pigweed / third_party / github / ARMmbed / mbedtls / 0f82ec67409aea9516795e301492a6ab240b4de7 / . / include / psa / crypto_values.h

/** | |

* \file psa/crypto_values.h | |

* | |

* \brief PSA cryptography module: macros to build and analyze integer values. | |

* | |

* \note This file may not be included directly. Applications must | |

* include psa/crypto.h. Drivers must include the appropriate driver | |

* header file. | |

* | |

* This file contains portable definitions of macros to build and analyze | |

* values of integral types that encode properties of cryptographic keys, | |

* designations of cryptographic algorithms, and error codes returned by | |

* the library. | |

* | |

* This header file only defines preprocessor macros. | |

*/ | |

/* | |

* Copyright The Mbed TLS Contributors | |

* SPDX-License-Identifier: Apache-2.0 | |

* | |

* Licensed under the Apache License, Version 2.0 (the "License"); you may | |

* not use this file except in compliance with the License. | |

* You may obtain a copy of the License at | |

* | |

* http://www.apache.org/licenses/LICENSE-2.0 | |

* | |

* Unless required by applicable law or agreed to in writing, software | |

* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | |

* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |

* See the License for the specific language governing permissions and | |

* limitations under the License. | |

*/ | |

#ifndef PSA_CRYPTO_VALUES_H | |

#define PSA_CRYPTO_VALUES_H | |

/** \defgroup error Error codes | |

* @{ | |

*/ | |

/* PSA error codes */ | |

/** The action was completed successfully. */ | |

#define PSA_SUCCESS ((psa_status_t)0) | |

/** An error occurred that does not correspond to any defined | |

* failure cause. | |

* | |

* Implementations may use this error code if none of the other standard | |

* error codes are applicable. */ | |

#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132) | |

/** The requested operation or a parameter is not supported | |

* by this implementation. | |

* | |

* Implementations should return this error code when an enumeration | |

* parameter such as a key type, algorithm, etc. is not recognized. | |

* If a combination of parameters is recognized and identified as | |

* not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */ | |

#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134) | |

/** The requested action is denied by a policy. | |

* | |

* Implementations should return this error code when the parameters | |

* are recognized as valid and supported, and a policy explicitly | |

* denies the requested operation. | |

* | |

* If a subset of the parameters of a function call identify a | |

* forbidden operation, and another subset of the parameters are | |

* not valid or not supported, it is unspecified whether the function | |

* returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or | |

* #PSA_ERROR_INVALID_ARGUMENT. */ | |

#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133) | |

/** An output buffer is too small. | |

* | |

* Applications can call the \c PSA_xxx_SIZE macro listed in the function | |

* description to determine a sufficient buffer size. | |

* | |

* Implementations should preferably return this error code only | |

* in cases when performing the operation with a larger output | |

* buffer would succeed. However implementations may return this | |

* error if a function has invalid or unsupported parameters in addition | |

* to the parameters that determine the necessary output buffer size. */ | |

#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138) | |

/** Asking for an item that already exists | |

* | |

* Implementations should return this error, when attempting | |

* to write an item (like a key) that already exists. */ | |

#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139) | |

/** Asking for an item that doesn't exist | |

* | |

* Implementations should return this error, if a requested item (like | |

* a key) does not exist. */ | |

#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140) | |

/** The requested action cannot be performed in the current state. | |

* | |

* Multipart operations return this error when one of the | |

* functions is called out of sequence. Refer to the function | |

* descriptions for permitted sequencing of functions. | |

* | |

* Implementations shall not return this error code to indicate | |

* that a key either exists or not, | |

* but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST | |

* as applicable. | |

* | |

* Implementations shall not return this error code to indicate that a | |

* key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE | |

* instead. */ | |

#define PSA_ERROR_BAD_STATE ((psa_status_t)-137) | |

/** The parameters passed to the function are invalid. | |

* | |

* Implementations may return this error any time a parameter or | |

* combination of parameters are recognized as invalid. | |

* | |

* Implementations shall not return this error code to indicate that a | |

* key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE | |

* instead. | |

*/ | |

#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135) | |

/** There is not enough runtime memory. | |

* | |

* If the action is carried out across multiple security realms, this | |

* error can refer to available memory in any of the security realms. */ | |

#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141) | |

/** There is not enough persistent storage. | |

* | |

* Functions that modify the key storage return this error code if | |

* there is insufficient storage space on the host media. In addition, | |

* many functions that do not otherwise access storage may return this | |

* error code if the implementation requires a mandatory log entry for | |

* the requested action and the log storage space is full. */ | |

#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142) | |

/** There was a communication failure inside the implementation. | |

* | |

* This can indicate a communication failure between the application | |

* and an external cryptoprocessor or between the cryptoprocessor and | |

* an external volatile or persistent memory. A communication failure | |

* may be transient or permanent depending on the cause. | |

* | |

* \warning If a function returns this error, it is undetermined | |

* whether the requested action has completed or not. Implementations | |

* should return #PSA_SUCCESS on successful completion whenever | |

* possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE | |

* if the requested action was completed successfully in an external | |

* cryptoprocessor but there was a breakdown of communication before | |

* the cryptoprocessor could report the status to the application. | |

*/ | |

#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145) | |

/** There was a storage failure that may have led to data loss. | |

* | |

* This error indicates that some persistent storage is corrupted. | |

* It should not be used for a corruption of volatile memory | |

* (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error | |

* between the cryptoprocessor and its external storage (use | |

* #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is | |

* in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE). | |

* | |

* Note that a storage failure does not indicate that any data that was | |

* previously read is invalid. However this previously read data may no | |

* longer be readable from storage. | |

* | |

* When a storage failure occurs, it is no longer possible to ensure | |

* the global integrity of the keystore. Depending on the global | |

* integrity guarantees offered by the implementation, access to other | |

* data may or may not fail even if the data is still readable but | |

* its integrity cannot be guaranteed. | |

* | |

* Implementations should only use this error code to report a | |

* permanent storage corruption. However application writers should | |

* keep in mind that transient errors while reading the storage may be | |

* reported using this error code. */ | |

#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146) | |

/** A hardware failure was detected. | |

* | |

* A hardware failure may be transient or permanent depending on the | |

* cause. */ | |

#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147) | |

/** A tampering attempt was detected. | |

* | |

* If an application receives this error code, there is no guarantee | |

* that previously accessed or computed data was correct and remains | |

* confidential. Applications should not perform any security function | |

* and should enter a safe failure state. | |

* | |

* Implementations may return this error code if they detect an invalid | |

* state that cannot happen during normal operation and that indicates | |

* that the implementation's security guarantees no longer hold. Depending | |

* on the implementation architecture and on its security and safety goals, | |

* the implementation may forcibly terminate the application. | |

* | |

* This error code is intended as a last resort when a security breach | |

* is detected and it is unsure whether the keystore data is still | |

* protected. Implementations shall only return this error code | |

* to report an alarm from a tampering detector, to indicate that | |

* the confidentiality of stored data can no longer be guaranteed, | |

* or to indicate that the integrity of previously returned data is now | |

* considered compromised. Implementations shall not use this error code | |

* to indicate a hardware failure that merely makes it impossible to | |

* perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE, | |

* #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE, | |

* #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code | |

* instead). | |

* | |

* This error indicates an attack against the application. Implementations | |

* shall not return this error code as a consequence of the behavior of | |

* the application itself. */ | |

#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151) | |

/** There is not enough entropy to generate random data needed | |

* for the requested action. | |

* | |

* This error indicates a failure of a hardware random generator. | |

* Application writers should note that this error can be returned not | |

* only by functions whose purpose is to generate random data, such | |

* as key, IV or nonce generation, but also by functions that execute | |

* an algorithm with a randomized result, as well as functions that | |

* use randomization of intermediate computations as a countermeasure | |

* to certain attacks. | |

* | |

* Implementations should avoid returning this error after psa_crypto_init() | |

* has succeeded. Implementations should generate sufficient | |

* entropy during initialization and subsequently use a cryptographically | |

* secure pseudorandom generator (PRNG). However implementations may return | |

* this error at any time if a policy requires the PRNG to be reseeded | |

* during normal operation. */ | |

#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148) | |

/** The signature, MAC or hash is incorrect. | |

* | |

* Verification functions return this error if the verification | |

* calculations completed successfully, and the value to be verified | |

* was determined to be incorrect. | |

* | |

* If the value to verify has an invalid size, implementations may return | |

* either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */ | |

#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149) | |

/** The decrypted padding is incorrect. | |

* | |

* \warning In some protocols, when decrypting data, it is essential that | |

* the behavior of the application does not depend on whether the padding | |

* is correct, down to precise timing. Applications should prefer | |

* protocols that use authenticated encryption rather than plain | |

* encryption. If the application must perform a decryption of | |

* unauthenticated data, the application writer should take care not | |

* to reveal whether the padding is invalid. | |

* | |

* Implementations should strive to make valid and invalid padding | |

* as close as possible to indistinguishable to an external observer. | |

* In particular, the timing of a decryption operation should not | |

* depend on the validity of the padding. */ | |

#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150) | |

/** Return this error when there's insufficient data when attempting | |

* to read from a resource. */ | |

#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143) | |

/** The key identifier is not valid. See also :ref:\`key-handles\`. | |

*/ | |

#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136) | |

/** Stored data has been corrupted. | |

* | |

* This error indicates that some persistent storage has suffered corruption. | |

* It does not indicate the following situations, which have specific error | |

* codes: | |

* | |

* - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED. | |

* - A communication error between the cryptoprocessor and its external | |

* storage - use #PSA_ERROR_COMMUNICATION_FAILURE. | |

* - When the storage is in a valid state but is full - use | |

* #PSA_ERROR_INSUFFICIENT_STORAGE. | |

* - When the storage fails for other reasons - use | |

* #PSA_ERROR_STORAGE_FAILURE. | |

* - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID. | |

* | |

* \note A storage corruption does not indicate that any data that was | |

* previously read is invalid. However this previously read data might no | |

* longer be readable from storage. | |

* | |

* When a storage failure occurs, it is no longer possible to ensure the | |

* global integrity of the keystore. | |

*/ | |

#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152) | |

/** Data read from storage is not valid for the implementation. | |

* | |

* This error indicates that some data read from storage does not have a valid | |

