configures |ctx|, which must already have been
* initialised, for a fresh signature verification operation using the hash
* function |type|. It returns one on success and zero otherwise.
*
* (In order to initialise |ctx|, either obtain it initialised with
* |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) */
int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
/* EVP_VerifyInit is a deprecated version of |EVP_VerifyInit_ex|.
*
* TODO(fork): remove. */
int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type);
/* EVP_VerifyUpdate appends |len| bytes from |data| to the data which will be
* signed in |EVP_VerifyFinal|. */
int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *data, size_t len);
/* EVP_VerifyFinal verifies that |sig_len| bytes of |sig| are a valid
* signature, by |pkey|, for the data that has been included by one or more
* calls to |EVP_VerifyUpdate|.
*
* It returns one on success and zero otherwise.
*
* It does not modify |ctx|, thus it's possible to continue to use |ctx| in
* order to sign a longer message. */
int EVP_VerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, size_t sig_len,
EVP_PKEY *pkey);
/* Printing */
/* EVP_PKEY_print_public prints a textual representation of the public key in
* |pkey| to |out|. Returns one on success or zero otherwise. */
int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx);
/* EVP_PKEY_print_public prints a textual representation of the private key in
* |pkey| to |out|. Returns one on success or zero otherwise. */
int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx);
/* EVP_PKEY_print_public prints a textual representation of the parameters in
* |pkey| to |out|. Returns one on success or zero otherwise. */
int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx);
/* Password stretching.
*
* Password stretching functions take a low-entropy password and apply a slow
* function that results in a key suitable for use in symmetric
* cryptography. */
/* PKCS5_PBKDF2_HMAC computes |iterations| iterations of PBKDF2 of |password|
* and |salt|, using |digest|, and outputs |key_len| bytes to |out_key|. It
* returns one on success and zero on error. */
int PKCS5_PBKDF2_HMAC(const char *password, int password_len,
const uint8_t *salt, size_t salt_len, unsigned iterations,
const EVP_MD *digest, size_t key_len, uint8_t *out_key);
/* PKCS5_PBKDF2_HMAC_SHA1 is the same as PKCS5_PBKDF2_HMAC, but with |digest|
* fixed to |EVP_sha1|. */
int PKCS5_PBKDF2_HMAC_SHA1(const char *password, int password_len,
const uint8_t *salt, size_t salt_len,
unsigned iterations, size_t key_len,
uint8_t *out_key);
/* Public key contexts.
*
* |EVP_PKEY_CTX| objects hold the context of an operation (e.g. signing or
* encrypting) that uses a public key. */
/* EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for use with |pkey|. It
* returns the context or NULL on error. */
EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e);
/* EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for a key of type |id|
* (e.g. |EVP_PKEY_HMAC|). This can be used for key generation where
* |EVP_PKEY_CTX_new| can't be used because there isn't an |EVP_PKEY| to pass
* it. It returns the context or NULL on error. */
EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e);
/* EVP_KEY_CTX_free frees |ctx| and the data it owns. */
void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_CTX_dup allocates a fresh |EVP_PKEY_CTX| and sets it equal to the
* state of |ctx|. It returns the fresh |EVP_PKEY_CTX| or NULL on error. */
EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_CTX_get0_pkey returns the |EVP_PKEY| associated with |ctx|. */
EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_CTX_set_app_data sets an opaque pointer on |ctx|. */
void EVP_PKEY_CTX_set_app_data(EVP_PKEY_CTX *ctx, void *data);
/* EVP_PKEY_CTX_get_app_data returns the opaque pointer from |ctx| that was
* previously set with |EVP_PKEY_CTX_set_app_data|, or NULL if none has been
* set. */
void *EVP_PKEY_CTX_get_app_data(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_CTX_ctrl performs |cmd| on |ctx|. The |keytype| and |optype|
* arguments can be -1 to specify that any type and operation are acceptable,
* otherwise |keytype| must match the type of |ctx| and the bits of |optype|
* must intersect the operation flags set on |ctx|.
