Mbed Crypto is an open source cryptographic library that supports a wide range of cryptographic operations, including:
The Mbed Crypto library is a reference implementation of the cryptography interface of the Arm Platform Security Architecture (PSA). It is written in portable C.
The Mbed Crypto library is distributed under the Apache License, version 2.0.
Arm's Platform Security Architecture (PSA) is a holistic set of threat models, security analyses, hardware and firmware architecture specifications, and an open source firmware reference implementation. PSA provides a recipe, based on industry best practice, that allows security to be consistently designed in, at both a hardware and firmware level. Part of the API provided by PSA is the cryptography interface, which provides access to a set of primitives.
Mbed Crypto releases are available in the public Github repository.
You need the following tools to build the library with the provided makefiles:
If you have a C compiler such as GCC or Clang, just run make
in the top-level directory to build the library, a set of unit tests and some sample programs.
To select a different compiler, set the CC
variable to name or path of the compiler and linker (default: cc
) and set AR
to a compatible archiver (default: ar
), such as:
make CC=arm-linux-gnueabi-gcc AR=arm-linux-gnueabi-ar
The provided makefiles pass options to the compiler that assume a GCC-like command line syntax. To use a different compiler, you may need to pass different values for CFLAGS
, WARNINGS_CFLAGS
and LDFLAGS
.
To run the unit tests on the host machine, run make test
from the top-level directory. If you are cross-compiling, copy the test executable from the tests
directory to the target machine.
To use the Mbed Crypto APIs, call psa_crypto_init()
before calling any other API. This initializes the library.
To use a key for cryptography operations in Mbed Crypto, you need to first import it into a key slot. Each slot can store only one key at a time. The slot where the key is stored must be unoccupied, and valid for a key of the chosen type.
Prerequisites to importing keys:
psa_crypto_init
.Importing a key and checking key information:
1
.int key_slot = 1; uint8_t *data = "KEY_PAIR_KEY_DATA"; size_t data_size; psa_key_type_t type = PSA_KEY_TYPE_RSA_PUBLIC_KEY; size_t got_bits; psa_key_type_t got_type; size_t expected_bits = data_size; psa_key_type_t type = PSA_KEY_TYPE_RAW_DATA; size_t export_size = data_size; psa_crypto_init(); /* Import the key */ status = psa_import_key(key_slot, type, data, data_size); /* Test the key information */ status = psa_get_key_information(slot, &got_type, &got_bits); /* Destroy the key */ psa_destroy_key(key_slot); mbedtls_psa_crypto_free();
Mbed Crypto provides support for encrypting, decrypting, signing and verifying messages using public key signature algorithms (such as RSA or ECDSA).
Prerequisites to working with the asymmetric cipher API:
psa_crypto_init
.PSA_KEY_USAGE_SIGN
to allow signing.PSA_KEY_USAGE_VERIFY
to allow signature verification.To sign a given message payload
using RSA:
psa_key_policy_set_usage()
with the PSA_KEY_USAGE_SIGN
parameter and the algorithm PSA_ALG_RSA_PKCS1V15_SIGN_RAW
. This allows the key in the key slot to be used for RSA signing.psa_import_key()
. You can use an already imported key instead of importing a new one.psa_asymmetric_sign()
and get the output buffer that contains the signature:psa_status_t status; int key_slot = 1; unsigned char key[] = "RSA_KEY"; unsigned char payload[] = "ASYMMETRIC_INPUT_FOR_SIGN"; psa_key_policy_t policy = PSA_KEY_POLICY_INIT; unsigned char signature[PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE] = {0}; size_t signature_length; status = psa_crypto_init(); /* Import the key */ psa_key_policy_set_usage(&policy, PSA_KEY_USAGE_SIGN, PSA_ALG_RSA_PKCS1V15_SIGN_RAW); status = psa_set_key_policy(key_slot, &policy); status = psa_import_key(key_slot, PSA_KEY_TYPE_RSA_KEY_PAIR, key, sizeof(key)); /* Sing message using the key */ status = psa_asymmetric_sign(key_slot, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload, sizeof(payload), signature, sizeof(signature), &signature_length); /* Destroy the key */ psa_destroy_key(key_slot); mbedtls_psa_crypto_free();
Mbed Crypto provides support for encrypting and decrypting messages using various symmetric cipher algorithms (both block and stream ciphers).
