blob: 1d08123badbf030fec435310c336d922f39d6d1b [file] [log] [blame]
/* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/ecdsa.h>
#include <assert.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/type_check.h>
#include "../bn/internal.h"
#include "../ec/internal.h"
#include "../../internal.h"
// EC_LOOSE_SCALAR is like |EC_SCALAR| but is bounded by 2^|BN_num_bits(order)|
// rather than |order|.
typedef union {
// bytes is the representation of the scalar in little-endian order.
uint8_t bytes[EC_MAX_SCALAR_BYTES];
BN_ULONG words[EC_MAX_SCALAR_WORDS];
} EC_LOOSE_SCALAR;
static void scalar_add_loose(const EC_GROUP *group, EC_LOOSE_SCALAR *r,
const EC_LOOSE_SCALAR *a, const EC_SCALAR *b) {
// Add and subtract one copy of |order| if necessary. We have:
// |a| + |b| < 2^BN_num_bits(order) + order
// so this leaves |r| < 2^BN_num_bits(order).
const BIGNUM *order = &group->order;
BN_ULONG carry = bn_add_words(r->words, a->words, b->words, order->width);
EC_LOOSE_SCALAR tmp;
BN_ULONG v =
bn_sub_words(tmp.words, r->words, order->d, order->width) - carry;
bn_select_words(r->words, 0u - v, r->words /* tmp < 0 */,
tmp.words /* tmp >= 0 */, order->width);
}
static int scalar_mod_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r,
const EC_SCALAR *a, const EC_SCALAR *b) {
const BIGNUM *order = &group->order;
return bn_mod_mul_montgomery_small(r->words, order->width, a->words,
order->width, b->words, order->width,
group->order_mont);
}
static int scalar_mod_mul_montgomery_loose(const EC_GROUP *group, EC_SCALAR *r,
const EC_LOOSE_SCALAR *a,
const EC_SCALAR *b) {
// Although |a| is loose, |bn_mod_mul_montgomery_small| only requires the
// product not exceed R * |order|. |b| is fully reduced and |a| <
// 2^BN_num_bits(order) <= R, so this holds.
const BIGNUM *order = &group->order;
return bn_mod_mul_montgomery_small(r->words, order->width, a->words,
order->width, b->words, order->width,
group->order_mont);
}
// digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
// ECDSA. Note this value is not fully reduced modulo the order, only the
// correct number of bits.
static void digest_to_scalar(const EC_GROUP *group, EC_LOOSE_SCALAR *out,
const uint8_t *digest, size_t digest_len) {
const BIGNUM *order = &group->order;
size_t num_bits = BN_num_bits(order);
// Need to truncate digest if it is too long: first truncate whole bytes.
if (8 * digest_len > num_bits) {
digest_len = (num_bits + 7) / 8;
}
OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
for (size_t i = 0; i < digest_len; i++) {
out->bytes[i] = digest[digest_len - 1 - i];
}
// If still too long truncate remaining bits with a shift
if (8 * digest_len > num_bits) {
size_t shift = 8 - (num_bits & 0x7);
for (int i = 0; i < order->width - 1; i++) {
out->words[i] =
(out->words[i] >> shift) | (out->words[i + 1] << (BN_BITS2 - shift));
}
out->words[order->width - 1] >>= shift;
}
}
// field_element_to_scalar reduces |r| modulo |group->order|. |r| must
// previously have been reduced modulo |group->field|.
static int field_element_to_scalar(const EC_GROUP *group, BIGNUM *r) {
// We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we
// can reduce by performing at most one subtraction.
//
// Proof: We only work with prime order curves, so the number of points on
// the curve is the order. Thus Hasse's theorem gives:
//
// |order - (p + 1)| <= 2×sqrt(p)
// p + 1 - order <= 2×sqrt(p)
// p + 1 - 2×sqrt(p) <= order
// p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17)
// p/2 < p/2 + 1 < order
// p < 2×order
//
// Additionally, one can manually check this property for built-in curves. It
// is enforced for legacy custom curves in |EC_GROUP_set_generator|.
//
// TODO(davidben): Introduce |EC_FIELD_ELEMENT|, make this a function from
// |EC_FIELD_ELEMENT| to |EC_SCALAR|, and cut out the |BIGNUM|. Does this need
// to be constant-time for signing? |r| is the x-coordinate for kG, which is
// public unless k was rerolled because |s| was zero.
assert(!BN_is_negative(r));
assert(BN_cmp(r, &group->field) < 0);
if (BN_cmp(r, &group->order) >= 0 &&
!BN_sub(r, r, &group->order)) {
return 0;
}
assert(!BN_is_negative(r));
assert(BN_cmp(r, &group->order) < 0);
return 1;
}
ECDSA_SIG *ECDSA_SIG_new(void) {
ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
if (sig == NULL) {
return NULL;
}
sig->r = BN_new();
sig->s = BN_new();
if (sig->r == NULL || sig->s == NULL) {
ECDSA_SIG_free(sig);
return NULL;
}
return sig;
}
void ECDSA_SIG_free(ECDSA_SIG *sig) {
if (sig == NULL) {
return;
}
BN_free(sig->r);
BN_free(sig->s);
OPENSSL_free(sig);
}
void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
const BIGNUM **out_s) {
if (out_r != NULL) {
*out_r = sig->r;
}
if (out_s != NULL) {
*out_s = sig->s;
}
}
int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
if (r == NULL || s == NULL) {
return 0;
}
BN_free(sig->r);
BN_free(sig->s);
sig->r = r;
sig->s = s;
return 1;
}
int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
const ECDSA_SIG *sig, const EC_KEY *eckey) {
const EC_GROUP *group = EC_KEY_get0_group(eckey);
const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
if (group == NULL || pub_key == NULL || sig == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
return 0;
}
BN_CTX *ctx = BN_CTX_new();
if (!ctx) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
return 0;
}
int ret = 0;
EC_POINT *point = NULL;
BN_CTX_start(ctx);
BIGNUM *X = BN_CTX_get(ctx);
if (X == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
EC_SCALAR r, s, u1, u2, s_inv_mont;
EC_LOOSE_SCALAR m;
const BIGNUM *order = EC_GROUP_get0_order(group);
if (BN_is_zero(sig->r) ||
!ec_bignum_to_scalar(group, &r, sig->r) ||
BN_is_zero(sig->s) ||
!ec_bignum_to_scalar(group, &s, sig->s)) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
goto err;
}
// s_inv_mont = s^-1 mod order. We convert the result to Montgomery form for
// the products below.
int no_inverse;
if (!BN_mod_inverse_odd(X, &no_inverse, sig->s, order, ctx) ||
// TODO(davidben): Add a words version of |BN_mod_inverse_odd| and write
// into |s_inv_mont| directly.
!ec_bignum_to_scalar_unchecked(group, &s_inv_mont, X) ||
!bn_to_montgomery_small(s_inv_mont.words, order->width, s_inv_mont.words,
order->width, group->order_mont)) {
goto err;
}
// u1 = m * s^-1 mod order
// u2 = r * s^-1 mod order
//
// |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
// |u2| will be taken out of Montgomery form, as desired.
digest_to_scalar(group, &m, digest, digest_len);
if (!scalar_mod_mul_montgomery_loose(group, &u1, &m, &s_inv_mont) ||
!scalar_mod_mul_montgomery(group, &u2, &r, &s_inv_mont)) {
goto err;
}
point = EC_POINT_new(group);
if (point == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!ec_point_mul_scalar_public(group, point, &u1, pub_key, &u2, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto err;
}
if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto err;
}
if (!field_element_to_scalar(group, X)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
// The signature is correct iff |X| is equal to |sig->r|.
if (BN_ucmp(X, sig->r) != 0) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
EC_POINT_free(point);
return ret;
}
static int ecdsa_sign_setup(const EC_KEY *eckey, BN_CTX *ctx,
EC_SCALAR *out_kinv_mont, BIGNUM **rp,
const uint8_t *digest, size_t digest_len,
const EC_SCALAR *priv_key) {
EC_POINT *tmp_point = NULL;
int ret = 0;
EC_SCALAR k;
BIGNUM *r = BN_new(); // this value is later returned in *rp
if (r == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
const EC_GROUP *group = EC_KEY_get0_group(eckey);
const BIGNUM *order = EC_GROUP_get0_order(group);
tmp_point = EC_POINT_new(group);
if (tmp_point == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto err;
}
// Check that the size of the group order is FIPS compliant (FIPS 186-4
// B.5.2).
if (BN_num_bits(order) < 160) {
OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
goto err;
}
do {
// Include the private key and message digest in the k generation.
if (eckey->fixed_k != NULL) {
if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) {
goto err;
}
} else {
// Pass a SHA512 hash of the private key and digest as additional data
// into the RBG. This is a hardening measure against entropy failure.