*
* The |p1| and |p2| arguments depend on the value of |cmd|.
*
* It returns -2 if |cmd| is not recognised, -1 on error or a |cmd| specific
* value otherwise. */
int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype, int cmd,
int p1, void *p2);
/* EVP_PKEY_sign_init initialises an |EVP_PKEY_CTX| for a signing operation. It
* should be called before |EVP_PKEY_sign|.
*
* It returns one on success or <= 0 on error. WARNING: this differs from the
* usual return value convention. */
int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_sign signs |data_len| bytes from |data| using |ctx|. If |sig| is
* NULL, the size of the signature is written to |out_sig_len|. Otherwise,
* |*sig_len| must contain the number of bytes of space available at |sig|. If
* sufficient, the signature will be written to |sig| and |*sig_len| updated
* with the true length.
*
* It returns one on success or zero on error. (Note: this differs from
* OpenSSL, which can also return negative values to indicate an error. ) */
int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *sig_len,
const uint8_t *data, size_t data_len);
/* EVP_PKEY_verify_init initialises an |EVP_PKEY_CTX| for a signature
* verification operation. It should be called before |EVP_PKEY_verify|.
*
* It returns one on success or <= 0 on error. WARNING: this differs from the
* usual return value convention. */
int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_verify verifies that |sig_len| bytes from |sig| are a valid signature
* for |data|.
*
* It returns one on success or zero on error. (Note: this differs from
* OpenSSL, which can also return negative values to indicate an error. ) */
int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t sig_len,
const uint8_t *data, size_t data_len);
/* EVP_PKEY_encrypt_init initialises an |EVP_PKEY_CTX| for an encryption
* operation. It should be called before |EVP_PKEY_encrypt|.
*
* It returns one on success or <= 0 on error. WARNING: this differs from the
* usual return value convention. */
int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_encrypt encrypts |in_len| bytes from |in| and writes it to |out|.
* TODO(fork): need more details on |out_len|.
*
* It returns one on success or <= 0 on error. (Note: this differs from
* OpenSSL, which can also return negative values to indicate an error. ) */
int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len,
const uint8_t *in, size_t in_len);
/* EVP_PKEY_decrypt_init initialises an |EVP_PKEY_CTX| for a decryption
* operation. It should be called before |EVP_PKEY_decrypt|.
*
* It returns one on success or <= 0 on error. WARNING: this differs from the
* usual return value convention. */
int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_decrypt decrypts |in_len| bytes from |in|, writes it to |out| and
* sets |*outlen| to the number of bytes written.
*
* It returns one on success or <= 0 on error. (Note: this differs from
* OpenSSL, which can also return negative values to indicate an error. ) */
int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len,
const uint8_t *in, size_t in_len);
/* EVP_PKEY_derive_init initialises an |EVP_PKEY_CTX| for a key derivation
* operation. It should be called before |EVP_PKEY_derive_set_peer| and
* |EVP_PKEY_derive|.
*
* It returns one on success or <= 0 on error. WARNING: this differs from the
* usual return value convention. */
int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_derive_set_peer sets the peer's key to be used for key derivation
* by |ctx| to |peer|. It should be called after |EVP_PKEY_derive_init|. (For
* example, this is used to set the peer's key in (EC)DH.) It returns one on
* success and <= 0 on error. WARNING: this differs from the usual return value
* convention. */
int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer);
/* EVP_PKEY_derive derives a shared key between the two keys configured in
* |ctx|. If |key| is non-NULL then, on entry, |out_key_len| must contain the
* amount of space at |key|. If sufficient then the shared key will be written
* to |key| and |*out_key_len| will be set to the length. If |key| is NULL then
* |out_key_len| will be set the length.