Prerequisites to working with the symmetric cipher API:
psa_crypto_init
.PSA_KEY_USAGE_ENCRYPT
to allow encryption or PSA_KEY_USAGE_DECRYPT
to allow decryption).Encrypting a message with a symmetric cipher:
psa_cipher_operation_t
) structure to pass to the cipher functions.psa_cipher_encrypt_setup
to initialize the operation structure and specify the algorithm and the key to be used.psa_cipher_generate_iv
or psa_cipher_set_iv
to generate or set the initialization vector (IV). We recommended psa_cipher_generate_iv
, unless you require a specific IV value.psa_cipher_update
one or more times, passing either the whole or only a fragment of the message each time.psa_cipher_finish
to end the operation and output the encrypted message.Encrypting random data using an AES key in cipher block chain (CBC) mode with no padding (assuming all prerequisites have been fulfilled):
psa_key_slot_t key_slot = 1; psa_algorithm_t alg = PSA_ALG_CBC_NO_PADDING; psa_cipher_operation_t operation; size_t block_size = PSA_BLOCK_CIPHER_BLOCK_SIZE(PSA_KEY_TYPE_AES); unsigned char input[block_size]; unsigned char iv[block_size]; size_t iv_len; unsigned char output[block_size]; size_t output_len; /* generate some random data to be encrypted */ psa_generate_random(input, sizeof(input)); /* encrypt the key */ psa_cipher_encrypt_setup(&operation, key_slot, alg); psa_cipher_generate_iv(&operation, iv, sizeof(iv), &iv_len); psa_cipher_update(&operation, input, sizeof(input), output, sizeof(output), &output_len); psa_cipher_finish(&operation, output + output_len, sizeof(output) - output_len, &output_len); /* Clean up cipher operation context */ psa_cipher_abort(&operation);
Decrypting a message with a symmetric cipher:
psa_cipher_operation_t
) structure to pass to the cipher functions.psa_cipher_decrypt_setup
to initialize the operation structure and to specify the algorithm and the key to be used.psa_cipher_set_iv
with the IV for the decryption.psa_cipher_update
one or more times passing either the whole or only a fragment of the message each time.psa_cipher_finish
to end the operation and output the decrypted message.Decrypting encrypted data using an AES key in CBC mode with no padding (assuming all prerequisites have been fulfilled):
psa_key_slot_t key_slot = 1; psa_algorithm_t alg = PSA_ALG_CBC_NO_PADDING; psa_cipher_operation_t operation; size_t block_size = PSA_BLOCK_CIPHER_BLOCK_SIZE(PSA_KEY_TYPE_AES); unsigned char input[block_size]; unsigned char iv[block_size]; size_t iv_len; unsigned char output[block_size]; size_t output_len; /* setup input data */ fetch_iv(iv, sizeof(iv)); /* fetch the IV used when the data was encrypted */ fetch_input(input, sizeof(input)); /* fetch the data to be decrypted */ /* encrypt the encrypted data */ psa_cipher_decrypt_setup(&operation, key_slot, alg); psa_cipher_set_iv(&operation, iv, sizeof(iv)); psa_cipher_update(&operation, input, sizeof(input), output, sizeof(output), &output_len); psa_cipher_finish(&operation, output + output_len, sizeof(output) - output_len, &output_len); /* Clean up cipher operation context */ psa_cipher_abort(&operation);
Once you've initialized the operation structure with a successful call to psa_cipher_encrypt_setup
or psa_cipher_decrypt_setup
, you can terminate the operation at any time by calling psa_cipher_abort
.
