Cache pre-computed points for ecp_mul()
Up to 1.25 speedup on ECDSA sign for small curves, but mainly useful as a
preparation for fixed-point mult (a few prototypes changed in constness).
diff --git a/include/polarssl/ecdh.h b/include/polarssl/ecdh.h
index 0fa2dfa..81c8f93 100644
--- a/include/polarssl/ecdh.h
+++ b/include/polarssl/ecdh.h
@@ -62,7 +62,7 @@
* \return 0 if successful,
* or a POLARSSL_ERR_ECP_XXX or POLARSSL_MPI_XXX error code
*/
-int ecdh_gen_public( const ecp_group *grp, mpi *d, ecp_point *Q,
+int ecdh_gen_public( ecp_group *grp, mpi *d, ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
@@ -83,7 +83,7 @@
* countermeasures against potential elaborate timing
* attacks, see \c ecp_mul() for details.
*/
-int ecdh_compute_shared( const ecp_group *grp, mpi *z,
+int ecdh_compute_shared( ecp_group *grp, mpi *z,
const ecp_point *Q, const mpi *d,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
diff --git a/include/polarssl/ecdsa.h b/include/polarssl/ecdsa.h
index 3159d89..2de3b68 100644
--- a/include/polarssl/ecdsa.h
+++ b/include/polarssl/ecdsa.h
@@ -63,7 +63,7 @@
* \return 0 if successful,
* or a POLARSSL_ERR_ECP_XXX or POLARSSL_MPI_XXX error code
*/
-int ecdsa_sign( const ecp_group *grp, mpi *r, mpi *s,
+int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s,
const mpi *d, const unsigned char *buf, size_t blen,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
@@ -81,7 +81,7 @@
* POLARSSL_ERR_ECP_BAD_INPUT_DATA if signature is invalid
* or a POLARSSL_ERR_ECP_XXX or POLARSSL_MPI_XXX error code
*/
-int ecdsa_verify( const ecp_group *grp,
+int ecdsa_verify( ecp_group *grp,
const unsigned char *buf, size_t blen,
const ecp_point *Q, const mpi *r, const mpi *s);
diff --git a/include/polarssl/ecp.h b/include/polarssl/ecp.h
index 513b355..cd1568c 100644
--- a/include/polarssl/ecp.h
+++ b/include/polarssl/ecp.h
@@ -155,16 +155,15 @@
/*
* Maximum window size (actually, NAF width) used for point multipliation.
- * Default: 7.
+ * Default: 8.
* Minimum value: 2. Maximum value: 8.
*
* Result is an array of at most ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) )
- * points used for point multiplication, so at most 64 by default.
- * In practice, most curves will use less precomputed points.
+ * points used for point multiplication.
*
* Reduction in size may reduce speed for big curves.
*/
-#define POLARSSL_ECP_WINDOW_SIZE 7 /**< Maximum NAF width used. */
+#define POLARSSL_ECP_WINDOW_SIZE 8 /**< Maximum NAF width used. */
/*
* Point formats, from RFC 4492's enum ECPointFormat
@@ -472,7 +471,7 @@
* has very low overhead, it is recommended to always provide
* a non-NULL f_rng parameter when using secret inputs.
*/
-int ecp_mul( const ecp_group *grp, ecp_point *R,
+int ecp_mul( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
@@ -531,7 +530,7 @@
* in order to ease use with other structures such as
* ecdh_context of ecdsa_context.