* format. It does not indicate the following situations, which have specific | |

* error codes: | |

* | |

* - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT | |

* - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE | |

* - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT | |

* | |

* This error is typically a result of either storage corruption on a | |

* cleartext storage backend, or an attempt to read data that was | |

* written by an incompatible version of the library. | |

*/ | |

#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153) | |

/**@}*/ | |

/** \defgroup crypto_types Key and algorithm types | |

* @{ | |

*/ | |

/** An invalid key type value. | |

* | |

* Zero is not the encoding of any key type. | |

*/ | |

#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000) | |

/** Vendor-defined key type flag. | |

* | |

* Key types defined by this standard will never have the | |

* #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types | |

* must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should | |

* respect the bitwise structure used by standard encodings whenever practical. | |

*/ | |

#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000) | |

#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000) | |

#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000) | |

#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000) | |

#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000) | |

#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000) | |

#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000) | |

/** Whether a key type is vendor-defined. | |

* | |

* See also #PSA_KEY_TYPE_VENDOR_FLAG. | |

*/ | |

#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \ | |

(((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0) | |

/** Whether a key type is an unstructured array of bytes. | |

* | |

* This encompasses both symmetric keys and non-key data. | |

*/ | |

#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \ | |

(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \ | |

((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC) | |

/** Whether a key type is asymmetric: either a key pair or a public key. */ | |

#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \ | |

(((type) & PSA_KEY_TYPE_CATEGORY_MASK \ | |

& ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \ | |

PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) | |

/** Whether a key type is the public part of a key pair. */ | |

#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \ | |

(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) | |

/** Whether a key type is a key pair containing a private part and a public | |

* part. */ | |

#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \ | |

(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR) | |

/** The key pair type corresponding to a public key type. | |

* | |

* You may also pass a key pair type as \p type, it will be left unchanged. | |

* | |

* \param type A public key type or key pair type. | |

* | |

* \return The corresponding key pair type. | |

* If \p type is not a public key or a key pair, | |

* the return value is undefined. | |

*/ | |

#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \ | |

((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) | |

/** The public key type corresponding to a key pair type. | |

* | |

* You may also pass a key pair type as \p type, it will be left unchanged. | |

* | |

* \param type A public key type or key pair type. | |

* | |

* \return The corresponding public key type. | |

* If \p type is not a public key or a key pair, | |

* the return value is undefined. | |

*/ | |

#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \ | |

((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) | |

/** Raw data. | |

* | |

* A "key" of this type cannot be used for any cryptographic operation. | |

* Applications may use this type to store arbitrary data in the keystore. */ | |

#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001) | |

/** HMAC key. | |

* | |

* The key policy determines which underlying hash algorithm the key can be | |

* used for. | |

* | |

* HMAC keys should generally have the same size as the underlying hash. | |

* This size can be calculated with #PSA_HASH_LENGTH(\c alg) where | |

* \c alg is the HMAC algorithm or the underlying hash algorithm. */ | |

#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100) | |

/** A secret for key derivation. | |

* | |

* This key type is for high-entropy secrets only. For low-entropy secrets, | |

* #PSA_KEY_TYPE_PASSWORD should be used instead. | |

* | |

* These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or | |

* #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms. | |

* | |

* The key policy determines which key derivation algorithm the key | |

* can be used for. | |

*/ | |

#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200) | |

/** A low-entropy secret for password hashing or key derivation. | |

* | |

* This key type is suitable for passwords and passphrases which are typically | |

* intended to be memorizable by humans, and have a low entropy relative to | |

* their size. It can be used for randomly generated or derived keys with | |

* maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable | |

* for such keys. It is not suitable for passwords with extremely low entropy, | |

* such as numerical PINs. | |

* | |

* These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of | |

* key derivation algorithms. Algorithms that accept such an input were | |

* designed to accept low-entropy secret and are known as password hashing or | |

* key stretching algorithms. | |

* | |

* These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of | |

* key derivation algorithms, as the algorithms that take such an input expect | |

* it to be high-entropy. | |

* | |

* The key policy determines which key derivation algorithm the key can be | |

* used for, among the permissible subset defined above. | |

*/ | |

#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203) | |

/** A secret value that can be used to verify a password hash. | |

* | |

* The key policy determines which key derivation algorithm the key | |

* can be used for, among the same permissible subset as for | |

* #PSA_KEY_TYPE_PASSWORD. | |

*/ | |

#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205) | |

/** A secret value that can be used in when computing a password hash. | |

* | |

* The key policy determines which key derivation algorithm the key | |

* can be used for, among the subset of algorithms that can use pepper. | |

*/ | |

#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206) | |

/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher. | |

* | |

* The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or | |

* 32 bytes (AES-256). | |

*/ | |

#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400) | |

/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES). | |

* | |

* The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or | |

* 192 bits (3-key 3DES). | |

* | |

* Note that single DES and 2-key 3DES are weak and strongly | |

* deprecated and should only be used to decrypt legacy data. 3-key 3DES | |

* is weak and deprecated and should only be used in legacy protocols. | |

*/ | |

#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301) | |

/** Key for a cipher, AEAD or MAC algorithm based on the | |

* Camellia block cipher. */ | |

#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403) | |

/** Key for the RC4 stream cipher. | |

* | |

* Note that RC4 is weak and deprecated and should only be used in | |

* legacy protocols. */ | |

#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002) | |

/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm. | |

* | |

* ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539. | |

* | |

* Implementations must support 12-byte nonces, may support 8-byte nonces, | |

* and should reject other sizes. | |

*/ | |

#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004) | |

/** RSA public key. | |

* | |

* The size of an RSA key is the bit size of the modulus. | |

*/ | |

#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001) | |

/** RSA key pair (private and public key). | |

* | |

* The size of an RSA key is the bit size of the modulus. | |

*/ | |

#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001) | |

/** Whether a key type is an RSA key (pair or public-only). */ | |

#define PSA_KEY_TYPE_IS_RSA(type) \ | |

(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY) | |

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100) | |

#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100) | |

#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff) | |

/** Elliptic curve key pair. | |

* | |

* The size of an elliptic curve key is the bit size associated with the curve, | |

