blob: 64a0ee8a4e4e99d3b757fa77eeca24d25aaa2292 [file] [log] [blame]
/* ====================================================================
* Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==================================================================== */
#include <openssl/aead.h>
#include <openssl/aes.h>
#include <openssl/cipher.h>
#include <openssl/cpu.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/modes.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include "internal.h"
#include "../modes/internal.h"
typedef struct {
union {
double align;
AES_KEY ks;
} ks;
block128_f block;
union {
cbc128_f cbc;
ctr128_f ctr;
} stream;
} EVP_AES_KEY;
typedef struct {
union {
double align;
AES_KEY ks;
} ks; /* AES key schedule to use */
int key_set; /* Set if key initialised */
int iv_set; /* Set if an iv is set */
GCM128_CONTEXT gcm;
uint8_t *iv; /* Temporary IV store */
int ivlen; /* IV length */
int taglen;
int iv_gen; /* It is OK to generate IVs */
ctr128_f ctr;
} EVP_AES_GCM_CTX;
#if !defined(OPENSSL_NO_ASM) && \
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
#define VPAES
extern unsigned int OPENSSL_ia32cap_P[];
static char vpaes_capable(void) {
return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0;
}
#if defined(OPENSSL_X86_64)
#define BSAES
static char bsaes_capable(void) {
return vpaes_capable();
}
#endif
#elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_ARM)
#include "../arm_arch.h"
#if __ARM_ARCH__ >= 7
#define BSAES
static char bsaes_capable(void) {
return CRYPTO_is_NEON_capable();
}
#endif /* __ARM_ARCH__ >= 7 */
#endif /* OPENSSL_ARM */
#if defined(BSAES)
/* On platforms where BSAES gets defined (just above), then these functions are
* provided by asm. */
void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t ivec[16], int enc);
void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, const uint8_t ivec[16]);
#else
static char bsaes_capable(void) {
return 0;
}
/* On other platforms, bsaes_capable() will always return false and so the
* following will never be called. */
void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t ivec[16], int enc) {
abort();
}
void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, const uint8_t ivec[16]) {
abort();
}
#endif
#if defined(VPAES)
/* On platforms where VPAES gets defined (just above), then these functions are
* provided by asm. */
int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t *ivec, int enc);
#else
static char vpaes_capable(void) {
return 0;
}
/* On other platforms, vpaes_capable() will always return false and so the
* following will never be called. */
int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) {
abort();
}
int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) {
abort();
}
void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
abort();
}
void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
abort();
}
void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t *ivec, int enc) {
abort();
}
#endif
#if !defined(OPENSSL_NO_ASM) && \
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
int aesni_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
void aesni_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
void aesni_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, int enc);
void aesni_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t *ivec, int enc);
void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
const void *key, const uint8_t *ivec);
#if defined(OPENSSL_X86_64)
size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const void *key, uint8_t ivec[16], uint64_t *Xi);
#define AES_gcm_encrypt aesni_gcm_encrypt
size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const void *key, uint8_t ivec[16], uint64_t *Xi);
#define AES_gcm_decrypt aesni_gcm_decrypt
void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
size_t len);
#define AES_GCM_ASM(gctx) \
(gctx->ctr == aesni_ctr32_encrypt_blocks && gctx->gcm.ghash == gcm_ghash_avx)
#endif /* OPENSSL_X86_64 */
#else
/* On other platforms, aesni_capable() will always return false and so the
* following will never be called. */
void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
abort();
}
int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) {
abort();
}
void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
const void *key, const uint8_t *ivec) {
abort();
}
#endif
static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
const uint8_t *iv, int enc) {
int ret, mode;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) {
ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = (block128_f)AES_decrypt;
dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
} else if (vpaes_capable()) {
ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = (block128_f)vpaes_decrypt;