The call to psa_cipher_abort
frees any resources associated with the operation (except for the operation structure itself). An implicit call to psa_cipher_abort
occurs when any of these conditions occur:
psa_cipher_generate_iv
, psa_cipher_set_iv
or psa_cipher_update
has failed (returning any status other than PSA_SUCCESS
).psa_cipher_finish
.Once psa_cipher_abort
has been called (either implicitly by the implementation or explicitly by the user), the operation structure is invalidated and may not be reused for the same operation. However, the operation structure may be reused for a different operation by calling either psa_cipher_encrypt_setup
or psa_cipher_decrypt_setup
again.
For an operation that has been initialized successfully (by a successful call to psa_cipher_encrypt_setup
or psa_cipher_decrypt_setup
) it is imperative that at some time psa_cipher_abort
is called.
Multiple sequential calls to psa_cipher_abort
on an operation that has already been terminated (either implicitly or explicitly) are safe and have no effect.
Mbed Crypto lets you compute and verify hashes using various hashing algorithms.
The current implementation supports the following hash algorithms: MD2
, MD4
, MD5
, RIPEMD160
, SHA-1
, SHA-224
, SHA-256
, SHA-384
, and SHA-512
.
Prerequisites to working with the hash APIs:
psa_crypto_init
.To calculate a hash:
psa_hash_operation_t
) to pass to the hash functions.psa_hash_setup
to initialize the operation structure and specify the hash algorithm.psa_hash_update
one or more times, passing either the whole or only a fragment of the message each time.psa_hash_finish
to calculate the hash, or psa_hash_verify
to compare the computed hash with an expected hash value.Calculate the SHA-256
hash of a message:
psa_algorithm_t alg = PSA_ALG_SHA_256; psa_hash_operation_t operation; unsigned char input[] = { 'a', 'b', 'c' }; unsigned char actual_hash[PSA_HASH_MAX_SIZE]; size_t actual_hash_len; /* Compute hash of message */ psa_hash_setup(&operation, alg); psa_hash_update(&operation, input, sizeof(input)); psa_hash_finish(&operation, actual_hash, sizeof(actual_hash), &actual_hash_len); /* Clean up hash operation context */ psa_hash_abort(&operation);
Verify the SHA-256
hash of a message:
psa_algorithm_t alg = PSA_ALG_SHA_256; psa_hash_operation_t operation; unsigned char input[] = { 'a', 'b', 'c' }; unsigned char expected_hash[] = { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }; size_t expected_hash_len = PSA_HASH_SIZE(alg); /* Verify message hash */ psa_hash_setup(&operation, alg); psa_hash_update(&operation, input, sizeof(input)); psa_hash_verify(&operation, expected_hash, expected_hash_len);
The API provides the macro PSA_HASH_SIZE
, which returns the expected hash length (in bytes) for the specified algorithm.
Once the operation structure has been successfully initialized by a successful call to psa_hash_setup
, it's possible to terminate the operation at any time by calling psa_hash_abort
. The call to psa_hash_abort
frees any resources associated with the operation (except for the operation structure itself).
An implicit call to psa_hash_abort
occurs when any of these conditions occur:
psa_hash_update
has failed (returning any status other than PSA_SUCCESS
).psa_hash_finish
.psa_hash_verify
.Once psa_hash_abort
has been called (either implicitly by the implementation or explicitly by the user), the operation structure is invalidated and may not be reused for the same operation. However, the operation structure may be reused for a different operation by calling psa_hash_setup
again.
For an operation that has been initialized successfully (by a successful call to psa_hash_setup
) it is imperative that at some time psa_hash_abort
is called.
Multiple sequential calls to psa_hash_abort
on an operation that has already been terminated (either implicitly or explicitly) is safe and has no effect.
Mbed Crypto can generate random data.