* i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*. | |

* See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details. | |

* | |

* \param curve A value of type ::psa_ecc_family_t that | |

* identifies the ECC curve to be used. | |

*/ | |

#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \ | |

(PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve)) | |

/** Elliptic curve public key. | |

* | |

* The size of an elliptic curve public key is the same as the corresponding | |

* private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of | |

* `PSA_ECC_FAMILY_xxx` curve families). | |

* | |

* \param curve A value of type ::psa_ecc_family_t that | |

* identifies the ECC curve to be used. | |

*/ | |

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \ | |

(PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve)) | |

/** Whether a key type is an elliptic curve key (pair or public-only). */ | |

#define PSA_KEY_TYPE_IS_ECC(type) \ | |

((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \ | |

~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) | |

/** Whether a key type is an elliptic curve key pair. */ | |

#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \ | |

(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ | |

PSA_KEY_TYPE_ECC_KEY_PAIR_BASE) | |

/** Whether a key type is an elliptic curve public key. */ | |

#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \ | |

(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ | |

PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) | |

/** Extract the curve from an elliptic curve key type. */ | |

#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \ | |

((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \ | |

((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \ | |

0)) | |

/** SEC Koblitz curves over prime fields. | |

* | |

* This family comprises the following curves: | |

* secp192k1, secp224k1, secp256k1. | |

* They are defined in _Standards for Efficient Cryptography_, | |

* _SEC 2: Recommended Elliptic Curve Domain Parameters_. | |

* https://www.secg.org/sec2-v2.pdf | |

*/ | |

#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17) | |

/** SEC random curves over prime fields. | |

* | |

* This family comprises the following curves: | |

* secp192k1, secp224r1, secp256r1, secp384r1, secp521r1. | |

* They are defined in _Standards for Efficient Cryptography_, | |

* _SEC 2: Recommended Elliptic Curve Domain Parameters_. | |

* https://www.secg.org/sec2-v2.pdf | |

*/ | |

#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12) | |

/* SECP160R2 (SEC2 v1, obsolete) */ | |

#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b) | |

/** SEC Koblitz curves over binary fields. | |

* | |

* This family comprises the following curves: | |

* sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1. | |

* They are defined in _Standards for Efficient Cryptography_, | |

* _SEC 2: Recommended Elliptic Curve Domain Parameters_. | |

* https://www.secg.org/sec2-v2.pdf | |

*/ | |

#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27) | |

/** SEC random curves over binary fields. | |

* | |

* This family comprises the following curves: | |

* sect163r1, sect233r1, sect283r1, sect409r1, sect571r1. | |

* They are defined in _Standards for Efficient Cryptography_, | |

* _SEC 2: Recommended Elliptic Curve Domain Parameters_. | |

* https://www.secg.org/sec2-v2.pdf | |

*/ | |

#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22) | |

/** SEC additional random curves over binary fields. | |

* | |

* This family comprises the following curve: | |

* sect163r2. | |

* It is defined in _Standards for Efficient Cryptography_, | |

* _SEC 2: Recommended Elliptic Curve Domain Parameters_. | |

* https://www.secg.org/sec2-v2.pdf | |

*/ | |

#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b) | |

/** Brainpool P random curves. | |

* | |

* This family comprises the following curves: | |

* brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1, | |

* brainpoolP320r1, brainpoolP384r1, brainpoolP512r1. | |

* It is defined in RFC 5639. | |

*/ | |

#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30) | |

/** Curve25519 and Curve448. | |

* | |

* This family comprises the following Montgomery curves: | |

* - 255-bit: Bernstein et al., | |

* _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006. | |

* The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve. | |

* - 448-bit: Hamburg, | |

* _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015. | |

* The algorithm #PSA_ALG_ECDH performs X448 when used with this curve. | |

*/ | |

#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41) | |

/** The twisted Edwards curves Ed25519 and Ed448. | |

* | |

* These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves, | |

* #PSA_ALG_ED25519PH for the 255-bit curve, | |

* #PSA_ALG_ED448PH for the 448-bit curve). | |

* | |

* This family comprises the following twisted Edwards curves: | |

* - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent | |

* to Curve25519. | |

* Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008. | |

* - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent | |

* to Curve448. | |

* Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015. | |

*/ | |

#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42) | |

#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200) | |

#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200) | |

#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff) | |

/** Diffie-Hellman key pair. | |

* | |

* \param group A value of type ::psa_dh_family_t that identifies the | |

* Diffie-Hellman group to be used. | |

*/ | |

#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \ | |

(PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group)) | |

/** Diffie-Hellman public key. | |

* | |

* \param group A value of type ::psa_dh_family_t that identifies the | |

* Diffie-Hellman group to be used. | |

*/ | |

#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \ | |

(PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group)) | |

/** Whether a key type is a Diffie-Hellman key (pair or public-only). */ | |

#define PSA_KEY_TYPE_IS_DH(type) \ | |

((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \ | |

~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE) | |

/** Whether a key type is a Diffie-Hellman key pair. */ | |

#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \ | |

(((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \ | |

PSA_KEY_TYPE_DH_KEY_PAIR_BASE) | |

/** Whether a key type is a Diffie-Hellman public key. */ | |

#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \ | |

(((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \ | |

PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE) | |

/** Extract the group from a Diffie-Hellman key type. */ | |

#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \ | |

((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \ | |

((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \ | |

0)) | |

/** Diffie-Hellman groups defined in RFC 7919 Appendix A. | |

* | |

* This family includes groups with the following key sizes (in bits): | |

* 2048, 3072, 4096, 6144, 8192. A given implementation may support | |

* all of these sizes or only a subset. | |

*/ | |

#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03) | |

#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \ | |

(((type) >> 8) & 7) | |

/** The block size of a block cipher. | |

* | |

* \param type A cipher key type (value of type #psa_key_type_t). | |

* | |

* \return The block size for a block cipher, or 1 for a stream cipher. | |

* The return value is undefined if \p type is not a supported | |

* cipher key type. | |

* | |

* \note It is possible to build stream cipher algorithms on top of a block | |

* cipher, for example CTR mode (#PSA_ALG_CTR). | |

* This macro only takes the key type into account, so it cannot be | |

* used to determine the size of the data that #psa_cipher_update() | |

* might buffer for future processing in general. | |

* | |

* \note This macro returns a compile-time constant if its argument is one. | |

* | |

* \warning This macro may evaluate its argument multiple times. | |

*/ | |

#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \ | |

(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \ | |

1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \ | |

0u) | |

/** Vendor-defined algorithm flag. | |

* | |

* Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG | |

* bit set. Vendors who define additional algorithms must use an encoding with | |

* the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure | |

* used by standard encodings whenever practical. | |

*/ | |

#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000) | |

#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000) | |

#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000) | |

#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000) | |

#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000) | |

#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000) | |

#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000) | |

#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000) | |

#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000) | |

#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000) | |

/** Whether an algorithm is vendor-defined. | |

* | |

* See also #PSA_ALG_VENDOR_FLAG. | |

*/ | |

#define PSA_ALG_IS_VENDOR_DEFINED(alg) \ | |

(((alg) & PSA_ALG_VENDOR_FLAG) != 0) | |

/** Whether the specified algorithm is a hash algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a hash algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_HASH(alg) \ | |

(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH) | |

/** Whether the specified algorithm is a MAC algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a MAC algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_MAC(alg) \ | |

(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC) | |

/** Whether the specified algorithm is a symmetric cipher algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_CIPHER(alg) \ | |

(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER) | |

/** Whether the specified algorithm is an authenticated encryption | |

* with associated data (AEAD) algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is an AEAD algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_AEAD(alg) \ | |

(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD) | |

/** Whether the specified algorithm is an asymmetric signature algorithm, | |

* also known as public-key signature algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_SIGN(alg) \ | |

(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN) | |

/** Whether the specified algorithm is an asymmetric encryption algorithm, | |

* also known as public-key encryption algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \ | |

(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION) | |

/** Whether the specified algorithm is a key agreement algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a key agreement algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_KEY_AGREEMENT(alg) \ | |

(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT) | |

/** Whether the specified algorithm is a key derivation algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a key derivation algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_KEY_DERIVATION(alg) \ | |

(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION) | |

/** Whether the specified algorithm is a key stretching / password hashing | |

* algorithm. | |

* | |

* A key stretching / password hashing algorithm is a key derivation algorithm | |

* that is suitable for use with a low-entropy secret such as a password. | |

* Equivalently, it's a key derivation algorithm that uses a | |

* #PSA_KEY_DERIVATION_INPUT_PASSWORD input step. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a key stretching / passowrd hashing algorithm, 0 | |

* otherwise. This macro may return either 0 or 1 if \p alg is not a | |

* supported algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \ | |

(PSA_ALG_IS_KEY_DERIVATION(alg) && \ | |

(alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG) | |

#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff) | |

/** MD2 */ | |

#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001) | |

/** MD4 */ | |

#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002) | |

/** MD5 */ | |

#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003) | |

/** PSA_ALG_RIPEMD160 */ | |

#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004) | |

/** SHA1 */ | |

#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005) | |

/** SHA2-224 */ | |

#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008) | |

/** SHA2-256 */ | |

#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009) | |

/** SHA2-384 */ | |

#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a) | |

/** SHA2-512 */ | |

#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b) | |

/** SHA2-512/224 */ | |

#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c) | |

/** SHA2-512/256 */ | |

#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d) | |

/** SHA3-224 */ | |

#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010) | |

/** SHA3-256 */ | |

#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011) | |

/** SHA3-384 */ | |

#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012) | |

/** SHA3-512 */ | |

#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013) | |

/** The first 512 bits (64 bytes) of the SHAKE256 output. | |

* | |

* This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other | |

* scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512 | |

* has the same output size and a (theoretically) higher security strength. | |

*/ | |

#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015) | |

/** In a hash-and-sign algorithm policy, allow any hash algorithm. | |

* | |

* This value may be used to form the algorithm usage field of a policy | |

* for a signature algorithm that is parametrized by a hash. The key | |

* may then be used to perform operations using the same signature | |

* algorithm parametrized with any supported hash. | |

* | |

* That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros: | |

* - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, | |

* - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA. | |

* Then you may create and use a key as follows: | |

* - Set the key usage field using #PSA_ALG_ANY_HASH, for example: | |

* ``` | |

* psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY | |

* psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH)); | |