dat->stream.cbc =
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
} else {
ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = (block128_f)AES_decrypt;
dat->stream.cbc =
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
}
} else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) {
ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = (block128_f)AES_encrypt;
dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
} else if (vpaes_capable()) {
ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = (block128_f)vpaes_encrypt;
dat->stream.cbc =
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
} else {
ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = (block128_f)AES_encrypt;
dat->stream.cbc =
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
}
if (ret < 0) {
OPENSSL_PUT_ERROR(CIPHER, aes_init_key, CIPHER_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len) {
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (dat->stream.cbc) {
(*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt);
} else if (ctx->encrypt) {
CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
} else {
CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
}
return 1;
}
static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len) {
size_t bl = ctx->cipher->block_size;
size_t i;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (len < bl) {
return 1;
}
for (i = 0, len -= bl; i <= len; i += bl) {
(*dat->block)(in + i, out + i, &dat->ks);
}
return 1;
}
static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len) {
unsigned int num = ctx->num;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (dat->stream.ctr) {
CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num,
dat->stream.ctr);
} else {
CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num,
dat->block);
}
ctx->num = (size_t)num;
return 1;
}
static ctr128_f aes_gcm_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx,
const uint8_t *key, size_t key_len) {
if (bsaes_capable()) {
AES_set_encrypt_key(key, key_len * 8, aes_key);
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
return (ctr128_f)bsaes_ctr32_encrypt_blocks;
}
if (vpaes_capable()) {
vpaes_set_encrypt_key(key, key_len * 8, aes_key);
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt);
return NULL;
}
AES_set_encrypt_key(key, key_len * 8, aes_key);
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
return NULL;
}
static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
const uint8_t *iv, int enc) {
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
if (!iv && !key) {
return 1;
}
if (key) {
gctx->ctr = aes_gcm_set_key(&gctx->ks.ks, &gctx->gcm, key, ctx->key_len);
/* If we have an iv can set it directly, otherwise use saved IV. */
if (iv == NULL && gctx->iv_set) {
iv = gctx->iv;
}
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (gctx->key_set) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
} else {
memcpy(gctx->iv, iv, gctx->ivlen);
}
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) {
EVP_AES_GCM_CTX *gctx = c->cipher_data;
OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
if (gctx->iv != c->iv) {
OPENSSL_free(gctx->iv);
}
return 1;
}
/* increment counter (64-bit int) by 1 */
static void ctr64_inc(uint8_t *counter) {
int n = 8;
uint8_t c;
do {
--n;
c = counter[n];
++c;
counter[n] = c;
if (c) {
return;
}
} while (n);
}
static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) {
EVP_AES_GCM_CTX *gctx = c->cipher_data;
switch (type) {
case EVP_CTRL_INIT:
gctx->key_set = 0;
gctx->iv_set = 0;
gctx->ivlen = c->cipher->iv_len;
gctx->iv = c->iv;
gctx->taglen = -1;
gctx->iv_gen = 0;
return 1;
case EVP_CTRL_GCM_SET_IVLEN:
if (arg <= 0) {
return 0;
}
/* Allocate memory for IV if needed */
if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) {
if (gctx->iv != c->iv) {
OPENSSL_free(gctx->iv);
}
gctx->iv = OPENSSL_malloc(arg);
if (!gctx->iv) {
return 0;
}
}
gctx->ivlen = arg;
return 1;
case EVP_CTRL_GCM_SET_TAG:
if (arg <= 0 || arg > 16 || c->encrypt) {
return 0;
}
memcpy(c->buf, ptr, arg);
gctx->taglen = arg;
return 1;
case EVP_CTRL_GCM_GET_TAG:
if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) {
return 0;
}
memcpy(ptr, c->buf, arg);
return 1;
case EVP_CTRL_GCM_SET_IV_FIXED:
/* Special case: -1 length restores whole IV */
if (arg == -1) {
memcpy(gctx->iv, ptr, gctx->ivlen);
gctx->iv_gen = 1;
return 1;
}
/* Fixed field must be at least 4 bytes and invocation field
* at least 8. */
if (arg < 4 || (gctx->ivlen - arg) < 8) {
return 0;
}
if (arg) {
memcpy(gctx->iv, ptr, arg);
}
if (c->encrypt &&
RAND_pseudo_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) {
return 0;
}
gctx->iv_gen = 1;
return 1;
case EVP_CTRL_GCM_IV_GEN:
if (gctx->iv_gen == 0 || gctx->key_set == 0) {
return 0;
}
