RSA: Use MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR
diff --git a/library/rsa.c b/library/rsa.c
index 88c1cf1..f225c50 100644
--- a/library/rsa.c
+++ b/library/rsa.c
@@ -502,6 +502,7 @@
{
int ret;
mbedtls_mpi H, G, L;
+ int prime_quality = 0;
if( f_rng == NULL || nbits < 128 || exponent < 3 )
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
@@ -509,6 +510,14 @@
if( nbits % 2 )
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
+ /*
+ * If the modulus is 1024 bit long or shorter, then the security strength of
+ * the RSA algorithm is less than or equal to 80 bits and therefore an error
+ * rate of 2^-80 is sufficient.
+ */
+ if( nbits > 1024 )
+ prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
+
mbedtls_mpi_init( &H );
mbedtls_mpi_init( &G );
mbedtls_mpi_init( &L );
@@ -523,11 +532,11 @@
do
{
- MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1, 0,
- f_rng, p_rng ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1,
+ prime_quality, f_rng, p_rng ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1, 0,
- f_rng, p_rng ) );
+ MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1,
+ prime_quality, f_rng, p_rng ) );
/* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );