blob: 0a6c31ce143f557a7fd969362c1d0829db17106c [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#ifndef OPENSSL_HEADER_SSL_INTERNAL_H
#define OPENSSL_HEADER_SSL_INTERNAL_H
#include <openssl/base.h>
#include <openssl/aead.h>
#include <openssl/pqueue.h>
#include <openssl/ssl.h>
#include <openssl/stack.h>
#if defined(OPENSSL_WINDOWS)
/* Windows defines struct timeval in winsock2.h. */
#pragma warning(push, 3)
#include <winsock2.h>
#pragma warning(pop)
#else
#include <sys/types.h>
#endif
/* Cipher suites. */
/* Bits for |algorithm_mkey| (key exchange algorithm). */
#define SSL_kRSA 0x00000001L
#define SSL_kDHE 0x00000002L
#define SSL_kECDHE 0x00000004L
/* SSL_kPSK is only set for plain PSK, not ECDHE_PSK. */
#define SSL_kPSK 0x00000008L
/* Bits for |algorithm_auth| (server authentication). */
#define SSL_aRSA 0x00000001L
#define SSL_aECDSA 0x00000002L
/* SSL_aPSK is set for both PSK and ECDHE_PSK. */
#define SSL_aPSK 0x00000004L
/* Bits for |algorithm_enc| (symmetric encryption). */
#define SSL_3DES 0x00000001L
#define SSL_RC4 0x00000002L
#define SSL_AES128 0x00000004L
#define SSL_AES256 0x00000008L
#define SSL_AES128GCM 0x00000010L
#define SSL_AES256GCM 0x00000020L
#define SSL_CHACHA20POLY1305 0x00000040L
#define SSL_eNULL 0x00000080L
#define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
/* Bits for |algorithm_mac| (symmetric authentication). */
#define SSL_MD5 0x00000001L
#define SSL_SHA1 0x00000002L
#define SSL_SHA256 0x00000004L
#define SSL_SHA384 0x00000008L
/* SSL_AEAD is set for all AEADs. */
#define SSL_AEAD 0x00000010L
/* Bits for |algorithm_ssl| (protocol version). These denote the first protocol
* version which introduced the cipher.
*
* TODO(davidben): These are extremely confusing, both in code and in
* cipher rules. Try to remove them. */
#define SSL_SSLV3 0x00000002L
#define SSL_TLSV1 SSL_SSLV3
#define SSL_TLSV1_2 0x00000004L
/* Bits for |algorithm_prf| (handshake digest). */
#define SSL_HANDSHAKE_MAC_DEFAULT 0x1
#define SSL_HANDSHAKE_MAC_SHA256 0x2
#define SSL_HANDSHAKE_MAC_SHA384 0x4
/* SSL_MAX_DIGEST is the number of digest types which exist. When adding a new
* one, update the table in ssl_cipher.c. */
#define SSL_MAX_DIGEST 4
/* Bits for |algo_strength|, cipher strength information. */
#define SSL_MEDIUM 0x00000001L
#define SSL_HIGH 0x00000002L
#define SSL_FIPS 0x00000004L
/* ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
* object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
* and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
* respectively. The MAC key length is zero except for legacy block and stream
* ciphers. It returns 1 on success and 0 on error. */
int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
size_t *out_mac_secret_len,
size_t *out_fixed_iv_len,
const SSL_CIPHER *cipher, uint16_t version);
/* ssl_get_handshake_digest returns the |EVP_MD| corresponding to
* |algorithm_prf|. It returns SHA-1 for |SSL_HANDSHAKE_DEFAULT|. The caller is
* responsible for maintaining the additional MD5 digest and switching to
* SHA-256 in TLS 1.2. */
const EVP_MD *ssl_get_handshake_digest(uint32_t algorithm_prf);
/* ssl_create_cipher_list evaluates |rule_str| according to the ciphers in
* |ssl_method|. It sets |*out_cipher_list| to a newly-allocated
* |ssl_cipher_preference_list_st| containing the result.
* |*out_cipher_list_by_id| is set to a list of selected ciphers sorted by
* id. It returns |(*out_cipher_list)->ciphers| on success and NULL on
* failure. */
STACK_OF(SSL_CIPHER) *
ssl_create_cipher_list(const SSL_PROTOCOL_METHOD *ssl_method,
struct ssl_cipher_preference_list_st **out_cipher_list,
STACK_OF(SSL_CIPHER) **out_cipher_list_by_id,
const char *rule_str);
/* ssl_cipher_get_value returns the cipher suite id of |cipher|. */
uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher);
/* ssl_cipher_get_key_type returns the |EVP_PKEY_*| value corresponding to the
* server key used in |cipher| or |EVP_PKEY_NONE| if there is none. */
int ssl_cipher_get_key_type(const SSL_CIPHER *cipher);
/* ssl_cipher_has_server_public_key returns 1 if |cipher| involves a server
* public key in the key exchange, sent in a server Certificate message.
* Otherwise it returns 0. */
int ssl_cipher_has_server_public_key(const SSL_CIPHER *cipher);
/* ssl_cipher_requires_server_key_exchange returns 1 if |cipher| requires a
* ServerKeyExchange message. Otherwise it returns 0.