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
if (arg <= 0 || arg > gctx->ivlen) {
arg = gctx->ivlen;
}
memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
/* Invocation field will be at least 8 bytes in size and
* so no need to check wrap around or increment more than
* last 8 bytes. */
ctr64_inc(gctx->iv + gctx->ivlen - 8);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_GCM_SET_IV_INV:
if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) {
return 0;
}
memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_COPY: {
EVP_CIPHER_CTX *out = ptr;
EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
if (gctx->gcm.key) {
if (gctx->gcm.key != &gctx->ks) {
return 0;
}
gctx_out->gcm.key = &gctx_out->ks;
}
if (gctx->iv == c->iv) {
gctx_out->iv = out->iv;
} else {
gctx_out->iv = OPENSSL_malloc(gctx->ivlen);
if (!gctx_out->iv) {
return 0;
}
memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
}
return 1;
}
default:
return -1;
}
}
static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t len) {
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
/* If not set up, return error */
if (!gctx->key_set) {
return -1;
}
if (!gctx->iv_set) {
return -1;
}
if (in) {
if (out == NULL) {
if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) {
return -1;
}
} else if (ctx->encrypt) {
if (gctx->ctr) {
size_t bulk = 0;
#if defined(AES_GCM_ASM)
if (len >= 32 && AES_GCM_ASM(gctx)) {
size_t res = (16 - gctx->gcm.mres) % 16;
if (!CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) {
return -1;
}
bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key,
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
bulk += res;
}
#endif
if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk,
len - bulk, gctx->ctr)) {
return -1;
}
} else {
size_t bulk = 0;
if (!CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk,
len - bulk)) {
return -1;
}
}
} else {
if (gctx->ctr) {
size_t bulk = 0;
#if defined(AES_GCM_ASM)
if (len >= 16 && AES_GCM_ASM(gctx)) {
size_t res = (16 - gctx->gcm.mres) % 16;
if (!CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) {
return -1;
}
bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key,
gctx->gcm.Yi.c, gctx->gcm.Xi.u);
gctx->gcm.len.u[1] += bulk;
bulk += res;
}
#endif
if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk,
len - bulk, gctx->ctr)) {
return -1;
}
} else {
size_t bulk = 0;
if (!CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk,
len - bulk)) {
return -1;
}
}
}
return len;
} else {
if (!ctx->encrypt) {
if (gctx->taglen < 0 ||
!CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) {
return -1;
}
gctx->iv_set = 0;
return 0;
}
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
gctx->taglen = 16;
/* Don't reuse the IV */
gctx->iv_set = 0;
return 0;
}
}
static const EVP_CIPHER aes_128_cbc = {
NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */,
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
NULL /* app_data */, aes_init_key, aes_cbc_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aes_128_ctr = {
NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */,
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
NULL /* app_data */, aes_init_key, aes_ctr_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aes_128_ecb = {
NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */,
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
NULL /* app_data */, aes_init_key, aes_ecb_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aes_128_gcm = {
NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */,
sizeof(EVP_AES_GCM_CTX),
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
EVP_CIPH_FLAG_AEAD_CIPHER,
NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
aes_gcm_ctrl};
static const EVP_CIPHER aes_256_cbc = {
NID_aes_128_cbc, 16 /* block_size */, 32 /* key_size */,
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
NULL /* app_data */, aes_init_key, aes_cbc_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aes_256_ctr = {
NID_aes_128_ctr, 1 /* block_size */, 32 /* key_size */,
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
NULL /* app_data */, aes_init_key, aes_ctr_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aes_256_ecb = {
NID_aes_128_ecb, 16 /* block_size */, 32 /* key_size */,
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
NULL /* app_data */, aes_init_key, aes_ecb_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aes_256_gcm = {
NID_aes_128_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */,
sizeof(EVP_AES_GCM_CTX),
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
EVP_CIPH_FLAG_AEAD_CIPHER,
NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
aes_gcm_ctrl};
#if !defined(OPENSSL_NO_ASM) && \
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
/* AES-NI section. */