*/
-int ecp_gen_keypair( const ecp_group *grp, mpi *d, ecp_point *Q,
+int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng );
diff --git a/library/ecdh.c b/library/ecdh.c
index 050f99d..400e45f 100644
--- a/library/ecdh.c
+++ b/library/ecdh.c
@@ -39,7 +39,7 @@
/*
* Generate public key: simple wrapper around ecp_gen_keypair
*/
-int ecdh_gen_public( const ecp_group *grp, mpi *d, ecp_point *Q,
+int ecdh_gen_public( ecp_group *grp, mpi *d, ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
@@ -49,7 +49,7 @@
/*
* Compute shared secret (SEC1 3.3.1)
*/
-int ecdh_compute_shared( const ecp_group *grp, mpi *z,
+int ecdh_compute_shared( ecp_group *grp, mpi *z,
const ecp_point *Q, const mpi *d,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
diff --git a/library/ecdsa.c b/library/ecdsa.c
index 8d0b2b5..91777ec 100644
--- a/library/ecdsa.c
+++ b/library/ecdsa.c
@@ -51,7 +51,7 @@
* Compute ECDSA signature of a hashed message (SEC1 4.1.3)
* Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
*/
-int ecdsa_sign( const ecp_group *grp, mpi *r, mpi *s,
+int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s,
const mpi *d, const unsigned char *buf, size_t blen,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
@@ -117,7 +117,7 @@
* Verify ECDSA signature of hashed message (SEC1 4.1.4)
* Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
*/
-int ecdsa_verify( const ecp_group *grp,
+int ecdsa_verify( ecp_group *grp,
const unsigned char *buf, size_t blen,
const ecp_point *Q, const mpi *r, const mpi *s)
{
diff --git a/library/ecp.c b/library/ecp.c
index 48ce5d3..0b6650d 100644
--- a/library/ecp.c
+++ b/library/ecp.c
@@ -149,6 +149,8 @@
*/
void ecp_group_free( ecp_group *grp )
{
+ size_t i;
+
if( grp == NULL )
return;
@@ -157,6 +159,13 @@
ecp_point_free( &grp->G );
mpi_free( &grp->N );
+ if( grp->T != NULL )
+ {
+ for( i = 0; i < grp->T_size; i++ )
+ ecp_point_free( &grp->T[i] );
+ polarssl_free( grp->T );
+ }
+
memset( grp, 0, sizeof( ecp_group ) );
}
@@ -1279,34 +1288,53 @@
* This function executes a fixed number of operations for
* random m in the range 0 .. 2^nbits - 1.
*
- * As an additional countermeasure against potential elaborate timing attacks,
- * we randomize coordinates after each addition. This was suggested as a
+ * As an additional countermeasure against potential timing attacks,
+ * we randomize coordinates before each addition. This was suggested as a
* countermeasure against DPA in 5.3 of [2] (with the obvious adaptation that
* we use jacobian coordinates, not standard projective coordinates).
*/
-int ecp_mul( const ecp_group *grp, ecp_point *R,
+int ecp_mul( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
- unsigned char w, m_is_odd;
+ unsigned char w, m_is_odd, p_eq_g;
size_t pre_len, naf_len, i, j;
signed char naf[ MAX_NAF_LEN ];
- ecp_point Q, T[ MAX_PRE_LEN ];
+ ecp_point Q, *T = NULL, S[2];
mpi M;
if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
- w = grp->nbits >= 521 ? 6 :
- grp->nbits >= 224 ? 5 :
- 4;
+ mpi_init( &M );
+ ecp_point_init( &Q );
+ ecp_point_init( &S[0] );
+ ecp_point_init( &S[1] );
+
+ /*
+ * Check if P == G
+ */
+ p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 &&
+ mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
+ mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
+
+ /*
+ * If P == G, pre-compute a lot of points: this will be re-used later,
+ * otherwise, choose window size depending on curve size
+ */
+ if( p_eq_g )
+ w = POLARSSL_ECP_WINDOW_SIZE;
+ else
+ w = grp->nbits >= 512 ? 6 :
+ grp->nbits >= 224 ? 5 :
+ 4;
/*
* Make sure w is within the limits.
* The last test ensures that none of the precomputed points is zero,
* which wouldn't be handled correctly by ecp_normalize_many().
- * It is only useful for very small curves, as used in the test suite.
+ * It is only useful for very small curves as used in the test suite.
*/
if( w > POLARSSL_ECP_WINDOW_SIZE )
w = POLARSSL_ECP_WINDOW_SIZE;
@@ -1316,25 +1344,54 @@
pre_len = 1 << ( w - 1 );
naf_len = grp->nbits / w + 1;
- mpi_init( &M );
- ecp_point_init( &Q );
- for( i = 0; i < pre_len; i++ )
- ecp_point_init( &T[i] );
+ /*
+ * Prepare precomputed points: if P == G we want to
+ * use grp->T if already initialized, or initiliaze it.
+ */
+ if( ! p_eq_g || grp->T == NULL )
+ {
+ if( ( T = polarssl_malloc( pre_len * sizeof( ecp_point ) ) ) == NULL )
+ {
+ ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
+ goto cleanup;
+ }
- m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
+ for( i = 0; i < pre_len; i++ )
+ ecp_point_init( &T[i] );
+
+ MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
+
+ if( p_eq_g )
+ {
+ grp->T = T;
+ grp->T_size = pre_len;
+ }
+ }
+ else
+ {
+ T = grp->T;
+
+ /* Should never happen, but we want to be extra sure */
+ if( pre_len != grp->T_size )
+ {
+ ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+ }
/*
- * Make sure M is odd:
- * later we'll get m * P by subtracting * P or 2 * P to M * P.