OPENSSL_COMPILE_ASSERT(SHA512_DIGEST_LENGTH >= 32,
additional_data_is_too_large_for_sha512);
SHA512_CTX sha;
uint8_t additional_data[SHA512_DIGEST_LENGTH];
SHA512_Init(&sha);
SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG));
SHA512_Update(&sha, digest, digest_len);
SHA512_Final(additional_data, &sha);
if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
goto err;
}
}
// Compute k^-1. We leave it in the Montgomery domain as an optimization for
// later operations.
if (!bn_to_montgomery_small(out_kinv_mont->words, order->width, k.words,
order->width, group->order_mont) ||
!bn_mod_inverse_prime_mont_small(out_kinv_mont->words, order->width,
out_kinv_mont->words, order->width,
group->order_mont)) {
goto err;
}
// Compute r, the x-coordinate of generator * k.
if (!ec_point_mul_scalar(group, tmp_point, &k, NULL, NULL, ctx) ||
!EC_POINT_get_affine_coordinates_GFp(group, tmp_point, r, NULL,
ctx)) {
goto err;
}
if (!field_element_to_scalar(group, r)) {
goto err;
}
} while (BN_is_zero(r));
BN_clear_free(*rp);
*rp = r;
r = NULL;
ret = 1;
err:
OPENSSL_cleanse(&k, sizeof(k));
BN_clear_free(r);
EC_POINT_free(tmp_point);
return ret;
}
ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
const EC_KEY *eckey) {
if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
return NULL;
}
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if (group == NULL || eckey->priv_key == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
const BIGNUM *order = EC_GROUP_get0_order(group);
const EC_SCALAR *priv_key = &eckey->priv_key->scalar;
int ok = 0;
ECDSA_SIG *ret = ECDSA_SIG_new();
BN_CTX *ctx = BN_CTX_new();
EC_SCALAR kinv_mont, r_mont, s;
EC_LOOSE_SCALAR m, tmp;
if (ret == NULL || ctx == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
return NULL;
}
digest_to_scalar(group, &m, digest, digest_len);
for (;;) {
if (!ecdsa_sign_setup(eckey, ctx, &kinv_mont, &ret->r, digest, digest_len,
priv_key)) {
goto err;
}
// Compute priv_key * r (mod order). Note if only one parameter is in the
// Montgomery domain, |scalar_mod_mul_montgomery| will compute the answer in
// the normal domain.
if (!ec_bignum_to_scalar(group, &r_mont, ret->r) ||
!bn_to_montgomery_small(r_mont.words, order->width, r_mont.words,
order->width, group->order_mont) ||
!scalar_mod_mul_montgomery(group, &s, priv_key, &r_mont)) {
goto err;
}
// Compute tmp = m + priv_key * r.
scalar_add_loose(group, &tmp, &m, &s);
// Finally, multiply s by k^-1. That was retained in Montgomery form, so the
// same technique as the previous multiplication works.
if (!scalar_mod_mul_montgomery_loose(group, &s, &tmp, &kinv_mont) ||
!bn_set_words(ret->s, s.words, order->width)) {
goto err;
}
if (!BN_is_zero(ret->s)) {
// s != 0 => we have a valid signature
break;
}
}
ok = 1;
err:
if (!ok) {
ECDSA_SIG_free(ret);
ret = NULL;
}
BN_CTX_free(ctx);
OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont));
OPENSSL_cleanse(&r_mont, sizeof(r_mont));
OPENSSL_cleanse(&s, sizeof(s));
OPENSSL_cleanse(&tmp, sizeof(tmp));
OPENSSL_cleanse(&m, sizeof(m));
return ret;
}