*
* Unlike |ssl_cipher_has_server_public_key|, this function may return zero
* while still allowing |cipher| an optional ServerKeyExchange. This is the
* case for plain PSK ciphers. */
int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
/* ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
* length of an encrypted 1-byte record, for use in record-splitting. Otherwise
* it returns zero. */
size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
/* Encryption layer. */
/* SSL_AEAD_CTX contains information about an AEAD that is being used to encrypt
* an SSL connection. */
struct ssl_aead_ctx_st {
const SSL_CIPHER *cipher;
EVP_AEAD_CTX ctx;
/* fixed_nonce contains any bytes of the nonce that are fixed for all
* records. */
uint8_t fixed_nonce[8];
uint8_t fixed_nonce_len, variable_nonce_len;
/* variable_nonce_included_in_record is non-zero if the variable nonce
* for a record is included as a prefix before the ciphertext. */
char variable_nonce_included_in_record;
/* random_variable_nonce is non-zero if the variable nonce is
* randomly generated, rather than derived from the sequence
* number. */
char random_variable_nonce;
/* omit_length_in_ad is non-zero if the length should be omitted in the
* AEAD's ad parameter. */
char omit_length_in_ad;
/* omit_version_in_ad is non-zero if the version should be omitted
* in the AEAD's ad parameter. */
char omit_version_in_ad;
} /* SSL_AEAD_CTX */;
/* SSL_AEAD_CTX_new creates a newly-allocated |SSL_AEAD_CTX| using the supplied
* key material. It returns NULL on error. Only one of |SSL_AEAD_CTX_open| or
* |SSL_AEAD_CTX_seal| may be used with the resulting object, depending on
* |direction|. |version| is the normalized protocol version, so DTLS 1.0 is
* represented as 0x0301, not 0xffef. */
SSL_AEAD_CTX *SSL_AEAD_CTX_new(enum evp_aead_direction_t direction,
uint16_t version, const SSL_CIPHER *cipher,
const uint8_t *enc_key, size_t enc_key_len,
const uint8_t *mac_key, size_t mac_key_len,
const uint8_t *fixed_iv, size_t fixed_iv_len);
/* SSL_AEAD_CTX_free frees |ctx|. */
void SSL_AEAD_CTX_free(SSL_AEAD_CTX *ctx);
/* SSL_AEAD_CTX_explicit_nonce_len returns the length of the explicit nonce for
* |ctx|, if any. |ctx| may be NULL to denote the null cipher. */
size_t SSL_AEAD_CTX_explicit_nonce_len(SSL_AEAD_CTX *ctx);
/* SSL_AEAD_CTX_max_overhead returns the maximum overhead of calling
* |SSL_AEAD_CTX_seal|. |ctx| may be NULL to denote the null cipher. */
size_t SSL_AEAD_CTX_max_overhead(SSL_AEAD_CTX *ctx);
/* SSL_AEAD_CTX_open authenticates and decrypts |in_len| bytes from |in| and
* writes the result to |out|. It returns one on success and zero on
* error. |ctx| may be NULL to denote the null cipher.
*
* If |in| and |out| alias then |out| must be <= |in| + |explicit_nonce_len|. */
int SSL_AEAD_CTX_open(SSL_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
size_t max_out, uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len);
/* SSL_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
* writes the result to |out|. It returns one on success and zero on
* error. |ctx| may be NULL to denote the null cipher.
*
* If |in| and |out| alias then |out| + |explicit_nonce_len| must be <= |in| */
int SSL_AEAD_CTX_seal(SSL_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
size_t max_out, uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len);
/* DTLS replay bitmap. */
/* DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
* replayed packets. It should be initialized by zeroing every field. */
typedef struct dtls1_bitmap_st {
/* map is a bit mask of the last 64 sequence numbers. Bit
* |1<<i| corresponds to |max_seq_num - i|. */
uint64_t map;
/* max_seq_num is the largest sequence number seen so far as a 64-bit
* integer. */
uint64_t max_seq_num;
} DTLS1_BITMAP;
/* Record layer. */
/* ssl_record_prefix_len returns the length of the prefix before the ciphertext
* of a record for |ssl|.
*
* TODO(davidben): Expose this as part of public API once the high-level
* buffer-free APIs are available. */
size_t ssl_record_prefix_len(const SSL *ssl);
enum ssl_open_record_t {
ssl_open_record_success,
ssl_open_record_discard,
ssl_open_record_partial,
ssl_open_record_error,
};
/* tls_open_record decrypts a record from |in|.
*
* On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
* record type, |*out_len| to the plaintext length, and writes the record body
* to |out|. It sets |*out_consumed| to the number of bytes of |in| consumed.
* Note that |*out_len| may be zero.
*
* If a record was successfully processed but should be discarded, it returns
* |ssl_open_record_discard| and sets |*out_consumed| to the number of bytes
* consumed.
*
* If the input did not contain a complete record, it returns
* |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
* bytes necessary. It is guaranteed that a successful call to |tls_open_record|
* will consume at least that many bytes.
*
* On failure, it returns |ssl_open_record_error| and sets |*out_alert| to an
* alert to emit.
*
* If |in| and |out| alias, |out| must be <= |in| + |ssl_record_prefix_len|. */
enum ssl_open_record_t tls_open_record(
SSL *ssl, uint8_t *out_type, uint8_t *out, size_t *out_len,
size_t *out_consumed, uint8_t *out_alert, size_t max_out, const uint8_t *in,
size_t in_len);
/* dtls_open_record implements |tls_open_record| for DTLS. It never returns
* |ssl_open_record_partial| but otherwise behaves analogously. */
enum ssl_open_record_t dtls_open_record(
SSL *ssl, uint8_t *out_type, uint8_t *out, size_t *out_len,
size_t *out_consumed, uint8_t *out_alert, size_t max_out, const uint8_t *in,
size_t in_len);
/* ssl_seal_prefix_len returns the length of the prefix before the ciphertext
* when sealing a record with |ssl|. Note that this value may differ from
* |ssl_record_prefix_len| when TLS 1.0 CBC record-splitting is enabled. Sealing
* a small record may also result in a smaller output than this value.
*
* TODO(davidben): Expose this as part of public API once the high-level
* buffer-free APIs are available. */
size_t ssl_seal_prefix_len(const SSL *ssl);
/* ssl_max_seal_overhead returns the maximum overhead of sealing a record with
* |ssl|. This includes |ssl_seal_prefix_len|.
*
* TODO(davidben): Expose this as part of public API once the high-level
* buffer-free APIs are available. */
size_t ssl_max_seal_overhead(const SSL *ssl);
/* tls_seal_record seals a new record of type |type| and body |in| and writes it
* to |out|. At most |max_out| bytes will be written. It returns one on success
* and zero on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC 1/n-1
* record splitting and may write two records concatenated.
*
* For a large record, the ciphertext will begin |ssl_seal_prefix_len| bytes
* into out. Aligning |out| appropriately may improve performance. It writes at
* most |in_len| + |ssl_max_seal_overhead| bytes to |out|.