* ``` | |

* - Import or generate key material. | |

* - Call psa_sign_hash() or psa_verify_hash(), passing | |

* an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each | |

* call to sign or verify a message may use a different hash. | |

* ``` | |

* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...); | |

* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...); | |

* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...); | |

* ``` | |

* | |

* This value may not be used to build other algorithms that are | |

* parametrized over a hash. For any valid use of this macro to build | |

* an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true. | |

* | |

* This value may not be used to build an algorithm specification to | |

* perform an operation. It is only valid to build policies. | |

*/ | |

#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff) | |

#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) | |

#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000) | |

/** Macro to build an HMAC algorithm. | |

* | |

* For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256. | |

* | |

* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true). | |

* | |

* \return The corresponding HMAC algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_HMAC(hash_alg) \ | |

(PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \ | |

(PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK)) | |

/** Whether the specified algorithm is an HMAC algorithm. | |

* | |

* HMAC is a family of MAC algorithms that are based on a hash function. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is an HMAC algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_HMAC(alg) \ | |

(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ | |

PSA_ALG_HMAC_BASE) | |

/* In the encoding of a MAC algorithm, the bits corresponding to | |

* PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is | |

* truncated. As an exception, the value 0 means the untruncated algorithm, | |

* whatever its length is. The length is encoded in 6 bits, so it can | |

* reach up to 63; the largest MAC is 64 bytes so its trivial truncation | |

* to full length is correctly encoded as 0 and any non-trivial truncation | |

* is correctly encoded as a value between 1 and 63. */ | |

#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000) | |

#define PSA_MAC_TRUNCATION_OFFSET 16 | |

/* In the encoding of a MAC algorithm, the bit corresponding to | |

* #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm | |

* is a wildcard algorithm. A key with such wildcard algorithm as permitted | |

* algorithm policy can be used with any algorithm corresponding to the | |

* same base class and having a (potentially truncated) MAC length greater or | |

* equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */ | |

#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000) | |

/** Macro to build a truncated MAC algorithm. | |

* | |

* A truncated MAC algorithm is identical to the corresponding MAC | |

* algorithm except that the MAC value for the truncated algorithm | |

* consists of only the first \p mac_length bytes of the MAC value | |

* for the untruncated algorithm. | |

* | |

* \note This macro may allow constructing algorithm identifiers that | |

* are not valid, either because the specified length is larger | |

* than the untruncated MAC or because the specified length is | |

* smaller than permitted by the implementation. | |

* | |

* \note It is implementation-defined whether a truncated MAC that | |

* is truncated to the same length as the MAC of the untruncated | |

* algorithm is considered identical to the untruncated algorithm | |

* for policy comparison purposes. | |

* | |

* \param mac_alg A MAC algorithm identifier (value of type | |

* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg) | |

* is true). This may be a truncated or untruncated | |

* MAC algorithm. | |

* \param mac_length Desired length of the truncated MAC in bytes. | |

* This must be at most the full length of the MAC | |

* and must be at least an implementation-specified | |

* minimum. The implementation-specified minimum | |

* shall not be zero. | |

* | |

* \return The corresponding MAC algorithm with the specified | |

* length. | |

* \return Unspecified if \p mac_alg is not a supported | |

* MAC algorithm or if \p mac_length is too small or | |

* too large for the specified MAC algorithm. | |

*/ | |

#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \ | |

(((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \ | |

PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \ | |

((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK)) | |

/** Macro to build the base MAC algorithm corresponding to a truncated | |

* MAC algorithm. | |

* | |

* \param mac_alg A MAC algorithm identifier (value of type | |

* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg) | |

* is true). This may be a truncated or untruncated | |

* MAC algorithm. | |

* | |

* \return The corresponding base MAC algorithm. | |

* \return Unspecified if \p mac_alg is not a supported | |

* MAC algorithm. | |

*/ | |

#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \ | |

((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \ | |

PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | |

/** Length to which a MAC algorithm is truncated. | |

* | |

* \param mac_alg A MAC algorithm identifier (value of type | |

* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg) | |

* is true). | |

* | |

* \return Length of the truncated MAC in bytes. | |

* \return 0 if \p mac_alg is a non-truncated MAC algorithm. | |

* \return Unspecified if \p mac_alg is not a supported | |

* MAC algorithm. | |

*/ | |

#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \ | |

(((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET) | |

/** Macro to build a MAC minimum-MAC-length wildcard algorithm. | |

* | |

* A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms | |

* sharing the same base algorithm, and where the (potentially truncated) MAC | |

* length of the specific algorithm is equal to or larger then the wildcard | |

* algorithm's minimum MAC length. | |

* | |

* \note When setting the minimum required MAC length to less than the | |

* smallest MAC length allowed by the base algorithm, this effectively | |

* becomes an 'any-MAC-length-allowed' policy for that base algorithm. | |

* | |

* \param mac_alg A MAC algorithm identifier (value of type | |

* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg) | |

* is true). | |

* \param min_mac_length Desired minimum length of the message authentication | |

* code in bytes. This must be at most the untruncated | |

* length of the MAC and must be at least 1. | |

* | |

* \return The corresponding MAC wildcard algorithm with the | |

* specified minimum length. | |

* \return Unspecified if \p mac_alg is not a supported MAC | |

* algorithm or if \p min_mac_length is less than 1 or | |

* too large for the specified MAC algorithm. | |

*/ | |

#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \ | |

( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \ | |

PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ) | |

#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000) | |

/** The CBC-MAC construction over a block cipher | |

* | |

* \warning CBC-MAC is insecure in many cases. | |

* A more secure mode, such as #PSA_ALG_CMAC, is recommended. | |

*/ | |

#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100) | |

/** The CMAC construction over a block cipher */ | |

#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200) | |

/** Whether the specified algorithm is a MAC algorithm based on a block cipher. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \ | |

(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ | |

PSA_ALG_CIPHER_MAC_BASE) | |

#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000) | |

#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) | |

/** Whether the specified algorithm is a stream cipher. | |

* | |

* A stream cipher is a symmetric cipher that encrypts or decrypts messages | |

* by applying a bitwise-xor with a stream of bytes that is generated | |

* from a key. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a stream cipher algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier or if it is not a symmetric cipher algorithm. | |

*/ | |

#define PSA_ALG_IS_STREAM_CIPHER(alg) \ | |

(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \ | |

(PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG)) | |

/** The stream cipher mode of a stream cipher algorithm. | |

* | |

* The underlying stream cipher is determined by the key type. | |

* - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20. | |

* - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4. | |

*/ | |

#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100) | |

/** The CTR stream cipher mode. | |

* | |

* CTR is a stream cipher which is built from a block cipher. | |

* The underlying block cipher is determined by the key type. | |

* For example, to use AES-128-CTR, use this algorithm with | |

* a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes). | |

*/ | |

#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000) | |

/** The CFB stream cipher mode. | |

* | |

* The underlying block cipher is determined by the key type. | |

*/ | |

#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100) | |

/** The OFB stream cipher mode. | |

* | |

* The underlying block cipher is determined by the key type. | |

*/ | |

#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200) | |

/** The XTS cipher mode. | |

* | |

* XTS is a cipher mode which is built from a block cipher. It requires at | |

* least one full block of input, but beyond this minimum the input | |

* does not need to be a whole number of blocks. | |

*/ | |

#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00) | |

/** The Electronic Code Book (ECB) mode of a block cipher, with no padding. | |

* | |

* \warning ECB mode does not protect the confidentiality of the encrypted data | |

* except in extremely narrow circumstances. It is recommended that applications | |

* only use ECB if they need to construct an operating mode that the | |

* implementation does not provide. Implementations are encouraged to provide | |

* the modes that applications need in preference to supporting direct access | |

* to ECB. | |

* | |

* The underlying block cipher is determined by the key type. | |

* | |

* This symmetric cipher mode can only be used with messages whose lengths are a | |

* multiple of the block size of the chosen block cipher. | |

* | |

* ECB mode does not accept an initialization vector (IV). When using a | |

* multi-part cipher operation with this algorithm, psa_cipher_generate_iv() | |

* and psa_cipher_set_iv() must not be called. | |

*/ | |

#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400) | |

/** The CBC block cipher chaining mode, with no padding. | |

* | |

* The underlying block cipher is determined by the key type. | |

* | |

* This symmetric cipher mode can only be used with messages whose lengths | |

* are whole number of blocks for the chosen block cipher. | |

*/ | |

#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000) | |

/** The CBC block cipher chaining mode with PKCS#7 padding. | |

* | |

* The underlying block cipher is determined by the key type. | |

* | |

* This is the padding method defined by PKCS#7 (RFC 2315) §10.3. | |

*/ | |

#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100) | |

#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) | |

/** Whether the specified algorithm is an AEAD mode on a block cipher. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on | |

