cmake: link programs that only use crypto with libmbedcrypto

When building with CMake, for sample programs that only use
functionality in libmbedcrypto (i.e. crypto and platform), link with
libmbedcrypto, not with libmbedtls.

This doesn't change the result, because the linker skips libraries in
which no symbol is used, but it changes the build dependencies, and it
has the advantage of bringing programs/*/CMakeLists.txt closer to the
corresponding files under crypto/.

The programs concerned are crypto sample and test programs, and
programs that only use (potential) platform functions such as
mbedtls_printf. dh_client and dh_server keep linking with mbedtls
because they use functions from the net_sockets module.
6 files changed
tree: cc234038848ef45f9b7e110d79bd6e1d3fd36075
  1. .github/
  2. configs/
  3. docs/
  4. doxygen/
  5. include/
  6. library/
  7. programs/
  8. scripts/
  9. tests/
  10. visualc/
  11. .gitignore
  12. .gitmodules
  13. .globalrc
  14. .pylintrc
  15. .travis.yml
  16. apache-2.0.txt
  17. ChangeLog
  18. CMakeLists.txt
  19. CONTRIBUTING.md
  20. DartConfiguration.tcl
  21. LICENSE
  22. Makefile
  23. README.md
README.md

README for Mbed TLS

Configuration

Mbed TLS should build out of the box on most systems. Some platform specific options are available in the fully documented configuration file include/mbedtls/config.h, which is also the place where features can be selected. This file can be edited manually, or in a more programmatic way using the Perl script scripts/config.py (use --help for usage instructions).

Compiler options can be set using conventional environment variables such as CC and CFLAGS when using the Make and CMake build system (see below).

Compiling

There are currently three active build systems used within Mbed TLS releases:

  • GNU Make
  • CMake
  • Microsoft Visual Studio (Microsoft Visual Studio 2013 or later)

The main systems used for development are CMake and GNU Make. Those systems are always complete and up-to-date. The others should reflect all changes present in the CMake and Make build system, although features may not be ported there automatically.

The Make and CMake build systems create three libraries: libmbedcrypto, libmbedx509, and libmbedtls. Note that libmbedtls depends on libmbedx509 and libmbedcrypto, and libmbedx509 depends on libmbedcrypto. As a result, some linkers will expect flags to be in a specific order, for example the GNU linker wants -lmbedtls -lmbedx509 -lmbedcrypto. Also, when loading shared libraries using dlopen(), you'll need to load libmbedcrypto first, then libmbedx509, before you can load libmbedtls.

Getting files form git: the Crypto submodule

The Mbed Crypto library now has its own git repository, which the Mbed TLS build systems are using as a git submodule in order to build libmbedcrypto as a subproject of Mbed TLS. When cloning the Mbed TLS repository, you need to make sure you're getting the submodule as well:

    git clone --recursive https://github.com/ARMmbed/mbedtls.git

Alternatively, if you already have an existing clone of the Mbed TLS repository, you can initialise and update the submodule with:

    git submodule update --init crypto

After these steps, your clone is now ready for building the libraries as detailed in the following sections.

Note that building libmbedcrypto as a subproject of Mbed TLS does not enable the PSA-specific tests and utility programs. To use these programs, build Mbed Crypto as a standalone project.

Please note that for now, Mbed TLS can only use versions of libmbedcrypto that were built as a subproject of Mbed TLS, not versions that were built standalone from the Mbed Crypto repository. This restriction will be removed in the future.

Make

We require GNU Make. To build the library and the sample programs, GNU Make and a C compiler are sufficient. Some of the more advanced build targets require some Unix/Linux tools.

We intentionally only use a minimum of functionality in the makefiles in order to keep them as simple and independent of different toolchains as possible, to allow users to more easily move between different platforms. Users who need more features are recommended to use CMake.

In order to build from the source code using GNU Make, just enter at the command line:

make

In order to run the tests, enter:

make check

The tests need Python to be built and Perl to be run. If you don't have one of them installed, you can skip building the tests with:

make no_test

You'll still be able to run a much smaller set of tests with:

programs/test/selftest

In order to build for a Windows platform, you should use WINDOWS_BUILD=1 if the target is Windows but the build environment is Unix-like (for instance when cross-compiling, or compiling from an MSYS shell), and WINDOWS=1 if the build environment is a Windows shell (for instance using mingw32-make) (in that case some targets will not be available).

Setting the variable SHARED in your environment will build shared libraries in addition to the static libraries. Setting DEBUG gives you a debug build. You can override CFLAGS and LDFLAGS by setting them in your environment or on the make command line; compiler warning options may be overridden separately using WARNING_CFLAGS. Some directory-specific options (for example, -I directives) are still preserved.

Please note that setting CFLAGS overrides its default value of -O2 and setting WARNING_CFLAGS overrides its default value (starting with -Wall -Wextra), so if you just want to add some warning options to the default ones, you can do so by setting CFLAGS=-O2 -Werror for example. Setting WARNING_CFLAGS is useful when you want to get rid of its default content (for example because your compiler doesn't accept -Wall as an option). Directory-specific options cannot be overridden from the command line.

Depending on your platform, you might run into some issues. Please check the Makefiles in library/, programs/ and tests/ for options to manually add or remove for specific platforms. You can also check the Mbed TLS Knowledge Base for articles on your platform or issue.

In case you find that you need to do something else as well, please let us know what, so we can add it to the Mbed TLS Knowledge Base.

CMake

In order to build the source using CMake in a separate directory (recommended), just enter at the command line:

mkdir /path/to/build_dir && cd /path/to/build_dir
cmake /path/to/mbedtls_source
make

In order to run the tests, enter:

make test

The test suites need Python to be built and Perl to be executed. If you don‘t have one of these installed, you’ll want to disable the test suites with:

cmake -DENABLE_TESTING=Off /path/to/mbedtls_source

If you disabled the test suites, but kept the programs enabled, you can still run a much smaller set of tests with:

programs/test/selftest

To configure CMake for building shared libraries, use:

cmake -DUSE_SHARED_MBEDTLS_LIBRARY=On /path/to/mbedtls_source

There are many different build modes available within the CMake buildsystem. Most of them are available for gcc and clang, though some are compiler-specific:

  • Release. This generates the default code without any unnecessary information in the binary files.
  • Debug. This generates debug information and disables optimization of the code.
  • Coverage. This generates code coverage information in addition to debug information.
  • ASan. This instruments the code with AddressSanitizer to check for memory errors. (This includes LeakSanitizer, with recent version of gcc and clang.) (With recent version of clang, this mode also instruments the code with UndefinedSanitizer to check for undefined behaviour.)
  • ASanDbg. Same as ASan but slower, with debug information and better stack traces.
  • MemSan. This instruments the code with MemorySanitizer to check for uninitialised memory reads. Experimental, needs recent clang on Linux/x86_64.
  • MemSanDbg. Same as MemSan but slower, with debug information, better stack traces and origin tracking.
  • Check. This activates the compiler warnings that depend on optimization and treats all warnings as errors.

Switching build modes in CMake is simple. For debug mode, enter at the command line:

cmake -D CMAKE_BUILD_TYPE=Debug /path/to/mbedtls_source

To list other available CMake options, use:

cmake -LH

Note that, with CMake, you can't adjust the compiler or its flags after the initial invocation of cmake. This means that CC=your_cc make and make CC=your_cc will not work (similarly with CFLAGS and other variables). These variables need to be adjusted when invoking cmake for the first time, for example:

CC=your_cc cmake /path/to/mbedtls_source

If you already invoked cmake and want to change those settings, you need to remove the build directory and create it again.

Note that it is possible to build in-place; this will however overwrite the provided Makefiles (see scripts/tmp_ignore_makefiles.sh if you want to prevent git status from showing them as modified). In order to do so, from the Mbed TLS source directory, use:

cmake .
make

If you want to change CC or CFLAGS afterwards, you will need to remove the CMake cache. This can be done with the following command using GNU find:

find . -iname '*cmake*' -not -name CMakeLists.txt -exec rm -rf {} +

You can now make the desired change:

CC=your_cc cmake .
make

Regarding variables, also note that if you set CFLAGS when invoking cmake, your value of CFLAGS doesn‘t override the content provided by cmake (depending on the build mode as seen above), it’s merely prepended to it.

Mbed TLS as a subproject

Mbed TLS, like Mbed Crypto, supports being built as a CMake subproject. One can use add_subdirectory() from a parent CMake project to include Mbed TLS as a subproject.

Microsoft Visual Studio

The build files for Microsoft Visual Studio are generated for Visual Studio 2010.

The solution file mbedTLS.sln contains all the basic projects needed to build the library and all the programs. The files in tests are not generated and compiled, as these need Python and perl environments as well. However, the selftest program in programs/test/ is still available.

Example programs

We've included example programs for a lot of different features and uses in programs/. Most programs only focus on a single feature or usage scenario, so keep that in mind when copying parts of the code.

Tests

Mbed TLS includes an elaborate test suite in tests/ that initially requires Python to generate the tests files (e.g. test\_suite\_mpi.c). These files are generated from a function file (e.g. suites/test\_suite\_mpi.function) and a data file (e.g. suites/test\_suite\_mpi.data). The function file contains the test functions. The data file contains the test cases, specified as parameters that will be passed to the test function.

For machines with a Unix shell and OpenSSL (and optionally GnuTLS) installed, additional test scripts are available:

  • tests/ssl-opt.sh runs integration tests for various TLS options (renegotiation, resumption, etc.) and tests interoperability of these options with other implementations.
  • tests/compat.sh tests interoperability of every ciphersuite with other implementations.
  • tests/scripts/test-ref-configs.pl test builds in various reduced configurations.
  • tests/scripts/key-exchanges.pl test builds in configurations with a single key exchange enabled
  • tests/scripts/all.sh runs a combination of the above tests, plus some more, with various build options (such as ASan, full config.h, etc).

Configurations

We provide some non-standard configurations focused on specific use cases in the configs/ directory. You can read more about those in configs/README.txt

Porting Mbed TLS

Mbed TLS can be ported to many different architectures, OS's and platforms. Before starting a port, you may find the following Knowledge Base articles useful:

Contributing

We gratefully accept bug reports and contributions from the community. There are some requirements we need to fulfill in order to be able to integrate contributions:

  • All contributions, whether large or small require a Contributor's License Agreement (CLA) to be accepted. This is because source code can possibly fall under copyright law and we need your consent to share in the ownership of the copyright.
  • We would ask that contributions conform to our coding standards, and that contributions should be fully tested before submission.
  • As with any open source project, contributions will be reviewed by the project team and community and may need some modifications to be accepted.

To accept the Contributor’s Licence Agreement (CLA), individual contributors can do this by creating an Mbed account and accepting the online agreement here with a click through. Alternatively, for contributions from corporations, or those that do not wish to create an Mbed account, a slightly different agreement can be found here. This agreement should be signed and returned to Arm as described in the instructions given.

Making a Contribution

  1. Check for open issues or start a discussion around a feature idea or a bug.
  2. Fork the Mbed TLS repository on GitHub to start making your changes. As a general rule, you should use the “development” branch as a basis.
  3. Write a test which shows that the bug was fixed or that the feature works as expected.
  4. Send a pull request and bug us until it gets merged and published. Contributions may need some modifications, so work with us to get your change accepted. We will include your name in the ChangeLog :)