*
* If |in| and |out| alias, |out| + |ssl_seal_prefix_len| must be <= |in|. */
int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
uint8_t type, const uint8_t *in, size_t in_len);
enum dtls1_use_epoch_t {
dtls1_use_previous_epoch,
dtls1_use_current_epoch,
};
/* dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
* which epoch's cipher state to use. */
int dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
uint8_t type, const uint8_t *in, size_t in_len,
enum dtls1_use_epoch_t use_epoch);
/* Private key operations. */
/* ssl_has_private_key returns one if |ssl| has a private key
* configured and zero otherwise. */
int ssl_has_private_key(SSL *ssl);
/* ssl_private_key_* call the corresponding function on the
* |SSL_PRIVATE_KEY_METHOD| for |ssl|, if configured. Otherwise, they implement
* the operation with |EVP_PKEY|. */
int ssl_private_key_type(SSL *ssl);
size_t ssl_private_key_max_signature_len(SSL *ssl);
enum ssl_private_key_result_t ssl_private_key_sign(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, const EVP_MD *md,
const uint8_t *in, size_t in_len);
enum ssl_private_key_result_t ssl_private_key_sign_complete(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out);
enum ssl_private_key_result_t ssl_private_key_decrypt(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
const uint8_t *in, size_t in_len);
enum ssl_private_key_result_t ssl_private_key_decrypt_complete(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out);
/* Custom extensions */
/* ssl_custom_extension (a.k.a. SSL_CUSTOM_EXTENSION) is a structure that
* contains information about custom-extension callbacks. */
struct ssl_custom_extension {
SSL_custom_ext_add_cb add_callback;
void *add_arg;
SSL_custom_ext_free_cb free_callback;
SSL_custom_ext_parse_cb parse_callback;
void *parse_arg;
uint16_t value;
};
void SSL_CUSTOM_EXTENSION_free(SSL_CUSTOM_EXTENSION *custom_extension);
int custom_ext_add_clienthello(SSL *ssl, CBB *extensions);
int custom_ext_parse_serverhello(SSL *ssl, int *out_alert, uint16_t value,
const CBS *extension);
int custom_ext_parse_clienthello(SSL *ssl, int *out_alert, uint16_t value,
const CBS *extension);
int custom_ext_add_serverhello(SSL *ssl, CBB *extensions);
/* Handshake hash.
*
* The TLS handshake maintains a transcript of all handshake messages. At
* various points in the protocol, this is either a handshake buffer, a rolling
* hash (selected by cipher suite) or both. */
/* ssl3_init_handshake_buffer initializes the handshake buffer and resets the
* handshake hash. It returns one success and zero on failure. */
int ssl3_init_handshake_buffer(SSL *ssl);
/* ssl3_init_handshake_hash initializes the handshake hash based on the pending
* cipher and the contents of the handshake buffer. Subsequent calls to
* |ssl3_update_handshake_hash| will update the rolling hash. It returns one on
* success and zero on failure. It is an error to call this function after the
* handshake buffer is released. */
int ssl3_init_handshake_hash(SSL *ssl);
/* ssl3_free_handshake_buffer releases the handshake buffer. Subsequent calls
* to |ssl3_update_handshake_hash| will not update the handshake buffer. */
void ssl3_free_handshake_buffer(SSL *ssl);
/* ssl3_free_handshake_hash releases the handshake hash. */
void ssl3_free_handshake_hash(SSL *s);
/* ssl3_update_handshake_hash adds |in| to the handshake buffer and handshake
* hash, whichever is enabled. It returns one on success and zero on failure. */
int ssl3_update_handshake_hash(SSL *ssl, const uint8_t *in, size_t in_len);
/* Transport buffers. */
/* ssl_read_buffer returns a pointer to contents of the read buffer. */
uint8_t *ssl_read_buffer(SSL *ssl);
/* ssl_read_buffer_len returns the length of the read buffer. */
size_t ssl_read_buffer_len(const SSL *ssl);
/* ssl_read_buffer_extend_to extends the read buffer to the desired length. For
* TLS, it reads to the end of the buffer until the buffer is |len| bytes
* long. For DTLS, it reads a new packet and ignores |len|. It returns one on
* success, zero on EOF, and a negative number on error.
*
* It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
* non-empty. */
int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
/* ssl_read_buffer_consume consumes |len| bytes from the read buffer. It
* advances the data pointer and decrements the length. The memory consumed will
* remain valid until the next call to |ssl_read_buffer_extend| or it is
* discarded with |ssl_read_buffer_discard|. */
void ssl_read_buffer_consume(SSL *ssl, size_t len);
/* ssl_read_buffer_discard discards the consumed bytes from the read buffer. If
* the buffer is now empty, it releases memory used by it. */
void ssl_read_buffer_discard(SSL *ssl);
/* ssl_read_buffer_clear releases all memory associated with the read buffer and
* zero-initializes it. */
void ssl_read_buffer_clear(SSL *ssl);
/* ssl_write_buffer_is_pending returns one if the write buffer has pending data
* and zero if is empty. */
int ssl_write_buffer_is_pending(const SSL *ssl);
/* ssl_write_buffer_init initializes the write buffer. On success, it sets
* |*out_ptr| to the start of the write buffer with space for up to |max_len|
* bytes. It returns one on success and zero on failure. Call
* |ssl_write_buffer_set_len| to complete initialization. */
int ssl_write_buffer_init(SSL *ssl, uint8_t **out_ptr, size_t max_len);
/* ssl_write_buffer_set_len is called after |ssl_write_buffer_init| to complete
* initialization after |len| bytes are written to the buffer. */
void ssl_write_buffer_set_len(SSL *ssl, size_t len);
/* ssl_write_buffer_flush flushes the write buffer to the transport. It returns
* one on success and <= 0 on error. For DTLS, whether or not the write
* succeeds, the write buffer will be cleared. */
int ssl_write_buffer_flush(SSL *ssl);
/* ssl_write_buffer_clear releases all memory associated with the write buffer
* and zero-initializes it. */
void ssl_write_buffer_clear(SSL *ssl);
/* Underdocumented functions.