* a block cipher, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \ | |

(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \ | |

(PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) | |

/** The CCM authenticated encryption algorithm. | |

* | |

* The underlying block cipher is determined by the key type. | |

*/ | |

#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100) | |

/** The GCM authenticated encryption algorithm. | |

* | |

* The underlying block cipher is determined by the key type. | |

*/ | |

#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200) | |

/** The Chacha20-Poly1305 AEAD algorithm. | |

* | |

* The ChaCha20_Poly1305 construction is defined in RFC 7539. | |

* | |

* Implementations must support 12-byte nonces, may support 8-byte nonces, | |

* and should reject other sizes. | |

* | |

* Implementations must support 16-byte tags and should reject other sizes. | |

*/ | |

#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500) | |

/* In the encoding of a AEAD algorithm, the bits corresponding to | |

* PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag. | |

* The constants for default lengths follow this encoding. | |

*/ | |

#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000) | |

#define PSA_AEAD_TAG_LENGTH_OFFSET 16 | |

/* In the encoding of an AEAD algorithm, the bit corresponding to | |

* #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm | |

* is a wildcard algorithm. A key with such wildcard algorithm as permitted | |

* algorithm policy can be used with any algorithm corresponding to the | |

* same base class and having a tag length greater than or equal to the one | |

* encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */ | |

#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000) | |

/** Macro to build a shortened AEAD algorithm. | |

* | |

* A shortened AEAD algorithm is similar to the corresponding AEAD | |

* algorithm, but has an authentication tag that consists of fewer bytes. | |

* Depending on the algorithm, the tag length may affect the calculation | |

* of the ciphertext. | |

* | |

* \param aead_alg An AEAD algorithm identifier (value of type | |

* #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg) | |

* is true). | |

* \param tag_length Desired length of the authentication tag in bytes. | |

* | |

* \return The corresponding AEAD algorithm with the specified | |

* length. | |

* \return Unspecified if \p aead_alg is not a supported | |

* AEAD algorithm or if \p tag_length is not valid | |

* for the specified AEAD algorithm. | |

*/ | |

#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \ | |

(((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \ | |

PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \ | |

((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \ | |

PSA_ALG_AEAD_TAG_LENGTH_MASK)) | |

/** Retrieve the tag length of a specified AEAD algorithm | |

* | |

* \param aead_alg An AEAD algorithm identifier (value of type | |

* #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg) | |

* is true). | |

* | |

* \return The tag length specified by the input algorithm. | |

* \return Unspecified if \p aead_alg is not a supported | |

* AEAD algorithm. | |

*/ | |

#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \ | |

(((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \ | |

PSA_AEAD_TAG_LENGTH_OFFSET ) | |

/** Calculate the corresponding AEAD algorithm with the default tag length. | |

* | |

* \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_AEAD(\p aead_alg) is true). | |

* | |

* \return The corresponding AEAD algorithm with the default | |

* tag length for that algorithm. | |

*/ | |

#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \ | |

( \ | |

PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \ | |

PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \ | |

PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \ | |

0) | |

#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \ | |

PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \ | |

PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \ | |

ref : | |

/** Macro to build an AEAD minimum-tag-length wildcard algorithm. | |

* | |

* A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms | |

* sharing the same base algorithm, and where the tag length of the specific | |

* algorithm is equal to or larger then the minimum tag length specified by the | |

* wildcard algorithm. | |

* | |

* \note When setting the minimum required tag length to less than the | |

* smallest tag length allowed by the base algorithm, this effectively | |

* becomes an 'any-tag-length-allowed' policy for that base algorithm. | |

* | |

* \param aead_alg An AEAD algorithm identifier (value of type | |

* #psa_algorithm_t such that | |

* #PSA_ALG_IS_AEAD(\p aead_alg) is true). | |

* \param min_tag_length Desired minimum length of the authentication tag in | |

* bytes. This must be at least 1 and at most the largest | |

* allowed tag length of the algorithm. | |

* | |

* \return The corresponding AEAD wildcard algorithm with the | |

* specified minimum length. | |

* \return Unspecified if \p aead_alg is not a supported | |

* AEAD algorithm or if \p min_tag_length is less than 1 | |

* or too large for the specified AEAD algorithm. | |

*/ | |

#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \ | |

( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \ | |

PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ) | |

#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200) | |

/** RSA PKCS#1 v1.5 signature with hashing. | |

* | |

* This is the signature scheme defined by RFC 8017 | |

* (PKCS#1: RSA Cryptography Specifications) under the name | |

* RSASSA-PKCS1-v1_5. | |

* | |

* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true). | |

* This includes #PSA_ALG_ANY_HASH | |

* when specifying the algorithm in a usage policy. | |

* | |

* \return The corresponding RSA PKCS#1 v1.5 signature algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \ | |

(PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

/** Raw PKCS#1 v1.5 signature. | |

* | |

* The input to this algorithm is the DigestInfo structure used by | |

* RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2 | |

* steps 3–6. | |

*/ | |

#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE | |

#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \ | |

(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE) | |

#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300) | |

/** RSA PSS signature with hashing. | |

* | |

* This is the signature scheme defined by RFC 8017 | |

* (PKCS#1: RSA Cryptography Specifications) under the name | |

* RSASSA-PSS, with the message generation function MGF1, and with | |

* a salt length equal to the length of the hash. The specified | |

* hash algorithm is used to hash the input message, to create the | |

* salted hash, and for the mask generation. | |

* | |

* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true). | |

* This includes #PSA_ALG_ANY_HASH | |

* when specifying the algorithm in a usage policy. | |

* | |

* \return The corresponding RSA PSS signature algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_RSA_PSS(hash_alg) \ | |

(PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

#define PSA_ALG_IS_RSA_PSS(alg) \ | |

(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE) | |

#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600) | |

/** ECDSA signature with hashing. | |

* | |

* This is the ECDSA signature scheme defined by ANSI X9.62, | |

* with a random per-message secret number (*k*). | |

* | |

* The representation of the signature as a byte string consists of | |

* the concatentation of the signature values *r* and *s*. Each of | |

* *r* and *s* is encoded as an *N*-octet string, where *N* is the length | |

* of the base point of the curve in octets. Each value is represented | |

* in big-endian order (most significant octet first). | |

* | |

* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true). | |

* This includes #PSA_ALG_ANY_HASH | |

* when specifying the algorithm in a usage policy. | |

* | |

* \return The corresponding ECDSA signature algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_ECDSA(hash_alg) \ | |

(PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

/** ECDSA signature without hashing. | |

* | |

* This is the same signature scheme as #PSA_ALG_ECDSA(), but | |

* without specifying a hash algorithm. This algorithm may only be | |

* used to sign or verify a sequence of bytes that should be an | |

* already-calculated hash. Note that the input is padded with | |

* zeros on the left or truncated on the left as required to fit | |

* the curve size. | |

*/ | |

#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE | |

#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700) | |

/** Deterministic ECDSA signature with hashing. | |

* | |

* This is the deterministic ECDSA signature scheme defined by RFC 6979. | |

* | |

* The representation of a signature is the same as with #PSA_ALG_ECDSA(). | |

* | |

* Note that when this algorithm is used for verification, signatures | |

* made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the | |

* same private key are accepted. In other words, | |

* #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from | |

* #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification. | |

* | |

* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true). | |

* This includes #PSA_ALG_ANY_HASH | |

* when specifying the algorithm in a usage policy. | |

* | |

* \return The corresponding deterministic ECDSA signature | |

* algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \ | |

(PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100) | |

#define PSA_ALG_IS_ECDSA(alg) \ | |

(((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \ | |

PSA_ALG_ECDSA_BASE) | |

#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \ | |

(((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0) | |

#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \ | |

(PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) | |

#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \ | |

(PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) | |

/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA), | |

* using standard parameters. | |

* | |

* Contexts are not supported in the current version of this specification | |

* because there is no suitable signature interface that can take the | |

* context as a parameter. A future version of this specification may add | |

* suitable functions and extend this algorithm to support contexts. | |

* | |

* PureEdDSA requires an elliptic curve key on a twisted Edwards curve. | |

* In this specification, the following curves are supported: | |

* - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified | |

* in RFC 8032. | |

* The curve is Edwards25519. | |

* The hash function used internally is SHA-512. | |

* - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified | |

* in RFC 8032. | |

* The curve is Edwards448. | |

* The hash function used internally is the first 114 bytes of the | |

* SHAKE256 output. | |

* | |

* This algorithm can be used with psa_sign_message() and | |

* psa_verify_message(). Since there is no prehashing, it cannot be used | |

* with psa_sign_hash() or psa_verify_hash(). | |

* | |

* The signature format is the concatenation of R and S as defined by | |

* RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte | |

* string for Ed448). | |

*/ | |

#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800) | |

#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900) | |

#define PSA_ALG_IS_HASH_EDDSA(alg) \ | |

(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE) | |

/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA), | |

* using SHA-512 and the Edwards25519 curve. | |

* | |

* See #PSA_ALG_PURE_EDDSA regarding context support and the signature format. | |