Prerequisites to random generation:
psa_crypto_init
.Generate a random, ten-byte piece of data:
psa_generate_random()
:psa_status_t status; uint8_t random[10] = { 0 }; psa_crypto_init(); status = psa_generate_random(random, sizeof(random)); mbedtls_psa_crypto_free();
Mbed Crypto provides a key derivation API that lets you derive new keys from existing ones. Key derivation is based upon the generator abstraction. A generator must first be initialized and set up (provided with a key and optionally other data) and then derived data can be read from it either to a buffer or directly imported into a key slot.
Prerequisites to working with the key derivation APIs:
psa_crypto_init
.PSA_KEY_USAGE_DERIVE
)PSA_KEY_TYPE_DERIVE
.Deriving a new AES-CTR 128-bit encryption key into a given key slot using HKDF with a given key, salt and label:
psa_key_policy_set_usage()
with PSA_KEY_USAGE_DERIVE
parameter, and the algorithm PSA_ALG_HKDF(PSA_ALG_SHA_256)
.psa_import_key()
. You can skip this step and the previous one if the key has already been imported into a known key slot.psa_key_derivation
function providing a key slot containing a key that can be used for key derivation and a salt and label (Note: salt and label are optional).psa_key_policy_set_usage()
with PSA_KEY_USAGE_ENCRYPT
parameter and the algorithm PSA_ALG_CTR
.psa_key_derivation_output_key
).At this point the derived key slot holds a new 128-bit AES-CTR encryption key derived from the key, salt and label provided:
psa_key_slot_t base_key = 1; psa_key_slot_t derived_key = 2; psa_key_policy_t policy = PSA_KEY_POLICY_INIT; unsigned char key[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b }; unsigned char salt[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c }; unsigned char label[] = { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9 }; psa_algorithm_t alg = PSA_ALG_HKDF(PSA_ALG_SHA_256); psa_key_policy_t policy = PSA_KEY_POLICY_INIT; psa_key_derivation_operation_t generator = PSA_KEY_DERIVATION_OPERATION_INIT; size_t derived_bits = 128; size_t capacity = PSA_BITS_TO_BYTES(derived_bits); status = psa_crypto_init(); /* Import a key for use in key derivation, if such a key has already been imported you can skip this part */ psa_key_policy_set_usage(&policy, PSA_KEY_USAGE_DERIVE, alg); status = psa_set_key_policy(base_key, &policy); status = psa_import_key(base_key, PSA_KEY_TYPE_DERIVE, key, sizeof(key)); /* Derive a key into a key slot*/ status = psa_key_derivation(&generator, base_key, alg, salt, sizeof(salt), label, sizeof(label), capacity); psa_key_policy_set_usage(&policy, PSA_KEY_USAGE_ENCRYPT, PSA_ALG_CTR); psa_set_key_policy(derived_key, &policy); psa_key_derivation_output_key(derived_key, PSA_KEY_TYPE_AES, derived_bits, &generator); /* Clean up generator and key */ psa_key_derivation_abort(&generator); /* as part of clean up you may want to clean up the keys used by calling: * psa_destroy_key( base_key ); or psa_destroy_key( derived_key ); */ mbedtls_psa_crypto_free();
Mbed Crypto provides a simple way for authenticate and encrypt with associated data (AEAD) supporting PSA_ALG_CCM
algorithm.