*
* Functions below here haven't been touched up and may be underdocumented. */
#define c2l(c, l) \
(l = ((unsigned long)(*((c)++))), l |= (((unsigned long)(*((c)++))) << 8), \
l |= (((unsigned long)(*((c)++))) << 16), \
l |= (((unsigned long)(*((c)++))) << 24))
/* NOTE - c is not incremented as per c2l */
#define c2ln(c, l1, l2, n) \
{ \
c += n; \
l1 = l2 = 0; \
switch (n) { \
case 8: \
l2 = ((unsigned long)(*(--(c)))) << 24; \
case 7: \
l2 |= ((unsigned long)(*(--(c)))) << 16; \
case 6: \
l2 |= ((unsigned long)(*(--(c)))) << 8; \
case 5: \
l2 |= ((unsigned long)(*(--(c)))); \
case 4: \
l1 = ((unsigned long)(*(--(c)))) << 24; \
case 3: \
l1 |= ((unsigned long)(*(--(c)))) << 16; \
case 2: \
l1 |= ((unsigned long)(*(--(c)))) << 8; \
case 1: \
l1 |= ((unsigned long)(*(--(c)))); \
} \
}
#define l2c(l, c) \
(*((c)++) = (uint8_t)(((l)) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 8) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 16) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 24) & 0xff))
#define n2l(c, l) \
(l = ((unsigned long)(*((c)++))) << 24, \
l |= ((unsigned long)(*((c)++))) << 16, \
l |= ((unsigned long)(*((c)++))) << 8, l |= ((unsigned long)(*((c)++))))
#define l2n(l, c) \
(*((c)++) = (uint8_t)(((l) >> 24) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 16) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 8) & 0xff), \
*((c)++) = (uint8_t)(((l)) & 0xff))
#define l2n8(l, c) \
(*((c)++) = (uint8_t)(((l) >> 56) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 48) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 40) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 32) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 24) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 16) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 8) & 0xff), \
*((c)++) = (uint8_t)(((l)) & 0xff))
/* NOTE - c is not incremented as per l2c */
#define l2cn(l1, l2, c, n) \
{ \
c += n; \
switch (n) { \
case 8: \
*(--(c)) = (uint8_t)(((l2) >> 24) & 0xff); \
case 7: \
*(--(c)) = (uint8_t)(((l2) >> 16) & 0xff); \
case 6: \
*(--(c)) = (uint8_t)(((l2) >> 8) & 0xff); \
case 5: \
*(--(c)) = (uint8_t)(((l2)) & 0xff); \
case 4: \
*(--(c)) = (uint8_t)(((l1) >> 24) & 0xff); \
case 3: \
*(--(c)) = (uint8_t)(((l1) >> 16) & 0xff); \
case 2: \
*(--(c)) = (uint8_t)(((l1) >> 8) & 0xff); \
case 1: \
*(--(c)) = (uint8_t)(((l1)) & 0xff); \
} \
}
#define n2s(c, s) \
((s = (((unsigned int)(c[0])) << 8) | (((unsigned int)(c[1])))), c += 2)
#define s2n(s, c) \
((c[0] = (uint8_t)(((s) >> 8) & 0xff), \
c[1] = (uint8_t)(((s)) & 0xff)), \
c += 2)
#define n2l3(c, l) \
((l = (((unsigned long)(c[0])) << 16) | (((unsigned long)(c[1])) << 8) | \
(((unsigned long)(c[2])))), \
c += 3)
#define l2n3(l, c) \
((c[0] = (uint8_t)(((l) >> 16) & 0xff), \
c[1] = (uint8_t)(((l) >> 8) & 0xff), \
c[2] = (uint8_t)(((l)) & 0xff)), \
c += 3)
/* LOCAL STUFF */
#define TLSEXT_CHANNEL_ID_SIZE 128
/* Check if an SSL structure is using DTLS */
#define SSL_IS_DTLS(s) (s->method->is_dtls)
/* See if we need explicit IV */
#define SSL_USE_EXPLICIT_IV(s) \
(s->enc_method->enc_flags & SSL_ENC_FLAG_EXPLICIT_IV)
/* See if we use signature algorithms extension and signature algorithm before
* signatures. */
#define SSL_USE_SIGALGS(s) (s->enc_method->enc_flags & SSL_ENC_FLAG_SIGALGS)
/* Allow TLS 1.2 ciphersuites: applies to DTLS 1.2 as well as TLS 1.2: may
* apply to others in future. */
#define SSL_USE_TLS1_2_CIPHERS(s) \
(s->enc_method->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)
/* Determine if a client can use TLS 1.2 ciphersuites: can't rely on method
* flags because it may not be set to correct version yet. */
#define SSL_CLIENT_USE_TLS1_2_CIPHERS(s) \
((SSL_IS_DTLS(s) && s->client_version <= DTLS1_2_VERSION) || \
(!SSL_IS_DTLS(s) && s->client_version >= TLS1_2_VERSION))
/* SSL_kRSA <- RSA_ENC | (RSA_TMP & RSA_SIGN) |
* <- (EXPORT & (RSA_ENC | RSA_TMP) & RSA_SIGN)
* SSL_kDH <- DH_ENC & (RSA_ENC | RSA_SIGN | DSA_SIGN)
* SSL_kDHE <- RSA_ENC | RSA_SIGN | DSA_SIGN
* SSL_aRSA <- RSA_ENC | RSA_SIGN
* SSL_aDSS <- DSA_SIGN */
/* From RFC4492, used in encoding the curve type in ECParameters */
#define EXPLICIT_PRIME_CURVE_TYPE 1
#define EXPLICIT_CHAR2_CURVE_TYPE 2
#define NAMED_CURVE_TYPE 3
enum ssl_hash_message_t {
ssl_dont_hash_message,
ssl_hash_message,
};
/* Structure containing decoded values of signature algorithms extension */
typedef struct tls_sigalgs_st {
uint8_t rsign;
uint8_t rhash;
} TLS_SIGALGS;
typedef struct cert_st {
X509 *x509;
EVP_PKEY *privatekey;
/* Chain for this certificate */
STACK_OF(X509) *chain;
/* key_method, if non-NULL, is a set of callbacks to call for private key
* operations. */
const SSL_PRIVATE_KEY_METHOD *key_method;
/* For clients the following masks are of *disabled* key and auth algorithms
* based on the current session.