*
* It returns one on success and <= 0 on error. WARNING: this differs from the
* usual return convention. */
int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, uint8_t *key, size_t *out_key_len);
/* EVP_PKEY_keygen_init initialises an |EVP_PKEY_CTX| for a key generation
* operation. It should be called before |EVP_PKEY_keygen|.
*
* It returns one on success or <= 0 on error. WARNING: this differs from the
* usual return value convention. */
int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx);
/* EVP_PKEY_keygen performs a key generation operation using the values from
* |ctx| and sets |*ppkey| to a fresh |EVP_PKEY| containing the resulting key.
* It returns one on success or <= 0 on error. WARNING: this differs from the
* normal return value convention. */
int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey);
/* EVP_PKEY_CTX_ctrl operations.
*
* These values are passed as the |cmd| argument to
* EVP_PKEY_CTX_ctrl */
/* Generic. */
/* EVP_PKEY_CTX_set_signature_md sets |md| as the digest to be used in a
* signature operation. It returns one on success or otherwise on error. See
* the return values of |EVP_PKEY_CTX_ctrl| for details. */
int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
/* EVP_PKEY_CTX_get_signature_md sets |*out_md| to the digest to be used in a
* signature operation. It returns one on success or otherwise on error. See
* the return values of |EVP_PKEY_CTX_ctrl| for details. */
int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md);
/* EVP_PKEY_CTRL_DIGESTINIT is an internal value. It's called by
* EVP_DigestInit_ex to signal the |EVP_PKEY| that a digest operation is
* starting. */
#define EVP_PKEY_CTRL_DIGESTINIT 3
/* EVP_PKEY_CTRL_PEER_KEY is called with different values of |p1|:
* 0: Is called from |EVP_PKEY_derive_set_peer| and |p2| contains a peer key.
* If the return value is <= 0, the key is rejected.
* 1: Is called at the end of |EVP_PKEY_derive_set_peer| and |p2| contains a
* peer key. If the return value is <= 0, the key is rejected.
* 2: Is called with |p2| == NULL to test whether the peer's key was used.
* (EC)DH always return one in this case.
* 3: Is called with |p2| == NULL to set whether the peer's key was used.
* (EC)DH always return one in this case. This was only used for GOST. */
#define EVP_PKEY_CTRL_PEER_KEY 4
/* EVP_PKEY_CTRL_SET_MAC_KEY sets a MAC key. For example, this can be done an
* |EVP_PKEY_CTX| prior to calling |EVP_PKEY_keygen| in order to generate an
* HMAC |EVP_PKEY| with the given key. It returns one on success and zero on
* error. */
#define EVP_PKEY_CTRL_SET_MAC_KEY 5
/* EVP_PKEY_ALG_CTRL is the base value from which key-type specific ctrl
* commands are numbered. */
#define EVP_PKEY_ALG_CTRL 0x1000
/* RSA specific control functions. */
/* EVP_PKEY_CTX_set_rsa_padding sets the padding type to use. It should be one
* of the |RSA_*_PADDING| values. Returns one on success or another value on
* error. See |EVP_PKEY_CTX_ctrl| for the other return values, which are
* non-standard. */
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding);
/* EVP_PKEY_CTX_get_rsa_padding sets |*out_padding| to the current padding
* value, which is one of the |RSA_*_PADDING| values. Returns one on success or
* another value on error. See |EVP_PKEY_CTX_ctrl| for the other return values,
* which are non-standard. */
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding);
/* EVP_PKEY_CTX_set_rsa_pss_saltlen sets the length of the salt in a PSS-padded
* signature. A value of -1 cause the salt to be the same length as the digest
* in the signature. A value of -2 causes the salt to be the maximum length
* that will fit. Otherwise the value gives the size of the salt in bytes.
*
* Returns one on success or another value on error. See |EVP_PKEY_CTX_ctrl|
* for the other return values, which are non-standard. */
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len);
/* EVP_PKEY_CTX_get_rsa_pss_saltlen sets |*out_salt_len| to the salt length of
* a PSS-padded signature. See the documentation for
* |EVP_PKEY_CTX_set_rsa_pss_saltlen| for details of the special values that it
* can take.
*
* Returns one on success or another value on error. See |EVP_PKEY_CTX_ctrl|
* for the other return values, which are non-standard. */
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len);
/* EVP_PKEY_CTX_set_rsa_keygen_bits sets the size of the desired RSA modulus,
* in bits, for key generation. Returns one on success or another value on
* error. See |EVP_PKEY_CTX_ctrl| for the other return values, which are
* non-standard. */
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits);
/* EVP_PKEY_CTX_set_rsa_keygen_pubexp sets |e| as the public exponent for key
* generation. Returns one on success or another value on error. See
* |EVP_PKEY_CTX_ctrl| for the other return values, which are non-standard. */
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e);
/* EVP_PKEY_CTX_set_rsa_oaep_md sets |md| as the digest used in OAEP padding.
* Returns one on success or another value on error. See |EVP_PKEY_CTX_ctrl|
* for the other return values, which are non-standard. */
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
/* EVP_PKEY_CTX_get_rsa_oaep_md sets |*out_md| to the digest function used in
* OAEP padding. Returns one on success or another value on error. See
* |EVP_PKEY_CTX_ctrl| for the other return values, which are non-standard. */
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md);
/* EVP_PKEY_CTX_set_rsa_mgf1_md sets |md| as the digest used in MGF1. Returns
* one on success or another value on error. See |EVP_PKEY_CTX_ctrl| for the
* other return values, which are non-standard. */
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
/* EVP_PKEY_CTX_get_rsa_mgf1_md sets |*out_md| to the digest function used in
* MGF1. Returns one on success or another value on error. See
* |EVP_PKEY_CTX_ctrl| for the other return values, which are non-standard. */
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md);
/* EVP_PKEY_CTX_set0_rsa_oaep_label sets |label_len| bytes from |label| as the
* label used in OAEP. DANGER: this call takes ownership of |label| and will
* call |free| on it when |ctx| is destroyed.
*
* Returns one on success or another value on error. See |EVP_PKEY_CTX_ctrl|
* for the other return values, which are non-standard. */
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, const uint8_t *label,
size_t label_len);
/* EVP_PKEY_CTX_get0_rsa_oaep_label sets |*out_label| to point to the internal
* buffer containing the OAEP label (which may be NULL) and returns the length
* of the label or a negative value on error. */
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx,
const uint8_t **out_label);
/* EC specific */
#define EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID (EVP_PKEY_ALG_CTRL + 1)
#define EVP_PKEY_CTRL_EC_PARAM_ENC (EVP_PKEY_ALG_CTRL + 2)
#define EVP_PKEY_CTRL_EC_ECDH_COFACTOR (EVP_PKEY_ALG_CTRL + 3)
#define EVP_PKEY_CTRL_EC_KDF_TYPE (EVP_PKEY_ALG_CTRL + 4)
#define EVP_PKEY_CTRL_EC_KDF_MD (EVP_PKEY_ALG_CTRL + 5)
#define EVP_PKEY_CTRL_GET_EC_KDF_MD (EVP_PKEY_ALG_CTRL + 6)
#define EVP_PKEY_CTRL_EC_KDF_OUTLEN (EVP_PKEY_ALG_CTRL + 7)
#define EVP_PKEY_CTRL_GET_EC_KDF_OUTLEN (EVP_PKEY_ALG_CTRL + 8)
#define EVP_PKEY_CTRL_EC_KDF_UKM (EVP_PKEY_ALG_CTRL + 9)
#define EVP_PKEY_CTRL_GET_EC_KDF_UKM (EVP_PKEY_ALG_CTRL + 10)
#define EVP_PKEY_ECDH_KDF_NONE 1
#define EVP_PKEY_ECDH_KDF_X9_62 2
/* PKEY ctrl commands.
*
* These values are passed as the |op| argument to
* EVP_PKEY_ASN1_METHOD.pkey_ctrl. */
/* ASN1_PKEY_CTRL_DEFAULT_MD_NID expects |arg2| to be an |int*| and sets the
* pointed at int to be the NID of the default hash function used in
* signing. */
#define ASN1_PKEY_CTRL_DEFAULT_MD_NID 0x3
/* Private functions */
/* OpenSSL_add_all_algorithms does nothing. */
void OpenSSL_add_all_algorithms();
/* EVP_cleanup does nothing. */
void EVP_cleanup();
/* EVP_PKEY_asn1_find returns the ASN.1 method table for the given |nid|, which
* should be one of the |EVP_PKEY_*| values. It returns NULL if |nid| is
* unknown. */
const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find(ENGINE **pengine, int nid);
/* TODO(fork): move to PEM? */
const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find_str(ENGINE **pengine,
const char *name,
size_t len);
struct evp_pkey_st {
int references;
/* type contains one of the EVP_PKEY_* values or NID_undef and determines
* which element (if any) of the |pkey| union is valid. */
int type;
/* TODO(fork): document */
int save_type;
union {
char *ptr;
struct rsa_st *rsa; /* RSA */
struct dsa_st *dsa; /* DSA */
struct dh_st *dh; /* DH */
struct ec_key_st *ec; /* ECC */
} pkey;
ENGINE *engine;
/* TODO(fork): document */
int save_parameters;
/* ameth contains a pointer to a method table that contains many ASN.1
* methods for the key type. */
const EVP_PKEY_ASN1_METHOD *ameth;
/* TODO(fork): document; */
STACK_OF(X509_ATTRIBUTE) * attributes; /* [ 0 ] */
} /* EVP_PKEY */;
#if defined(__cplusplus)
} /* extern C */
#endif
#define EVP_F_rsa_item_verify 100
#define EVP_F_do_sigver_init 101
#define EVP_F_eckey_priv_decode 102
#define EVP_F_pkey_ec_sign 103
#define EVP_F_EVP_PKEY_sign_init 104
#define EVP_F_d2i_PrivateKey 105
#define EVP_F_rsa_priv_encode 106
#define EVP_F_rsa_mgf1_to_md 107
#define EVP_F_EVP_PKEY_get1_DH 108
#define EVP_F_EVP_PKEY_sign 109
#define EVP_F_old_ec_priv_decode 110
#define EVP_F_EVP_PKEY_get1_RSA 111
#define EVP_F_pkey_ec_ctrl 112
#define EVP_F_evp_pkey_ctx_new 113
#define EVP_F_EVP_PKEY_verify 114
#define EVP_F_EVP_PKEY_encrypt 115
#define EVP_F_EVP_PKEY_keygen 116
#define EVP_F_eckey_type2param 117
#define EVP_F_eckey_priv_encode 118
#define EVP_F_do_EC_KEY_print 119
#define EVP_F_pkey_ec_keygen 120
#define EVP_F_EVP_PKEY_encrypt_init 121
#define EVP_F_pkey_rsa_ctrl 122
#define EVP_F_rsa_priv_decode 123
#define EVP_F_rsa_pss_to_ctx 124
#define EVP_F_EVP_PKEY_get1_EC_KEY 125
#define EVP_F_EVP_PKEY_verify_init 126
#define EVP_F_EVP_PKEY_derive_init 127
#define EVP_F_eckey_param2type 128
#define EVP_F_eckey_pub_decode 129