static char aesni_capable(void) {
return (OPENSSL_ia32cap_P[1] & (1 << (57 - 32))) != 0;
}
static int aesni_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
const uint8_t *iv, int enc) {
int ret, mode;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
dat->block = (block128_f)aesni_decrypt;
dat->stream.cbc =
mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL;
} else {
ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
dat->block = (block128_f)aesni_encrypt;
if (mode == EVP_CIPH_CBC_MODE) {
dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
} else if (mode == EVP_CIPH_CTR_MODE) {
dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
} else {
dat->stream.cbc = NULL;
}
}
if (ret < 0) {
OPENSSL_PUT_ERROR(CIPHER, aesni_init_key, CIPHER_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
const uint8_t *in, size_t len) {
aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt);
return 1;
}
static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
const uint8_t *in, size_t len) {
size_t bl = ctx->cipher->block_size;
if (len < bl) {
return 1;
}
aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
return 1;
}
static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
const uint8_t *iv, int enc) {
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
if (!iv && !key) {
return 1;
}
if (key) {
aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt);
gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
/* If we have an iv can set it directly, otherwise use
* saved IV. */
if (iv == NULL && gctx->iv_set) {
iv = gctx->iv;
}
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (gctx->key_set) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
} else {
memcpy(gctx->iv, iv, gctx->ivlen);
}
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
static const EVP_CIPHER aesni_128_cbc = {
NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */,
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
NULL /* app_data */, aesni_init_key, aesni_cbc_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aesni_128_ctr = {
NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */,
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
NULL /* app_data */, aesni_init_key, aes_ctr_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aesni_128_ecb = {
NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */,
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
NULL /* app_data */, aesni_init_key, aesni_ecb_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aesni_128_gcm = {
NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */,
sizeof(EVP_AES_GCM_CTX),
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
EVP_CIPH_FLAG_AEAD_CIPHER,
NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
aes_gcm_ctrl};
static const EVP_CIPHER aesni_256_cbc = {
NID_aes_128_cbc, 16 /* block_size */, 32 /* key_size */,
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
NULL /* app_data */, aesni_init_key, aesni_cbc_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aesni_256_ctr = {
NID_aes_128_ctr, 1 /* block_size */, 32 /* key_size */,
16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
NULL /* app_data */, aesni_init_key, aes_ctr_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aesni_256_ecb = {
NID_aes_128_ecb, 16 /* block_size */, 32 /* key_size */,
0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
NULL /* app_data */, aesni_init_key, aesni_ecb_cipher,
NULL /* cleanup */, NULL /* ctrl */};
static const EVP_CIPHER aesni_256_gcm = {
NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */,
sizeof(EVP_AES_GCM_CTX),
EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY |
EVP_CIPH_FLAG_AEAD_CIPHER,
NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
aes_gcm_ctrl};
#define EVP_CIPHER_FUNCTION(keybits, mode) \
const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
if (aesni_capable()) { \
return &aesni_##keybits##_##mode; \
} else { \
return &aes_##keybits##_##mode; \
} \
}
#else /* ^^^ OPENSSL_X86_64 || OPENSSL_X86 */
static char aesni_capable(void) {
return 0;
}
#define EVP_CIPHER_FUNCTION(keybits, mode) \
const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
return &aes_##keybits##_##mode; \
}
#endif
EVP_CIPHER_FUNCTION(128, cbc)
EVP_CIPHER_FUNCTION(128, ctr)
EVP_CIPHER_FUNCTION(128, ecb)
EVP_CIPHER_FUNCTION(128, gcm)
EVP_CIPHER_FUNCTION(256, cbc)
EVP_CIPHER_FUNCTION(256, ctr)
EVP_CIPHER_FUNCTION(256, ecb)
EVP_CIPHER_FUNCTION(256, gcm)
#define EVP_AEAD_AES_GCM_TAG_LEN 16
struct aead_aes_gcm_ctx {
union {
double align;
AES_KEY ks;
} ks;
GCM128_CONTEXT gcm;
ctr128_f ctr;
uint8_t tag_len;
};
static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len) {
struct aead_aes_gcm_ctx *gcm_ctx;
const size_t key_bits = key_len * 8;