* | |

* This algorithm is Ed25519 as specified in RFC 8032. | |

* The curve is Edwards25519. | |

* The prehash is SHA-512. | |

* The hash function used internally is SHA-512. | |

* | |

* This is a hash-and-sign algorithm: to calculate a signature, | |

* you can either: | |

* - call psa_sign_message() on the message; | |

* - or calculate the SHA-512 hash of the message | |

* with psa_hash_compute() | |

* or with a multi-part hash operation started with psa_hash_setup(), | |

* using the hash algorithm #PSA_ALG_SHA_512, | |

* then sign the calculated hash with psa_sign_hash(). | |

* Verifying a signature is similar, using psa_verify_message() or | |

* psa_verify_hash() instead of the signature function. | |

*/ | |

#define PSA_ALG_ED25519PH \ | |

(PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK)) | |

/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA), | |

* using SHAKE256 and the Edwards448 curve. | |

* | |

* See #PSA_ALG_PURE_EDDSA regarding context support and the signature format. | |

* | |

* This algorithm is Ed448 as specified in RFC 8032. | |

* The curve is Edwards448. | |

* The prehash is the first 64 bytes of the SHAKE256 output. | |

* The hash function used internally is the first 114 bytes of the | |

* SHAKE256 output. | |

* | |

* This is a hash-and-sign algorithm: to calculate a signature, | |

* you can either: | |

* - call psa_sign_message() on the message; | |

* - or calculate the first 64 bytes of the SHAKE256 output of the message | |

* with psa_hash_compute() | |

* or with a multi-part hash operation started with psa_hash_setup(), | |

* using the hash algorithm #PSA_ALG_SHAKE256_512, | |

* then sign the calculated hash with psa_sign_hash(). | |

* Verifying a signature is similar, using psa_verify_message() or | |

* psa_verify_hash() instead of the signature function. | |

*/ | |

#define PSA_ALG_ED448PH \ | |

(PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK)) | |

/* Default definition, to be overridden if the library is extended with | |

* more hash-and-sign algorithms that we want to keep out of this header | |

* file. */ | |

#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0 | |

/** Whether the specified algorithm is a hash-and-sign algorithm. | |

* | |

* Hash-and-sign algorithms are asymmetric (public-key) signature algorithms | |

* structured in two parts: first the calculation of a hash in a way that | |

* does not depend on the key, then the calculation of a signature from the | |

* hash value and the key. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_HASH_AND_SIGN(alg) \ | |

(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \ | |

PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \ | |

PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg)) | |

/** Whether the specified algorithm is a signature algorithm that can be used | |

* with psa_sign_message() and psa_verify_message(). | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if alg is a signature algorithm that can be used to sign a | |

* message. 0 if \p alg is a signature algorithm that can only be used | |

* to sign an already-calculated hash. 0 if \p alg is not a signature | |

* algorithm. This macro can return either 0 or 1 if \p alg is not a | |

* supported algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_SIGN_MESSAGE(alg) \ | |

(PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_PURE_EDDSA ) | |

/** Get the hash used by a hash-and-sign signature algorithm. | |

* | |

* A hash-and-sign algorithm is a signature algorithm which is | |

* composed of two phases: first a hashing phase which does not use | |

* the key and produces a hash of the input message, then a signing | |

* phase which only uses the hash and the key and not the message | |

* itself. | |

* | |

* \param alg A signature algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_SIGN(\p alg) is true). | |

* | |

* \return The underlying hash algorithm if \p alg is a hash-and-sign | |

* algorithm. | |

* \return 0 if \p alg is a signature algorithm that does not | |

* follow the hash-and-sign structure. | |

* \return Unspecified if \p alg is not a signature algorithm or | |

* if it is not supported by the implementation. | |

*/ | |

#define PSA_ALG_SIGN_GET_HASH(alg) \ | |

(PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ | |

((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \ | |

((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ | |

0) | |

/** RSA PKCS#1 v1.5 encryption. | |

*/ | |

#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200) | |

#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300) | |

/** RSA OAEP encryption. | |

* | |

* This is the encryption scheme defined by RFC 8017 | |

* (PKCS#1: RSA Cryptography Specifications) under the name | |

* RSAES-OAEP, with the message generation function MGF1. | |

* | |

* \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true) to use | |

* for MGF1. | |

* | |

* \return The corresponding RSA OAEP encryption algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_RSA_OAEP(hash_alg) \ | |

(PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

#define PSA_ALG_IS_RSA_OAEP(alg) \ | |

(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE) | |

#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \ | |

(PSA_ALG_IS_RSA_OAEP(alg) ? \ | |

((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ | |

0) | |

#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100) | |

/** Macro to build an HKDF algorithm. | |

* | |

* For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256. | |

* | |

* This key derivation algorithm uses the following inputs: | |

* - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step. | |

* It is optional; if omitted, the derivation uses an empty salt. | |

* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step. | |

* - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step. | |

* You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET. | |

* You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before | |

* starting to generate output. | |

* | |

* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true). | |

* | |

* \return The corresponding HKDF algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_HKDF(hash_alg) \ | |

(PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

/** Whether the specified algorithm is an HKDF algorithm. | |

* | |

* HKDF is a family of key derivation algorithms that are based on a hash | |

* function and the HMAC construction. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \c alg is an HKDF algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \c alg is not a supported | |

* key derivation algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_HKDF(alg) \ | |

(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE) | |

#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \ | |

(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) | |

#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200) | |

/** Macro to build a TLS-1.2 PRF algorithm. | |

* | |

* TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, | |

* specified in Section 5 of RFC 5246. It is based on HMAC and can be | |

* used with either SHA-256 or SHA-384. | |

* | |

* This key derivation algorithm uses the following inputs, which must be | |

* passed in the order given here: | |

* - #PSA_KEY_DERIVATION_INPUT_SEED is the seed. | |

* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key. | |

* - #PSA_KEY_DERIVATION_INPUT_LABEL is the label. | |

* | |

* For the application to TLS-1.2 key expansion, the seed is the | |

* concatenation of ServerHello.Random + ClientHello.Random, | |

* and the label is "key expansion". | |

* | |

* For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the | |

* TLS 1.2 PRF using HMAC-SHA-256. | |

* | |

* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true). | |

* | |

* \return The corresponding TLS-1.2 PRF algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_TLS12_PRF(hash_alg) \ | |

(PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

/** Whether the specified algorithm is a TLS-1.2 PRF algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \c alg is not a supported | |

* key derivation algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_TLS12_PRF(alg) \ | |

(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE) | |

#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \ | |

(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) | |

#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300) | |

/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm. | |

* | |

* In a pure-PSK handshake in TLS 1.2, the master secret is derived | |

* from the PreSharedKey (PSK) through the application of padding | |

* (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5). | |

* The latter is based on HMAC and can be used with either SHA-256 | |

* or SHA-384. | |

* | |

* This key derivation algorithm uses the following inputs, which must be | |

* passed in the order given here: | |

* - #PSA_KEY_DERIVATION_INPUT_SEED is the seed. | |

* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key. | |

* - #PSA_KEY_DERIVATION_INPUT_LABEL is the label. | |

* | |

* For the application to TLS-1.2, the seed (which is | |

* forwarded to the TLS-1.2 PRF) is the concatenation of the | |

* ClientHello.Random + ServerHello.Random, | |

* and the label is "master secret" or "extended master secret". | |

* | |

* For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the | |

* TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256. | |

* | |

* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true). | |

* | |

* \return The corresponding TLS-1.2 PSK to MS algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \ | |

(PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \c alg is not a supported | |

* key derivation algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \ | |

(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE) | |

#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \ | |

(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) | |

/* This flag indicates whether the key derivation algorithm is suitable for | |

* use on low-entropy secrets such as password - these algorithms are also | |

* known as key stretching or password hashing schemes. These are also the | |

* algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD. | |

* | |

* Those algorithms cannot be combined with a key agreement algorithm. | |

*/ | |

#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000) | |

#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100) | |

/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm. | |

* | |

* PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2). | |

* This macro specifies the PBKDF2 algorithm constructed using a PRF based on | |

* HMAC with the specified hash. | |

* For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2 | |

* using the PRF HMAC-SHA-256. | |

* | |

* This key derivation algorithm uses the following inputs, which must be | |

* provided in the following order: | |

* - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count. | |

* This input step must be used exactly once. | |

* - #PSA_KEY_DERIVATION_INPUT_SALT is the salt. | |

* This input step must be used one or more times; if used several times, the | |

* inputs will be concatenated. This can be used to build the final salt | |

* from multiple sources, both public and secret (also known as pepper). | |

* - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed. | |

* This input step must be used exactly once. | |

* | |

* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that | |

* #PSA_ALG_IS_HASH(\p hash_alg) is true). | |

* | |

* \return The corresponding PBKDF2-HMAC-XXX algorithm. | |

* \return Unspecified if \p hash_alg is not a supported | |

* hash algorithm. | |

*/ | |

#define PSA_ALG_PBKDF2_HMAC(hash_alg) \ | |

(PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) | |

/** Whether the specified algorithm is a PBKDF2-HMAC algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \c alg is not a supported | |