#define EVP_F_d2i_AutoPrivateKey 130
#define EVP_F_eckey_param_decode 131
#define EVP_F_EVP_PKEY_new 132
#define EVP_F_pkey_ec_derive 133
#define EVP_F_pkey_ec_paramgen 134
#define EVP_F_EVP_PKEY_CTX_ctrl 135
#define EVP_F_EVP_PKEY_decrypt_init 136
#define EVP_F_EVP_PKEY_decrypt 137
#define EVP_F_EVP_PKEY_copy_parameters 138
#define EVP_F_EVP_PKEY_set_type 139
#define EVP_F_EVP_PKEY_derive 140
#define EVP_F_EVP_PKEY_keygen_init 141
#define EVP_F_do_rsa_print 142
#define EVP_F_old_rsa_priv_decode 143
#define EVP_F_rsa_algor_to_md 144
#define EVP_F_eckey_pub_encode 145
#define EVP_F_EVP_PKEY_derive_set_peer 146
#define EVP_F_pkey_rsa_sign 147
#define EVP_F_check_padding_md 148
#define EVP_F_i2d_PublicKey 149
#define EVP_F_rsa_pub_decode 150
#define EVP_F_EVP_PKEY_get1_DSA 151
#define EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE 100
#define EVP_R_UNSUPPORTED_SIGNATURE_TYPE 101
#define EVP_R_INVALID_DIGEST_TYPE 102
#define EVP_R_EXPECTING_A_DH_KEY 103
#define EVP_R_OPERATON_NOT_INITIALIZED 104
#define EVP_R_MISSING_PARAMETERS 105
#define EVP_R_NO_DEFAULT_DIGEST 106
#define EVP_R_UNKNOWN_DIGEST 107
#define EVP_R_KEYS_NOT_SET 108
#define EVP_R_X931_UNSUPPORTED 109
#define EVP_R_DIGEST_DOES_NOT_MATCH 110
#define EVP_R_DIFFERENT_PARAMETERS 111
#define EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE 112
#define EVP_R_DIFFERENT_KEY_TYPES 113
#define EVP_R_NO_PARAMETERS_SET 114
#define EVP_R_NO_NID_FOR_CURVE 115
#define EVP_R_NO_OPERATION_SET 116
#define EVP_R_UNSUPPORTED_ALGORITHM 117
#define EVP_R_EXPECTING_AN_DSA_KEY 118
#define EVP_R_UNKNOWN_MASK_DIGEST 119
#define EVP_R_INVALID_SALT_LENGTH 120
#define EVP_R_BUFFER_TOO_SMALL 121
#define EVP_R_INVALID_PADDING_MODE 122
#define EVP_R_INVALID_MGF1_MD 123
#define EVP_R_SHARED_INFO_ERROR 124
#define EVP_R_INVALID_KEYBITS 125
#define EVP_R_PEER_KEY_ERROR 126
#define EVP_R_EXPECTING_A_DSA_KEY 127
#define EVP_R_UNSUPPORTED_MASK_ALGORITHM 128
#define EVP_R_EXPECTING_AN_EC_KEY_KEY 129
#define EVP_R_INVALID_TRAILER 130
#define EVP_R_INVALID_DIGEST_LENGTH 131
#define EVP_R_COMMAND_NOT_SUPPORTED 132
#define EVP_R_EXPLICIT_EC_PARAMETERS_NOT_SUPPORTED 133
#define EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE 134
#define EVP_R_NO_MDC2_SUPPORT 135
#define EVP_R_INVALID_CURVE 136
#define EVP_R_NO_KEY_SET 137
#define EVP_R_INVALID_PSS_PARAMETERS 138
#define EVP_R_KDF_PARAMETER_ERROR 139
#define EVP_R_UNSUPPORTED_MASK_PARAMETER 140
#define EVP_R_EXPECTING_AN_RSA_KEY 141
#define EVP_R_INVALID_OPERATION 142
#define EVP_R_DECODE_ERROR 143
#define EVP_R_INVALID_PSS_SALTLEN 144
#define EVP_R_UNKNOWN_PUBLIC_KEY_TYPE 145
#endif /* OPENSSL_HEADER_EVP_H */