+ * Make sure M is odd (M = m + 1 or M = m + 2)
+ * later we'll get m * P by subtracting P or 2 * P to M * P.
*/
+ m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
+
MPI_CHK( mpi_copy( &M, m ) );
MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
/*
- * Compute the fixed-pattern NAF and precompute odd multiples
+ * Compute the fixed-pattern NAF of M
*/
MPI_CHK( ecp_w_naf_fixed( naf, naf_len, w, &M ) );
- MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
/*
* Compute M * P, using a variant of left-to-right 2^w-ary multiplication:
@@ -1348,6 +1405,10 @@
i = naf_len - 1;
while( 1 )
{
+ /* Countermeasure (see comments above) */
+ if( f_rng != NULL )
+ ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
+
if( naf[i] < 0 )
{
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ - naf[i] - 1 ], -1 ) );
@@ -1357,10 +1418,6 @@
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
}
- /* Countermeasure (see comments above) */
- if( f_rng != NULL )
- ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
-
if( i == 0 )
break;
i--;
@@ -1372,20 +1429,26 @@
}
/*
- * Now get m * P from M * P.
- * Since we don't need T[] any more, we can recycle it:
- * we already have T[0] = P, now set T[1] = 2 * P.
+ * Now get m * P from M * P
*/
- MPI_CHK( ecp_add( grp, &T[1], P, P ) );
- MPI_CHK( ecp_sub( grp, R, &Q, &T[m_is_odd] ) );
+ MPI_CHK( ecp_copy( &S[0], P ) );
+ MPI_CHK( ecp_add( grp, &S[1], P, P ) );
+ MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
cleanup:
- mpi_free( &M );
+ if( T != NULL && ! p_eq_g )
+ {
+ for( i = 0; i < pre_len; i++ )
+ ecp_point_free( &T[i] );
+ polarssl_free( T );
+ }
+
+ ecp_point_free( &S[1] );
+ ecp_point_free( &S[0] );
ecp_point_free( &Q );
- for( i = 0; i < pre_len; i++ )
- ecp_point_free( &T[i] );
+ mpi_free( &M );
return( ret );
}
@@ -1450,7 +1513,7 @@
/*
* Generate a keypair (SEC1 3.2.1)
*/
-int ecp_gen_keypair( const ecp_group *grp, mpi *d, ecp_point *Q,
+int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
@@ -1485,7 +1548,7 @@
int ret;
size_t i;
ecp_group grp;
- ecp_point R;
+ ecp_point R, P;
mpi m;
unsigned long add_c_prev, dbl_c_prev;
const char *exponents[] =
@@ -1501,6 +1564,7 @@
ecp_group_init( &grp );
ecp_point_init( &R );
+ ecp_point_init( &P );
mpi_init( &m );
#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
@@ -1526,7 +1590,11 @@
#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
if( verbose != 0 )
- printf( " ECP test #1 (resistance to simple timing attacks): " );
+ printf( " ECP test #1 (constant op_count, base point G): " );
+
+ /* Do a dummy multiplication first to trigger precomputation */
+ MPI_CHK( mpi_lset( &m, 2 ) );
+ MPI_CHK( ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
add_count = 0;
dbl_count = 0;
@@ -1556,6 +1624,38 @@
if( verbose != 0 )
printf( "passed\n" );
+ if( verbose != 0 )
+ printf( " ECP test #2 (constant op_count, other point): " );
+ /* We computed P = 2G last time, use it */
+
+ add_count = 0;
+ dbl_count = 0;
+ MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
+ MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
+
+ for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
+ {
+ add_c_prev = add_count;
+ dbl_c_prev = dbl_count;
+ add_count = 0;
+ dbl_count = 0;
+
+ MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
+ MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
+
+ if( add_count != add_c_prev || dbl_count != dbl_c_prev )
+ {
+ if( verbose != 0 )
+ printf( "failed (%zu)\n", i );
+
+ ret = 1;
+ goto cleanup;
+ }
+ }
+
+ if( verbose != 0 )
+ printf( "passed\n" );
+
cleanup:
if( ret < 0 && verbose != 0 )
@@ -1563,6 +1663,7 @@
ecp_group_free( &grp );
ecp_point_free( &R );
+ ecp_point_free( &P );
mpi_free( &m );
if( verbose != 0 )