if (key_bits != 128 && key_bits != 256) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_init, CIPHER_R_BAD_KEY_LENGTH);
return 0; /* EVP_AEAD_CTX_init should catch this. */
}
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
}
if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_init, CIPHER_R_TAG_TOO_LARGE);
return 0;
}
gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx));
if (gcm_ctx == NULL) {
return 0;
}
if (aesni_capable()) {
aesni_set_encrypt_key(key, key_len * 8, &gcm_ctx->ks.ks);
CRYPTO_gcm128_init(&gcm_ctx->gcm, &gcm_ctx->ks.ks,
(block128_f)aesni_encrypt);
gcm_ctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
} else {
gcm_ctx->ctr =
aes_gcm_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, key, key_len);
}
gcm_ctx->tag_len = tag_len;
ctx->aead_state = gcm_ctx;
return 1;
}
static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {
struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
OPENSSL_cleanse(gcm_ctx, sizeof(struct aead_aes_gcm_ctx));
OPENSSL_free(gcm_ctx);
}
static int aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len) {
size_t bulk = 0;
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
GCM128_CONTEXT gcm;
if (in_len + gcm_ctx->tag_len < in_len) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_seal, CIPHER_R_TOO_LARGE);
return 0;
}
if (max_out_len < in_len + gcm_ctx->tag_len) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_seal, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
return 0;
}
if (gcm_ctx->ctr) {
if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk, in_len - bulk,
gcm_ctx->ctr)) {
return 0;
}
} else {
if (!CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk, in_len - bulk)) {
return 0;
}
}
CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len);
*out_len = in_len + gcm_ctx->tag_len;
return 1;
}
static int aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len) {
size_t bulk = 0;
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN];
size_t plaintext_len;
GCM128_CONTEXT gcm;
if (in_len < gcm_ctx->tag_len) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT);
return 0;
}
plaintext_len = in_len - gcm_ctx->tag_len;
if (max_out_len < plaintext_len) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
return 0;
}
if (gcm_ctx->ctr) {
if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk,
in_len - bulk - gcm_ctx->tag_len,
gcm_ctx->ctr)) {
return 0;
}
} else {
if (!CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk,
in_len - bulk - gcm_ctx->tag_len)) {
return 0;
}
}
CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len);
if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT);
return 0;
}
*out_len = plaintext_len;
return 1;
}
static const EVP_AEAD aead_aes_128_gcm = {
16, /* key len */
12, /* nonce len */
EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */
EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */
aead_aes_gcm_init, aead_aes_gcm_cleanup,
aead_aes_gcm_seal, aead_aes_gcm_open,
};
static const EVP_AEAD aead_aes_256_gcm = {
32, /* key len */
12, /* nonce len */
EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */
EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */
aead_aes_gcm_init, aead_aes_gcm_cleanup,
aead_aes_gcm_seal, aead_aes_gcm_open,
};
const EVP_AEAD *EVP_aead_aes_128_gcm(void) { return &aead_aes_128_gcm; }
const EVP_AEAD *EVP_aead_aes_256_gcm(void) { return &aead_aes_256_gcm; }
/* AES Key Wrap is specified in
* http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf
* or https://tools.ietf.org/html/rfc3394 */
struct aead_aes_key_wrap_ctx {
uint8_t key[32];
unsigned key_bits;
};
static int aead_aes_key_wrap_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len) {
struct aead_aes_key_wrap_ctx *kw_ctx;
const size_t key_bits = key_len * 8;
if (key_bits != 128 && key_bits != 256) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_init, CIPHER_R_BAD_KEY_LENGTH);
return 0; /* EVP_AEAD_CTX_init should catch this. */
}
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
tag_len = 8;
}
if (tag_len != 8) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_init,
CIPHER_R_UNSUPPORTED_TAG_SIZE);
return 0;
}
kw_ctx = OPENSSL_malloc(sizeof(struct aead_aes_key_wrap_ctx));
if (kw_ctx == NULL) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_init, ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(kw_ctx->key, key, key_len);
kw_ctx->key_bits = key_bits;
ctx->aead_state = kw_ctx;
return 1;
}
static void aead_aes_key_wrap_cleanup(EVP_AEAD_CTX *ctx) {
struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state;
OPENSSL_cleanse(kw_ctx, sizeof(struct aead_aes_key_wrap_ctx));
OPENSSL_free(kw_ctx);
}
/* kDefaultAESKeyWrapNonce is the default nonce value given in 2.2.3.1. */
static const uint8_t kDefaultAESKeyWrapNonce[8] = {0xa6, 0xa6, 0xa6, 0xa6,
0xa6, 0xa6, 0xa6, 0xa6};