*
* TODO(davidben): Remove these. They get checked twice: when sending the
* ClientHello and when processing the ServerHello. However, mask_ssl is a
* different value both times. mask_k and mask_a are not, but is a
* round-about way of checking the server's cipher was one of the advertised
* ones. (Currently it checks the masks and then the list of ciphers prior to
* applying the masks in ClientHello.) */
uint32_t mask_k;
uint32_t mask_a;
uint32_t mask_ssl;
DH *dh_tmp;
DH *(*dh_tmp_cb)(SSL *ssl, int is_export, int keysize);
/* ecdh_nid, if not |NID_undef|, is the NID of the curve to use for ephemeral
* ECDH keys. If unset, |ecdh_tmp_cb| is consulted. */
int ecdh_nid;
/* ecdh_tmp_cb is a callback for selecting the curve to use for ephemeral ECDH
* keys. If NULL, a curve is selected automatically. See
* |SSL_CTX_set_tmp_ecdh_callback|. */
EC_KEY *(*ecdh_tmp_cb)(SSL *ssl, int is_export, int keysize);
/* peer_sigalgs are the algorithm/hash pairs that the peer supports. These
* are taken from the contents of signature algorithms extension for a server
* or from the CertificateRequest for a client. */
TLS_SIGALGS *peer_sigalgs;
/* peer_sigalgslen is the number of entries in |peer_sigalgs|. */
size_t peer_sigalgslen;
/* digest_nids, if non-NULL, is the set of digests supported by |privatekey|
* in decreasing order of preference. */
int *digest_nids;
size_t num_digest_nids;
/* Certificate setup callback: if set is called whenever a
* certificate may be required (client or server). the callback
* can then examine any appropriate parameters and setup any
* certificates required. This allows advanced applications
* to select certificates on the fly: for example based on
* supported signature algorithms or curves. */
int (*cert_cb)(SSL *ssl, void *arg);
void *cert_cb_arg;
} CERT;
/* SSL_METHOD is a compatibility structure to support the legacy version-locked
* methods. */
struct ssl_method_st {
/* version, if non-zero, is the only protocol version acceptable to an
* SSL_CTX initialized from this method. */
uint16_t version;
/* method is the underlying SSL_PROTOCOL_METHOD that initializes the
* SSL_CTX. */
const SSL_PROTOCOL_METHOD *method;
};
/* Used to hold functions for SSLv2 or SSLv3/TLSv1 functions */
struct ssl_protocol_method_st {
/* is_dtls is one if the protocol is DTLS and zero otherwise. */
char is_dtls;
int (*ssl_new)(SSL *s);
void (*ssl_free)(SSL *s);
int (*ssl_accept)(SSL *s);
int (*ssl_connect)(SSL *s);
long (*ssl_get_message)(SSL *s, int header_state, int body_state,
int msg_type, long max,
enum ssl_hash_message_t hash_message, int *ok);
int (*ssl_read_app_data)(SSL *s, uint8_t *buf, int len, int peek);
void (*ssl_read_close_notify)(SSL *s);
int (*ssl_write_app_data)(SSL *s, const void *buf_, int len);
int (*ssl_dispatch_alert)(SSL *s);
/* supports_cipher returns one if |cipher| is supported by this protocol and
* zero otherwise. */
int (*supports_cipher)(const SSL_CIPHER *cipher);
/* Handshake header length */
unsigned int hhlen;
/* Set the handshake header */
int (*set_handshake_header)(SSL *s, int type, unsigned long len);
/* Write out handshake message */
int (*do_write)(SSL *s);
};
/* This is for the SSLv3/TLSv1.0 differences in crypto/hash stuff It is a bit
* of a mess of functions, but hell, think of it as an opaque structure. */
struct ssl3_enc_method {
int (*prf)(SSL *, uint8_t *, size_t, const uint8_t *, size_t, const char *,
size_t, const uint8_t *, size_t, const uint8_t *, size_t);
int (*setup_key_block)(SSL *);
int (*generate_master_secret)(SSL *, uint8_t *, const uint8_t *, size_t);
int (*change_cipher_state)(SSL *, int);
int (*final_finish_mac)(SSL *, const char *, int, uint8_t *);
int (*cert_verify_mac)(SSL *, int, uint8_t *);
const char *client_finished_label;
int client_finished_label_len;
const char *server_finished_label;
int server_finished_label_len;
int (*alert_value)(int);
int (*export_keying_material)(SSL *, uint8_t *, size_t, const char *, size_t,
const uint8_t *, size_t, int use_context);
/* Various flags indicating protocol version requirements */
unsigned int enc_flags;
};
#define SSL_HM_HEADER_LENGTH(s) s->method->hhlen
#define ssl_handshake_start(s) \
(((uint8_t *)s->init_buf->data) + s->method->hhlen)
#define ssl_set_handshake_header(s, htype, len) \
s->method->set_handshake_header(s, htype, len)
#define ssl_do_write(s) s->method->do_write(s)
/* Values for enc_flags */
/* Uses explicit IV for CBC mode */
#define SSL_ENC_FLAG_EXPLICIT_IV 0x1
/* Uses signature algorithms extension */
#define SSL_ENC_FLAG_SIGALGS 0x2
/* Uses SHA256 default PRF */
#define SSL_ENC_FLAG_SHA256_PRF 0x4
/* Allow TLS 1.2 ciphersuites: applies to DTLS 1.2 as well as TLS 1.2:
* may apply to others in future. */
#define SSL_ENC_FLAG_TLS1_2_CIPHERS 0x8
/* lengths of messages */
#define DTLS1_COOKIE_LENGTH 256
#define DTLS1_RT_HEADER_LENGTH 13
#define DTLS1_HM_HEADER_LENGTH 12
#define DTLS1_CCS_HEADER_LENGTH 1
#define DTLS1_AL_HEADER_LENGTH 2
/* TODO(davidben): This structure is used for both incoming messages and
* outgoing messages. |is_ccs| and |epoch| are only used in the latter and
* should be moved elsewhere. */
struct hm_header_st {
uint8_t type;
uint32_t msg_len;
uint16_t seq;
uint32_t frag_off;
uint32_t frag_len;
int is_ccs;
/* epoch, for buffered outgoing messages, is the epoch the message was
* originally sent in. */
uint16_t epoch;
};
/* TODO(davidben): This structure is used for both incoming messages and
* outgoing messages. |fragment| and |reassembly| are only used in the former
* and should be moved elsewhere. */
typedef struct hm_fragment_st {
struct hm_header_st msg_header;
uint8_t *fragment;
uint8_t *reassembly;
} hm_fragment;
typedef struct dtls1_state_st {
/* send_cookie is true if we are resending the ClientHello
* with a cookie from a HelloVerifyRequest. */
unsigned int send_cookie;
uint8_t cookie[DTLS1_COOKIE_LENGTH];
size_t cookie_len;
/* The current data and handshake epoch. This is initially undefined, and
* starts at zero once the initial handshake is completed. */
uint16_t r_epoch;
uint16_t w_epoch;
/* records being received in the current epoch */
DTLS1_BITMAP bitmap;
/* handshake message numbers */
uint16_t handshake_write_seq;
uint16_t next_handshake_write_seq;
uint16_t handshake_read_seq;
/* save last sequence number for retransmissions */
uint8_t last_write_sequence[8];
/* buffered_messages is a priority queue of incoming handshake messages that
* have yet to be processed.