* key derivation algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_PBKDF2_HMAC(alg) \ | |

(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE) | |

/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm. | |

* | |

* PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2). | |

* This macro specifies the PBKDF2 algorithm constructed using the | |

* AES-CMAC-PRF-128 PRF specified by RFC 4615. | |

* | |

* This key derivation algorithm uses the same inputs as | |

* #PSA_ALG_PBKDF2_HMAC() with the same constraints. | |

*/ | |

#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200) | |

#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff) | |

#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000) | |

/** Macro to build a combined algorithm that chains a key agreement with | |

* a key derivation. | |

* | |

* \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such | |

* that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true). | |

* \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such | |

* that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true). | |

* | |

* \return The corresponding key agreement and derivation | |

* algorithm. | |

* \return Unspecified if \p ka_alg is not a supported | |

* key agreement algorithm or \p kdf_alg is not a | |

* supported key derivation algorithm. | |

*/ | |

#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \ | |

((ka_alg) | (kdf_alg)) | |

#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \ | |

(((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION) | |

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \ | |

(((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT) | |

/** Whether the specified algorithm is a raw key agreement algorithm. | |

* | |

* A raw key agreement algorithm is one that does not specify | |

* a key derivation function. | |

* Usually, raw key agreement algorithms are constructed directly with | |

* a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are | |

* constructed with #PSA_ALG_KEY_AGREEMENT(). | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \p alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \ | |

(PSA_ALG_IS_KEY_AGREEMENT(alg) && \ | |

PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION) | |

#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \ | |

((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg))) | |

/** The finite-field Diffie-Hellman (DH) key agreement algorithm. | |

* | |

* The shared secret produced by key agreement is | |

* `g^{ab}` in big-endian format. | |

* It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p` | |

* in bits. | |

*/ | |

#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000) | |

/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm. | |

* | |

* This includes the raw finite field Diffie-Hellman algorithm as well as | |

* finite-field Diffie-Hellman followed by any supporter key derivation | |

* algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise. | |

* This macro may return either 0 or 1 if \c alg is not a supported | |

* key agreement algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_FFDH(alg) \ | |

(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH) | |

/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm. | |

* | |

* The shared secret produced by key agreement is the x-coordinate of | |

* the shared secret point. It is always `ceiling(m / 8)` bytes long where | |

* `m` is the bit size associated with the curve, i.e. the bit size of the | |

* order of the curve's coordinate field. When `m` is not a multiple of 8, | |

* the byte containing the most significant bit of the shared secret | |

* is padded with zero bits. The byte order is either little-endian | |

* or big-endian depending on the curve type. | |

* | |

* - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`), | |

* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` | |

* in little-endian byte order. | |

* The bit size is 448 for Curve448 and 255 for Curve25519. | |

* - For Weierstrass curves over prime fields (curve types | |

* `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`), | |

* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` | |

* in big-endian byte order. | |

* The bit size is `m = ceiling(log_2(p))` for the field `F_p`. | |

* - For Weierstrass curves over binary fields (curve types | |

* `PSA_ECC_FAMILY_SECTXXX`), | |

* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` | |

* in big-endian byte order. | |

* The bit size is `m` for the field `F_{2^m}`. | |

*/ | |

#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000) | |

/** Whether the specified algorithm is an elliptic curve Diffie-Hellman | |

* algorithm. | |

* | |

* This includes the raw elliptic curve Diffie-Hellman algorithm as well as | |

* elliptic curve Diffie-Hellman followed by any supporter key derivation | |

* algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm, | |

* 0 otherwise. | |

* This macro may return either 0 or 1 if \c alg is not a supported | |

* key agreement algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_ECDH(alg) \ | |

(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH) | |

/** Whether the specified algorithm encoding is a wildcard. | |

* | |

* Wildcard values may only be used to set the usage algorithm field in | |

* a policy, not to perform an operation. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return 1 if \c alg is a wildcard algorithm encoding. | |

* \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for | |

* an operation). | |

* \return This macro may return either 0 or 1 if \c alg is not a supported | |

* algorithm identifier. | |

*/ | |

#define PSA_ALG_IS_WILDCARD(alg) \ | |

(PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ | |

PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \ | |

PSA_ALG_IS_MAC(alg) ? \ | |

(alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \ | |

PSA_ALG_IS_AEAD(alg) ? \ | |

(alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \ | |

(alg) == PSA_ALG_ANY_HASH) | |

/** Get the hash used by a composite algorithm. | |

* | |

* \param alg An algorithm identifier (value of type #psa_algorithm_t). | |

* | |

* \return The underlying hash algorithm if alg is a composite algorithm that | |

* uses a hash algorithm. | |

* | |

* \return \c 0 if alg is not a composite algorithm that uses a hash. | |

*/ | |

#define PSA_ALG_GET_HASH(alg) \ | |

(((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff)) | |

/**@}*/ | |

/** \defgroup key_lifetimes Key lifetimes | |

* @{ | |

*/ | |

/** The default lifetime for volatile keys. | |

* | |

* A volatile key only exists as long as the identifier to it is not destroyed. | |

* The key material is guaranteed to be erased on a power reset. | |

* | |

* A key with this lifetime is typically stored in the RAM area of the | |

* PSA Crypto subsystem. However this is an implementation choice. | |

* If an implementation stores data about the key in a non-volatile memory, | |

* it must release all the resources associated with the key and erase the | |

* key material if the calling application terminates. | |

*/ | |

#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000) | |

/** The default lifetime for persistent keys. | |

* | |

* A persistent key remains in storage until it is explicitly destroyed or | |

* until the corresponding storage area is wiped. This specification does | |

* not define any mechanism to wipe a storage area, but integrations may | |

* provide their own mechanism (for example to perform a factory reset, | |

* to prepare for device refurbishment, or to uninstall an application). | |

* | |

* This lifetime value is the default storage area for the calling | |

* application. Integrations of Mbed TLS may support other persistent lifetimes. | |