Prerequisites to working with the AEAD ciphers APIs:
psa_crypto_init
.PSA_KEY_USAGE_ENCRYPT
or PSA_KEY_USAGE_DECRYPT
).To authenticate and encrypt a message:
int slot = 1; psa_status_t status; unsigned char key[] = { 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF }; unsigned char nonce[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B }; unsigned char additional_data[] = { 0xEC, 0x46, 0xBB, 0x63, 0xB0, 0x25, 0x20, 0xC3, 0x3C, 0x49, 0xFD, 0x70 }; unsigned char input_data[] = { 0xB9, 0x6B, 0x49, 0xE2, 0x1D, 0x62, 0x17, 0x41, 0x63, 0x28, 0x75, 0xDB, 0x7F, 0x6C, 0x92, 0x43, 0xD2, 0xD7, 0xC2 }; unsigned char *output_data = NULL; size_t output_size = 0; size_t output_length = 0; size_t tag_length = 16; psa_key_policy_t policy = PSA_KEY_POLICY_INIT; output_size = sizeof(input_data) + tag_length; output_data = malloc(output_size); status = psa_crypto_init(); psa_key_policy_set_usage(&policy, PSA_KEY_USAGE_ENCRYPT, PSA_ALG_CCM); status = psa_set_key_policy(slot, &policy); status = psa_import_key(slot, PSA_KEY_TYPE_AES, key, sizeof(key)); status = psa_aead_encrypt(slot, PSA_ALG_CCM, nonce, sizeof(nonce), additional_data, sizeof(additional_data), input_data, sizeof(input_data), output_data, output_size, &output_length); psa_destroy_key(slot); mbedtls_free(output_data); mbedtls_psa_crypto_free();
To authenticate and decrypt a message:
int slot = 1; psa_status_t status; unsigned char key[] = { 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF }; unsigned char nonce[] = { 0xEC, 0x46, 0xBB, 0x63, 0xB0, 0x25, 0x20, 0xC3, 0x3C, 0x49, 0xFD, 0x70 }; unsigned char additional_data[] = { 0xEC, 0x46, 0xBB, 0x63, 0xB0, 0x25, 0x20, 0xC3, 0x3C, 0x49, 0xFD, 0x70 }; unsigned char input_data[] = { 0xB9, 0x6B, 0x49, 0xE2, 0x1D, 0x62, 0x17, 0x41, 0x63, 0x28, 0x75, 0xDB, 0x7F, 0x6C, 0x92, 0x43, 0xD2, 0xD7, 0xC2 }; unsigned char *output_data = NULL; size_t output_size = 0; size_t output_length = 0; psa_key_policy_t policy = PSA_KEY_POLICY_INIT; output_size = sizeof(input_data); output_data = malloc(output_size); status = psa_crypto_init(); psa_key_policy_set_usage(&policy, PSA_KEY_USAGE_DECRYPT, PSA_ALG_CCM); status = psa_set_key_policy(slot, &policy); status = psa_import_key(slot, PSA_KEY_TYPE_AES, key, sizeof(key)); status = psa_aead_decrypt(slot, PSA_ALG_CCM, nonce, sizeof(nonce), additional_data, sizeof(additional_data), input_data, sizeof(input_data), output_data, output_size, &output_length); psa_destroy_key(slot); mbedtls_free(output_data); mbedtls_psa_crypto_free();
Mbed Crypto provides a simple way to generate a key or key pair.
Prerequisites to using key generation and export APIs:
psa_crypto_init
.Generate a piece of random 128-bit AES data:
psa_key_policy_set_usage()
with the PSA_KEY_USAGE_EXPORT
parameter and the algorithm PSA_ALG_GCM
.psa_generate_random_key()
.psa_export_key()
:int slot = 1; size_t bits = 128; size_t exported_size = bits; size_t exported_length = 0; uint8_t *exported = malloc(exported_size); psa_key_policy_t policy = PSA_KEY_POLICY_INIT; psa_crypto_init(); psa_key_policy_set_usage(&policy, PSA_KEY_USAGE_EXPORT, PSA_ALG_GCM); psa_set_key_policy(slot, &policy); /* Generate a key */ psa_generate_random_key(slot, PSA_KEY_TYPE_AES, bits); psa_export_key(slot, exported, exported_size, &exported_length) psa_destroy_key(slot); mbedtls_psa_crypto_free();
More information on Mbed Crypto.
More information on PSA Crypto.