*
* TODO(davidben): This data structure may as well be a ring buffer of fixed
* size. */
pqueue buffered_messages;
/* send_messages is a priority queue of outgoing handshake messages sent in
* the most recent handshake flight.
*
* TODO(davidben): This data structure may as well be a STACK_OF(T). */
pqueue sent_messages;
unsigned int mtu; /* max DTLS packet size */
struct hm_header_st w_msg_hdr;
/* num_timeouts is the number of times the retransmit timer has fired since
* the last time it was reset. */
unsigned int num_timeouts;
/* Indicates when the last handshake msg or heartbeat sent will
* timeout. */
struct timeval next_timeout;
/* Timeout duration */
unsigned short timeout_duration;
unsigned int change_cipher_spec_ok;
} DTLS1_STATE;
extern const SSL3_ENC_METHOD TLSv1_enc_data;
extern const SSL3_ENC_METHOD TLSv1_1_enc_data;
extern const SSL3_ENC_METHOD TLSv1_2_enc_data;
extern const SSL3_ENC_METHOD SSLv3_enc_data;
extern const SRTP_PROTECTION_PROFILE kSRTPProfiles[];
void ssl_clear_cipher_ctx(SSL *s);
int ssl_clear_bad_session(SSL *s);
CERT *ssl_cert_new(void);
CERT *ssl_cert_dup(CERT *cert);
void ssl_cert_clear_certs(CERT *c);
void ssl_cert_free(CERT *c);
int ssl_get_new_session(SSL *ssl, int is_server);
enum ssl_session_result_t {
ssl_session_success,
ssl_session_error,
ssl_session_retry,
};
/* ssl_get_prev_session looks up the previous session based on |ctx|. On
* success, it sets |*out_session| to the session or NULL if none was found. It
* sets |*out_send_ticket| to whether a ticket should be sent at the end of the
* handshake. If the session could not be looked up synchronously, it returns
* |ssl_session_retry| and should be called again. Otherwise, it returns
* |ssl_session_error|. */
enum ssl_session_result_t ssl_get_prev_session(
SSL *ssl, SSL_SESSION **out_session, int *out_send_ticket,
const struct ssl_early_callback_ctx *ctx);
STACK_OF(SSL_CIPHER) *ssl_bytes_to_cipher_list(SSL *s, const CBS *cbs);
struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_dup(
struct ssl_cipher_preference_list_st *cipher_list);
void ssl_cipher_preference_list_free(
struct ssl_cipher_preference_list_st *cipher_list);
struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_from_ciphers(
STACK_OF(SSL_CIPHER) *ciphers);
struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences(SSL *s);
int ssl_cert_set0_chain(CERT *cert, STACK_OF(X509) *chain);
int ssl_cert_set1_chain(CERT *cert, STACK_OF(X509) *chain);
int ssl_cert_add0_chain_cert(CERT *cert, X509 *x509);
int ssl_cert_add1_chain_cert(CERT *cert, X509 *x509);
void ssl_cert_set_cert_cb(CERT *cert,
int (*cb)(SSL *ssl, void *arg), void *arg);
int ssl_verify_cert_chain(SSL *ssl, STACK_OF(X509) *cert_chain);
int ssl_add_cert_chain(SSL *s, unsigned long *l);
void ssl_update_cache(SSL *ssl, int mode);
/* ssl_get_compatible_server_ciphers determines the key exchange and
* authentication cipher suite masks compatible with the server configuration
* and current ClientHello parameters of |s|. It sets |*out_mask_k| to the key
* exchange mask and |*out_mask_a| to the authentication mask. */
void ssl_get_compatible_server_ciphers(SSL *s, uint32_t *out_mask_k,
uint32_t *out_mask_a);
STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s);
int ssl_verify_alarm_type(long type);
/* ssl_fill_hello_random fills a client_random or server_random field of length
* |len|. It returns one on success and zero on failure. */
int ssl_fill_hello_random(uint8_t *out, size_t len, int is_server);
int ssl3_send_server_certificate(SSL *s);
int ssl3_send_new_session_ticket(SSL *s);
int ssl3_send_certificate_status(SSL *s);
int ssl3_get_finished(SSL *s, int state_a, int state_b);
int ssl3_send_change_cipher_spec(SSL *s, int state_a, int state_b);
int ssl3_prf(SSL *s, uint8_t *out, size_t out_len, const uint8_t *secret,
size_t secret_len, const char *label, size_t label_len,
const uint8_t *seed1, size_t seed1_len,
const uint8_t *seed2, size_t seed2_len);
void ssl3_cleanup_key_block(SSL *s);
int ssl3_do_write(SSL *s, int type);
int ssl3_send_alert(SSL *s, int level, int desc);
int ssl3_get_req_cert_type(SSL *s, uint8_t *p);
long ssl3_get_message(SSL *s, int header_state, int body_state, int msg_type,
long max, enum ssl_hash_message_t hash_message, int *ok);
/* ssl3_hash_current_message incorporates the current handshake message into the
* handshake hash. It returns one on success and zero on allocation failure. */
int ssl3_hash_current_message(SSL *s);
/* ssl3_cert_verify_hash writes the CertificateVerify hash into the bytes
* pointed to by |out| and writes the number of bytes to |*out_len|. |out| must
* have room for EVP_MAX_MD_SIZE bytes. For TLS 1.2 and up, |*out_md| is used
* for the hash function, otherwise the hash function depends on |pkey_type|
* and is written to |*out_md|. It returns one on success and zero on
* failure. */
int ssl3_cert_verify_hash(SSL *s, uint8_t *out, size_t *out_len,
const EVP_MD **out_md, int pkey_type);
int ssl3_send_finished(SSL *s, int a, int b, const char *sender, int slen);
int ssl3_supports_cipher(const SSL_CIPHER *cipher);
int ssl3_dispatch_alert(SSL *s);
int ssl3_expect_change_cipher_spec(SSL *s);
int ssl3_read_app_data(SSL *ssl, uint8_t *buf, int len, int peek);
void ssl3_read_close_notify(SSL *ssl);
int ssl3_read_bytes(SSL *s, int type, uint8_t *buf, int len, int peek);
int ssl3_write_app_data(SSL *ssl, const void *buf, int len);
int ssl3_write_bytes(SSL *s, int type, const void *buf, int len);
int ssl3_final_finish_mac(SSL *s, const char *sender, int slen, uint8_t *p);
int ssl3_cert_verify_mac(SSL *s, int md_nid, uint8_t *p);
int ssl3_output_cert_chain(SSL *s);
const SSL_CIPHER *ssl3_choose_cipher(
SSL *ssl, STACK_OF(SSL_CIPHER) *clnt,
struct ssl_cipher_preference_list_st *srvr);
int ssl3_new(SSL *s);
void ssl3_free(SSL *s);
int ssl3_accept(SSL *s);
int ssl3_connect(SSL *s);
/* ssl3_record_sequence_update increments the sequence number in |seq|. It
* returns one on success and zero on wraparound. */
int ssl3_record_sequence_update(uint8_t *seq, size_t seq_len);
int ssl3_do_change_cipher_spec(SSL *ssl);
int ssl3_set_handshake_header(SSL *s, int htype, unsigned long len);
int ssl3_handshake_write(SSL *s);
int dtls1_do_write(SSL *s, int type, enum dtls1_use_epoch_t use_epoch);
int dtls1_read_app_data(SSL *ssl, uint8_t *buf, int len, int peek);
void dtls1_read_close_notify(SSL *ssl);
int dtls1_read_bytes(SSL *s, int type, uint8_t *buf, int len, int peek);
int ssl3_write_pending(SSL *s, int type, const uint8_t *buf, unsigned int len);
void dtls1_set_message_header(SSL *s, uint8_t mt, unsigned long len,
unsigned short seq_num, unsigned long frag_off,
unsigned long frag_len);
int dtls1_write_app_data(SSL *s, const void *buf, int len);
int dtls1_write_bytes(SSL *s, int type, const void *buf, int len,
enum dtls1_use_epoch_t use_epoch);
int dtls1_send_change_cipher_spec(SSL *s, int a, int b);
int dtls1_send_finished(SSL *s, int a, int b, const char *sender, int slen);
int dtls1_read_failed(SSL *s, int code);
int dtls1_buffer_message(SSL *s, int ccs);
int dtls1_get_queue_priority(unsigned short seq, int is_ccs);
int dtls1_retransmit_buffered_messages(SSL *s);
void dtls1_clear_record_buffer(SSL *s);
void dtls1_get_message_header(uint8_t *data, struct hm_header_st *msg_hdr);
void dtls1_reset_seq_numbers(SSL *s, int rw);
int dtls1_check_timeout_num(SSL *s);
int dtls1_set_handshake_header(SSL *s, int type, unsigned long len);
int dtls1_handshake_write(SSL *s);
int dtls1_supports_cipher(const SSL_CIPHER *cipher);
void dtls1_start_timer(SSL *s);
void dtls1_stop_timer(SSL *s);
int dtls1_is_timer_expired(SSL *s);
void dtls1_double_timeout(SSL *s);
unsigned int dtls1_min_mtu(void);
void dtls1_hm_fragment_free(hm_fragment *frag);
/* some client-only functions */
int ssl3_send_client_hello(SSL *ssl);
int ssl3_get_server_hello(SSL *s);
int ssl3_get_certificate_request(SSL *s);
int ssl3_get_new_session_ticket(SSL *s);
int ssl3_get_cert_status(SSL *s);
int ssl3_get_server_done(SSL *s);
int ssl3_send_cert_verify(SSL *s);
int ssl3_send_client_certificate(SSL *s);
int ssl_do_client_cert_cb(SSL *s, X509 **px509, EVP_PKEY **ppkey);
int ssl3_send_client_key_exchange(SSL *s);
int ssl3_get_server_key_exchange(SSL *s);
int ssl3_get_server_certificate(SSL *s);
int ssl3_send_next_proto(SSL *ssl);
int ssl3_send_channel_id(SSL *ssl);
int ssl3_verify_server_cert(SSL *s);
/* some server-only functions */
int ssl3_get_initial_bytes(SSL *s);
int ssl3_get_v2_client_hello(SSL *s);
int ssl3_get_client_hello(SSL *s);
int ssl3_send_server_hello(SSL *ssl);
int ssl3_send_server_key_exchange(SSL *s);
int ssl3_send_certificate_request(SSL *s);
int ssl3_send_server_done(SSL *s);
int ssl3_get_client_certificate(SSL *s);
int ssl3_get_client_key_exchange(SSL *s);
int ssl3_get_cert_verify(SSL *s);
int ssl3_get_next_proto(SSL *s);
int ssl3_get_channel_id(SSL *s);
int dtls1_new(SSL *s);
int dtls1_accept(SSL *s);
int dtls1_connect(SSL *s);
void dtls1_free(SSL *s);
long dtls1_get_message(SSL *s, int st1, int stn, int mt, long max,
enum ssl_hash_message_t hash_message, int *ok);
int dtls1_dispatch_alert(SSL *s);
int ssl_init_wbio_buffer(SSL *s, int push);
void ssl_free_wbio_buffer(SSL *s);
/* tls1_prf computes the TLS PRF function for |s| as described in RFC 5246,
* section 5 and RFC 2246 section 5. It writes |out_len| bytes to |out|, using
* |secret| as the secret and |label| as the label. |seed1| and |seed2| are
* concatenated to form the seed parameter. It returns one on success and zero
* on failure. */
int tls1_prf(SSL *s, uint8_t *out, size_t out_len, const uint8_t *secret,
size_t secret_len, const char *label, size_t label_len,
const uint8_t *seed1, size_t seed1_len,
const uint8_t *seed2, size_t seed2_len);
int tls1_change_cipher_state(SSL *s, int which);
int tls1_setup_key_block(SSL *s);
int tls1_handshake_digest(SSL *s, uint8_t *out, size_t out_len);
int tls1_final_finish_mac(SSL *s, const char *str, int slen, uint8_t *p);
int tls1_cert_verify_mac(SSL *s, int md_nid, uint8_t *p);
int tls1_generate_master_secret(SSL *s, uint8_t *out, const uint8_t *premaster,
size_t premaster_len);
int tls1_export_keying_material(SSL *s, uint8_t *out, size_t out_len,
const char *label, size_t label_len,
const uint8_t *context, size_t context_len,
int use_context);
int tls1_alert_code(int code);
int ssl3_alert_code(int code);
char ssl_early_callback_init(struct ssl_early_callback_ctx *ctx);
int tls1_ec_curve_id2nid(uint16_t curve_id);
int tls1_ec_nid2curve_id(uint16_t *out_curve_id, int nid);
/* tls1_ec_curve_id2name returns a human-readable name for the
* curve specified by the TLS curve id in |curve_id|. If the
* curve is unknown, it returns NULL. */
const char* tls1_ec_curve_id2name(uint16_t curve_id);
/* tls1_check_curve parses ECParameters out of |cbs|, modifying it. It
* checks the curve is one of our preferences and writes the
* NamedCurve value to |*out_curve_id|. It returns one on success and
* zero on error. */
int tls1_check_curve(SSL *s, CBS *cbs, uint16_t *out_curve_id);
/* tls1_get_shared_curve returns the NID of the first preferred shared curve