* See ::psa_key_lifetime_t for more information. | |

*/ | |

#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001) | |

/** The persistence level of volatile keys. | |

* | |

* See ::psa_key_persistence_t for more information. | |

*/ | |

#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00) | |

/** The default persistence level for persistent keys. | |

* | |

* See ::psa_key_persistence_t for more information. | |

*/ | |

#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01) | |

/** A persistence level indicating that a key is never destroyed. | |

* | |

* See ::psa_key_persistence_t for more information. | |

*/ | |

#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff) | |

#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \ | |

((psa_key_persistence_t)((lifetime) & 0x000000ff)) | |

#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \ | |

((psa_key_location_t)((lifetime) >> 8)) | |

/** Whether a key lifetime indicates that the key is volatile. | |

* | |

* A volatile key is automatically destroyed by the implementation when | |

* the application instance terminates. In particular, a volatile key | |

* is automatically destroyed on a power reset of the device. | |

* | |

* A key that is not volatile is persistent. Persistent keys are | |

* preserved until the application explicitly destroys them or until an | |

* implementation-specific device management event occurs (for example, | |

* a factory reset). | |

* | |

* \param lifetime The lifetime value to query (value of type | |

* ::psa_key_lifetime_t). | |

* | |

* \return \c 1 if the key is volatile, otherwise \c 0. | |

*/ | |

#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \ | |

(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \ | |

PSA_KEY_PERSISTENCE_VOLATILE) | |

/** Construct a lifetime from a persistence level and a location. | |

* | |

* \param persistence The persistence level | |

* (value of type ::psa_key_persistence_t). | |

* \param location The location indicator | |

* (value of type ::psa_key_location_t). | |

* | |

* \return The constructed lifetime value. | |

*/ | |

#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \ | |

((location) << 8 | (persistence)) | |

/** The local storage area for persistent keys. | |

* | |

* This storage area is available on all systems that can store persistent | |

* keys without delegating the storage to a third-party cryptoprocessor. | |

* | |

* See ::psa_key_location_t for more information. | |

*/ | |

#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000) | |

#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000) | |

/** The minimum value for a key identifier chosen by the application. | |

*/ | |

#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001) | |

/** The maximum value for a key identifier chosen by the application. | |

*/ | |

#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff) | |

/** The minimum value for a key identifier chosen by the implementation. | |

*/ | |

#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000) | |

/** The maximum value for a key identifier chosen by the implementation. | |

*/ | |

#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff) | |

#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER) | |

#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 ) | |

#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id ) | |

#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 ) | |

/** Utility to initialize a key identifier at runtime. | |

* | |

* \param unused Unused parameter. | |

* \param key_id Identifier of the key. | |

*/ | |

static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make( | |

unsigned int unused, psa_key_id_t key_id ) | |

{ | |

(void)unused; | |

return( key_id ); | |

} | |

/** Compare two key identifiers. | |

* | |

* \param id1 First key identifier. | |

* \param id2 Second key identifier. | |

* | |

* \return Non-zero if the two key identifier are equal, zero otherwise. | |

*/ | |

static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1, | |

mbedtls_svc_key_id_t id2 ) | |

{ | |

return( id1 == id2 ); | |

} | |

/** Check whether a key identifier is null. | |

* | |

* \param key Key identifier. | |

* | |

* \return Non-zero if the key identifier is null, zero otherwise. | |

*/ | |

static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key ) | |

{ | |

return( key == 0 ); | |

} | |

#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */ | |

#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } ) | |

#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id ) | |

#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner ) | |

/** Utility to initialize a key identifier at runtime. | |

* | |

* \param owner_id Identifier of the key owner. | |

* \param key_id Identifier of the key. | |

*/ | |

static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make( | |

mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id ) | |

{ | |

return( (mbedtls_svc_key_id_t){ .key_id = key_id, | |

.owner = owner_id } ); | |

} | |

/** Compare two key identifiers. | |

* | |

* \param id1 First key identifier. | |

* \param id2 Second key identifier. | |

* | |

* \return Non-zero if the two key identifier are equal, zero otherwise. | |

*/ | |

static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1, | |

mbedtls_svc_key_id_t id2 ) | |

{ | |

return( ( id1.key_id == id2.key_id ) && | |

mbedtls_key_owner_id_equal( id1.owner, id2.owner ) ); | |

} | |

/** Check whether a key identifier is null. | |

* | |

* \param key Key identifier. | |

* | |

* \return Non-zero if the key identifier is null, zero otherwise. | |

*/ | |

static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key ) | |

{ | |

return( ( key.key_id == 0 ) && ( key.owner == 0 ) ); | |

} | |

#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */ | |

/**@}*/ | |

/** \defgroup policy Key policies | |

* @{ | |

*/ | |

/** Whether the key may be exported. | |

* | |

* A public key or the public part of a key pair may always be exported | |

* regardless of the value of this permission flag. | |

* | |

* If a key does not have export permission, implementations shall not | |

* allow the key to be exported in plain form from the cryptoprocessor, | |

* whether through psa_export_key() or through a proprietary interface. | |

* The key may however be exportable in a wrapped form, i.e. in a form | |

* where it is encrypted by another key. | |

*/ | |

#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001) | |

/** Whether the key may be copied. | |

* | |

* This flag allows the use of psa_copy_key() to make a copy of the key | |

* with the same policy or a more restrictive policy. | |

* | |

* For lifetimes for which the key is located in a secure element which | |

* enforce the non-exportability of keys, copying a key outside the secure | |

* element also requires the usage flag #PSA_KEY_USAGE_EXPORT. | |

* Copying the key inside the secure element is permitted with just | |

* #PSA_KEY_USAGE_COPY if the secure element supports it. | |

* For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or | |

* #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY | |

* is sufficient to permit the copy. | |

*/ | |

#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002) | |

/** Whether the key may be used to encrypt a message. | |

* | |

* This flag allows the key to be used for a symmetric encryption operation, | |

* for an AEAD encryption-and-authentication operation, | |

* or for an asymmetric encryption operation, | |

* if otherwise permitted by the key's type and policy. | |

* | |

* For a key pair, this concerns the public key. | |

*/ | |

#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100) | |

/** Whether the key may be used to decrypt a message. | |

* | |

* This flag allows the key to be used for a symmetric decryption operation, | |

* for an AEAD decryption-and-verification operation, | |

* or for an asymmetric decryption operation, | |

* if otherwise permitted by the key's type and policy. | |

* | |

* For a key pair, this concerns the private key. | |

*/ | |

#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200) | |

/** Whether the key may be used to sign a message. | |

* | |

* This flag allows the key to be used for a MAC calculation operation or for | |

* an asymmetric message signature operation, if otherwise permitted by the | |

* key’s type and policy. | |

* | |

* For a key pair, this concerns the private key. | |

*/ | |

#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400) | |

/** Whether the key may be used to verify a message. | |

* | |

* This flag allows the key to be used for a MAC verification operation or for | |

* an asymmetric message signature verification operation, if otherwise | |

* permitted by the key’s type and policy. | |

* | |

* For a key pair, this concerns the public key. | |

*/ | |

#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800) | |

/** Whether the key may be used to sign a message. | |

* | |

* This flag allows the key to be used for a MAC calculation operation | |

* or for an asymmetric signature operation, | |

* if otherwise permitted by the key's type and policy. | |

* | |

* For a key pair, this concerns the private key. | |

*/ | |

#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000) | |

/** Whether the key may be used to verify a message signature. | |

* | |

* This flag allows the key to be used for a MAC verification operation | |

* or for an asymmetric signature verification operation, | |

* if otherwise permitted by by the key's type and policy. | |

* | |

* For a key pair, this concerns the public key. | |

*/ | |

#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000) | |

/** Whether the key may be used to derive other keys or produce a password | |

* hash. | |

* | |

* This flag allows the key to be used as the input of | |

* psa_key_derivation_input_key() at the step | |

* #PSA_KEY_DERIVATION_INPUT_SECRET of #PSA_KEY_DERIVATION_INPUT_PASSWORD | |

* depending on the algorithm, and allows the use of | |

* psa_key_derivation_output_bytes() or psa_key_derivation_output_key() | |

* at the end of the operation. | |

*/ | |

#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000) | |

/** Whether the key may be used to verify the result of a key derivation, | |

* including password hashing. | |

* | |

* This flag allows the key to be used: | |

* | |

* - for a key of type #PSA_KEY_TYPE_PASSWORD_HASH, as the \c key argument of | |

* psa_key_derivation_verify_key(); | |

* - for a key of type #PSA_KEY_TYPE_PASSWORD (or #PSA_KEY_TYPE_DERIVE), as | |

* the input to psa_key_derivation_input_key() at the step | |

* #PSA_KEY_DERIVATION_INPUT_PASSWORD (or #PSA_KEY_DERIVATION_INPUT_SECRET); | |

* then at the end of the operation use of psa_key_derivation_verify_bytes() | |

* or psa_key_derivation_verify_key() will be permitted (but not | |

* psa_key_derivation_output_xxx() unless #PSA_KEY_USAGE_DERIVE is set). | |

*/ | |

#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000) | |

/**@}*/ | |

/** \defgroup derivation Key derivation | |

* @{ | |

*/ | |

/** A secret input for key derivation. | |

* | |

* This should be a key of type #PSA_KEY_TYPE_DERIVE | |

* (passed to psa_key_derivation_input_key()) | |

* or the shared secret resulting from a key agreement | |

* (obtained via psa_key_derivation_key_agreement()). | |

* | |

* The secret can also be a direct input (passed to | |

* key_derivation_input_bytes()). In this case, the derivation operation | |

* may not be used to derive or verify keys: the operation will only allow | |

* psa_key_derivation_output_bytes() or | |

* psa_key_derivation_verify_bytes() but not | |

* psa_key_derivation_output_key() or | |

* psa_key_derivation_verify_key(). | |

*/ | |

#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101) | |

/** A low-entropy secret input for password hashing / key stretching. | |

* | |

* This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to | |

* psa_key_derivation_input_key()) or a direct input (passed to | |

* psa_key_derivation_input_bytes()) that is a password or passphrase. It can | |

* also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or | |

* the shared secret resulting from a key agreement. | |

* | |

* The secret can also be a direct input (passed to | |

* key_derivation_input_bytes()). In this case, the derivation operation | |

* may not be used to derive or verify keys: the operation will only allow | |

* psa_key_derivation_output_bytes() or | |

* psa_key_derivation_verify_bytes(), not | |

* psa_key_derivation_output_key() or | |

* psa_key_derivation_verify_key(). | |

*/ | |

#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102) | |

/** A label for key derivation. | |

* | |

* This should be a direct input. | |

* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA. | |

*/ | |

#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201) | |

/** A salt for key derivation. | |

* | |

* This should be a direct input. | |

* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or | |

* #PSA_KEY_TYPE_PEPPER. | |

*/ | |

#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202) | |

/** An information string for key derivation. | |

* | |

* This should be a direct input. | |

* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA. | |

*/ | |

#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203) | |

/** A seed for key derivation. | |

* | |

* This should be a direct input. | |

* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA. | |

*/ | |

#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204) | |

/** A cost parameter for password hashing / key stretching. | |

* | |

* This must be a direct input, passed to psa_key_derivation_input_integer(). | |

*/ | |

#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205) | |

/**@}*/ | |

/** \defgroup helper_macros Helper macros | |

* @{ | |

*/ | |

/* Helper macros */ | |

/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm | |

* regardless of the tag length they encode. | |

* | |

* \param aead_alg_1 An AEAD algorithm identifier. | |

* \param aead_alg_2 An AEAD algorithm identifier. | |

* | |

* \return 1 if both identifiers refer to the same AEAD algorithm, | |

* 0 otherwise. | |

* Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are | |

* a supported AEAD algorithm. | |

*/ | |

#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \ | |

(!(((aead_alg_1) ^ (aead_alg_2)) & \ | |

~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG))) | |

/**@}*/ | |

#endif /* PSA_CRYPTO_VALUES_H */ |