static int aead_aes_key_wrap_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len) {
const struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state;
union {
double align;
AES_KEY ks;
} ks;
/* Variables in this function match up with the variables in the second half
* of section 2.2.1. */
unsigned i, j, n;
uint8_t A[AES_BLOCK_SIZE];
if (ad_len != 0) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
CIPHER_R_UNSUPPORTED_AD_SIZE);
return 0;
}
if (nonce_len == 0) {
nonce = kDefaultAESKeyWrapNonce;
nonce_len = sizeof(kDefaultAESKeyWrapNonce);
}
if (nonce_len != 8) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
CIPHER_R_UNSUPPORTED_NONCE_SIZE);
return 0;
}
if (in_len % 8 != 0) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
CIPHER_R_UNSUPPORTED_INPUT_SIZE);
return 0;
}
/* The code below only handles a 32-bit |t| thus 6*|n| must be less than
* 2^32, where |n| is |in_len| / 8. So in_len < 4/3 * 2^32 and we
* conservatively cap it to 2^32-16 to stop 32-bit platforms complaining that
* a comparision is always true. */
if (in_len > 0xfffffff0) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_TOO_LARGE);
return 0;
}
n = in_len / 8;
if (n < 2) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
CIPHER_R_UNSUPPORTED_INPUT_SIZE);
return 0;
}
if (in_len + 8 < in_len) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_TOO_LARGE);
return 0;
}
if (max_out_len < in_len + 8) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (AES_set_encrypt_key(kw_ctx->key, kw_ctx->key_bits, &ks.ks) < 0) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
CIPHER_R_AES_KEY_SETUP_FAILED);
return 0;
}
memmove(out + 8, in, in_len);
memcpy(A, nonce, 8);
for (j = 0; j < 6; j++) {
for (i = 1; i <= n; i++) {
uint32_t t;
memcpy(A + 8, out + 8 * i, 8);
AES_encrypt(A, A, &ks.ks);
t = n * j + i;
A[7] ^= t & 0xff;
A[6] ^= (t >> 8) & 0xff;
A[5] ^= (t >> 16) & 0xff;
A[4] ^= (t >> 24) & 0xff;
memcpy(out + 8 * i, A + 8, 8);
}
}
memcpy(out, A, 8);
*out_len = in_len + 8;
return 1;
}
static int aead_aes_key_wrap_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len) {
const struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state;
union {
double align;
AES_KEY ks;
} ks;
/* Variables in this function match up with the variables in the second half
* of section 2.2.1. */
unsigned i, j, n;
uint8_t A[AES_BLOCK_SIZE];
if (ad_len != 0) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
CIPHER_R_UNSUPPORTED_AD_SIZE);
return 0;
}
if (nonce_len == 0) {
nonce = kDefaultAESKeyWrapNonce;
nonce_len = sizeof(kDefaultAESKeyWrapNonce);
}
if (nonce_len != 8) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
CIPHER_R_UNSUPPORTED_NONCE_SIZE);
return 0;
}
if (in_len % 8 != 0) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
CIPHER_R_UNSUPPORTED_INPUT_SIZE);
return 0;
}
/* The code below only handles a 32-bit |t| thus 6*|n| must be less than
* 2^32, where |n| is |in_len| / 8. So in_len < 4/3 * 2^32 and we
* conservatively cap it to 2^32-8 to stop 32-bit platforms complaining that
* a comparision is always true. */
if (in_len > 0xfffffff8) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open, CIPHER_R_TOO_LARGE);
return 0;
}
if (in_len < 24) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT);
return 0;
}
n = (in_len / 8) - 1;
if (max_out_len < in_len - 8) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (AES_set_decrypt_key(kw_ctx->key, kw_ctx->key_bits, &ks.ks) < 0) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
CIPHER_R_AES_KEY_SETUP_FAILED);
return 0;
}
memcpy(A, in, 8);
memmove(out, in + 8, in_len - 8);
for (j = 5; j < 6; j--) {
for (i = n; i > 0; i--) {
uint32_t t;
t = n * j + i;
A[7] ^= t & 0xff;
A[6] ^= (t >> 8) & 0xff;
A[5] ^= (t >> 16) & 0xff;
A[4] ^= (t >> 24) & 0xff;
memcpy(A + 8, out + 8 * (i - 1), 8);
AES_decrypt(A, A, &ks.ks);
memcpy(out + 8 * (i - 1), A + 8, 8);
}
}
if (CRYPTO_memcmp(A, nonce, 8) != 0) {
OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT);
return 0;
}
*out_len = in_len - 8;
return 1;
}
static const EVP_AEAD aead_aes_128_key_wrap = {
16, /* key len */
8, /* nonce len */
8, /* overhead */
8, /* max tag length */
aead_aes_key_wrap_init, aead_aes_key_wrap_cleanup,
aead_aes_key_wrap_seal, aead_aes_key_wrap_open,
};
static const EVP_AEAD aead_aes_256_key_wrap = {
32, /* key len */
8, /* nonce len */
8, /* overhead */
8, /* max tag length */
aead_aes_key_wrap_init, aead_aes_key_wrap_cleanup,
aead_aes_key_wrap_seal, aead_aes_key_wrap_open,
};
const EVP_AEAD *EVP_aead_aes_128_key_wrap(void) { return &aead_aes_128_key_wrap; }
const EVP_AEAD *EVP_aead_aes_256_key_wrap(void) { return &aead_aes_256_key_wrap; }
int EVP_has_aes_hardware(void) {
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
return aesni_capable() && crypto_gcm_clmul_enabled();
#else
return 0;
#endif
}