* between client and server preferences. If none can be found, it returns
* NID_undef. */
int tls1_get_shared_curve(SSL *s);
/* tls1_set_curves converts the array of |ncurves| NIDs pointed to by |curves|
* into a newly allocated array of TLS curve IDs. On success, the function
* returns one and writes the array to |*out_curve_ids| and its size to
* |*out_curve_ids_len|. Otherwise, it returns zero. */
int tls1_set_curves(uint16_t **out_curve_ids, size_t *out_curve_ids_len,
const int *curves, size_t ncurves);
/* tls1_check_ec_cert returns one if |x| is an ECC certificate with curve and
* point format compatible with the client's preferences. Otherwise it returns
* zero. */
int tls1_check_ec_cert(SSL *s, X509 *x);
/* tls1_check_ec_tmp_key returns one if the EC temporary key is compatible with
* client extensions and zero otherwise. */
int tls1_check_ec_tmp_key(SSL *s);
int tls1_shared_list(SSL *s, const uint8_t *l1, size_t l1len, const uint8_t *l2,
size_t l2len, int nmatch);
/* ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It
* returns one on success and zero on failure. The |header_len| argument is the
* length of the ClientHello written so far and is used to compute the padding
* length. (It does not include the record header.) */
int ssl_add_clienthello_tlsext(SSL *ssl, CBB *out, size_t header_len);
int ssl_add_serverhello_tlsext(SSL *ssl, CBB *out);
int ssl_parse_clienthello_tlsext(SSL *s, CBS *cbs);
int ssl_parse_serverhello_tlsext(SSL *s, CBS *cbs);
#define tlsext_tick_md EVP_sha256
/* tls_process_ticket processes the session ticket extension. On success, it
* sets |*out_session| to the decrypted session or NULL if the ticket was
* rejected. It sets |*out_send_ticket| to whether a new ticket should be sent
* at the end of the handshake. It returns one on success and zero on fatal
* error. */
int tls_process_ticket(SSL *ssl, SSL_SESSION **out_session,
int *out_send_ticket, const uint8_t *ticket,
size_t ticket_len, const uint8_t *session_id,
size_t session_id_len);
/* tls12_get_sigandhash assembles the SignatureAndHashAlgorithm corresponding to
* |ssl|'s private key and |md|. The two-byte value is written to |p|. It
* returns one on success and zero on failure. */
int tls12_get_sigandhash(SSL *ssl, uint8_t *p, const EVP_MD *md);
int tls12_get_sigid(int pkey_type);
const EVP_MD *tls12_get_hash(uint8_t hash_alg);
/* tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
* it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
* one on success and zero on failure. */
int tls1_channel_id_hash(SSL *ssl, uint8_t *out, size_t *out_len);
int tls1_record_handshake_hashes_for_channel_id(SSL *s);
/* ssl_ctx_log_rsa_client_key_exchange logs |premaster| to |ctx|, if logging is
* enabled. It returns one on success and zero on failure. The entry is
* identified by the first 8 bytes of |encrypted_premaster|. */
int ssl_ctx_log_rsa_client_key_exchange(SSL_CTX *ctx,
const uint8_t *encrypted_premaster,
size_t encrypted_premaster_len,
const uint8_t *premaster,
size_t premaster_len);
/* ssl_ctx_log_master_secret logs |master| to |ctx|, if logging is enabled. It
* returns one on success and zero on failure. The entry is identified by
* |client_random|. */
int ssl_ctx_log_master_secret(SSL_CTX *ctx, const uint8_t *client_random,
size_t client_random_len, const uint8_t *master,
size_t master_len);
/* ssl3_can_false_start returns one if |s| is allowed to False Start and zero
* otherwise. */
int ssl3_can_false_start(const SSL *s);
/* ssl3_get_enc_method returns the SSL3_ENC_METHOD corresponding to
* |version|. */
const SSL3_ENC_METHOD *ssl3_get_enc_method(uint16_t version);
/* ssl3_get_max_server_version returns the maximum SSL/TLS version number
* supported by |s| as a server, or zero if all versions are disabled. */
uint16_t ssl3_get_max_server_version(const SSL *s);
/* ssl3_get_mutual_version selects the protocol version on |s| for a client
* which advertises |client_version|. If no suitable version exists, it returns
* zero. */
uint16_t ssl3_get_mutual_version(SSL *s, uint16_t client_version);
/* ssl3_get_max_client_version returns the maximum protocol version configured
* for the client. It is guaranteed that the set of allowed versions at or below
* this maximum version is contiguous. If all versions are disabled, it returns
* zero. */
uint16_t ssl3_get_max_client_version(SSL *s);
/* ssl3_is_version_enabled returns one if |version| is an enabled protocol
* version for |s| and zero otherwise. */
int ssl3_is_version_enabled(SSL *s, uint16_t version);
/* ssl3_version_from_wire maps |wire_version| to a protocol version. For
* SSLv3/TLS, the version is returned as-is. For DTLS, the corresponding TLS
* version is used. Note that this mapping is not injective but preserves
* comparisons.
*
* TODO(davidben): To normalize some DTLS-specific code, move away from using
* the wire version except at API boundaries. */
uint16_t ssl3_version_from_wire(SSL *s, uint16_t wire_version);
uint32_t ssl_get_algorithm_prf(SSL *s);
int tls1_parse_peer_sigalgs(SSL *s, const CBS *sigalgs);
/* tls1_choose_signing_digest returns a digest for use with |ssl|'s private key
* based on the peer's preferences the digests supported. */
const EVP_MD *tls1_choose_signing_digest(SSL *ssl);
size_t tls12_get_psigalgs(SSL *s, const uint8_t **psigs);
int tls12_check_peer_sigalg(const EVP_MD **out_md, int *out_alert, SSL *s,
CBS *cbs, EVP_PKEY *pkey);
void ssl_set_client_disabled(SSL *s);
#endif /* OPENSSL_HEADER_SSL_INTERNAL_H */