blob: 3efd815f54d5ddb686be36143d8d803b6cebdbe1 [file] [log] [blame]
/*
* FreeRTOS Kernel V10.3.1
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/* Standard includes. */
#include <stdlib.h>
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#ifndef configINTERRUPT_CONTROLLER_BASE_ADDRESS
#error configINTERRUPT_CONTROLLER_BASE_ADDRESS must be defined. Refer to Cortex-A equivalent: http: /*www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html */
#endif
#ifndef configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET
#error configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET must be defined. Refer to Cortex-A equivalent: http: /*www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html */
#endif
#ifndef configUNIQUE_INTERRUPT_PRIORITIES
#error configUNIQUE_INTERRUPT_PRIORITIES must be defined. Refer to Cortex-A equivalent: http: /*www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html */
#endif
#ifndef configSETUP_TICK_INTERRUPT
#error configSETUP_TICK_INTERRUPT() must be defined. Refer to Cortex-A equivalent: http: /*www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html */
#endif /* configSETUP_TICK_INTERRUPT */
#ifndef configMAX_API_CALL_INTERRUPT_PRIORITY
#error configMAX_API_CALL_INTERRUPT_PRIORITY must be defined. Refer to Cortex-A equivalent: http: /*www.freertos.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html */
#endif
#if configMAX_API_CALL_INTERRUPT_PRIORITY == 0
#error configMAX_API_CALL_INTERRUPT_PRIORITY must not be set to 0
#endif
#if configMAX_API_CALL_INTERRUPT_PRIORITY > configUNIQUE_INTERRUPT_PRIORITIES
#error configMAX_API_CALL_INTERRUPT_PRIORITY must be less than or equal to configUNIQUE_INTERRUPT_PRIORITIES as the lower the numeric priority value the higher the logical interrupt priority
#endif
#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
/* Check the configuration. */
#if ( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
#endif
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/* In case security extensions are implemented. */
#if configMAX_API_CALL_INTERRUPT_PRIORITY <= ( configUNIQUE_INTERRUPT_PRIORITIES / 2 )
#error configMAX_API_CALL_INTERRUPT_PRIORITY must be greater than ( configUNIQUE_INTERRUPT_PRIORITIES / 2 )
#endif
/* Some vendor specific files default configCLEAR_TICK_INTERRUPT() in
* portmacro.h. */
#ifndef configCLEAR_TICK_INTERRUPT
#define configCLEAR_TICK_INTERRUPT()
#endif
/* A critical section is exited when the critical section nesting count reaches
* this value. */
#define portNO_CRITICAL_NESTING ( ( uint32_t ) 0 )
/* In all GICs 255 can be written to the priority mask register to unmask all
* (but the lowest) interrupt priority. */
#define portUNMASK_VALUE ( 0xFFUL )
/* Tasks are not created with a floating point context, but can be given a
* floating point context after they have been created. A variable is stored as
* part of the tasks context that holds portNO_FLOATING_POINT_CONTEXT if the task
* does not have an FPU context, or any other value if the task does have an FPU
* context. */
#define portNO_FLOATING_POINT_CONTEXT ( ( StackType_t ) 0 )
/* Constants required to setup the initial task context. */
#define portINITIAL_SPSR ( ( StackType_t ) 0x1f ) /* System mode, ARM mode, IRQ enabled FIQ enabled. */
#define portTHUMB_MODE_BIT ( ( StackType_t ) 0x20 )
#define portINTERRUPT_ENABLE_BIT ( 0x80UL )
#define portTHUMB_MODE_ADDRESS ( 0x01UL )
/* Used by portASSERT_IF_INTERRUPT_PRIORITY_INVALID() when ensuring the binary
* point is zero. */
#define portBINARY_POINT_BITS ( ( uint8_t ) 0x03 )
/* Masks all bits in the APSR other than the mode bits. */
#define portAPSR_MODE_BITS_MASK ( 0x1F )
/* The value of the mode bits in the APSR when the CPU is executing in user
* mode. */
#define portAPSR_USER_MODE ( 0x10 )
/* The critical section macros only mask interrupts up to an application
* determined priority level. Sometimes it is necessary to turn interrupt off in
* the CPU itself before modifying certain hardware registers. */
#define portCPU_IRQ_DISABLE() \
__asm volatile ( "CPSID i" ::: "memory" ); \
__asm volatile ( "DSB" ); \
__asm volatile ( "ISB" );
#define portCPU_IRQ_ENABLE() \
__asm volatile ( "CPSIE i" ::: "memory" ); \
__asm volatile ( "DSB" ); \
__asm volatile ( "ISB" );
/* Macro to unmask all interrupt priorities. */
#define portCLEAR_INTERRUPT_MASK() \
{ \
portCPU_IRQ_DISABLE(); \
portICCPMR_PRIORITY_MASK_REGISTER = portUNMASK_VALUE; \
__asm volatile ( "DSB \n" \
"ISB \n"); \
portCPU_IRQ_ENABLE(); \
}
#define portINTERRUPT_PRIORITY_REGISTER_OFFSET 0x400UL
#define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff )
#define portBIT_0_SET ( ( uint8_t ) 0x01 )
/* Let the user override the pre-loading of the initial LR with the address of
* prvTaskExitError() in case is messes up unwinding of the stack in the
* debugger. */
#ifdef configTASK_RETURN_ADDRESS
#define portTASK_RETURN_ADDRESS configTASK_RETURN_ADDRESS
#else
#define portTASK_RETURN_ADDRESS prvTaskExitError
#endif
/* Adding the necessary stuff in order to be able to determine from C code wheter or not the IRQs are enabled at the processor level (not interrupt controller level) */
#define GET_CPSR() \
( { u32 rval = 0U; \
__asm__ __volatile__ ( \
"mrs %0, cpsr\n"\
: "=r" ( rval ) \
); \
rval; \
} )
#define CPSR_IRQ_ENABLE_MASK 0x80U
#define IS_IRQ_DISABLED() ( { unsigned int val = 0; val = ( GET_CPSR() & CPSR_IRQ_ENABLE_MASK ) ? 1 : 0; val; } )
/*-----------------------------------------------------------*/
/*
* Starts the first task executing. This function is necessarily written in
* assembly code so is implemented in portASM.s.
*/
extern void vPortRestoreTaskContext( void );
/*
* Used to catch tasks that attempt to return from their implementing function.
*/
static void prvTaskExitError( void );
/*-----------------------------------------------------------*/
/* A variable is used to keep track of the critical section nesting. This
* variable has to be stored as part of the task context and must be initialised to
* a non zero value to ensure interrupts don't inadvertently become unmasked before
* the scheduler starts. As it is stored as part of the task context it will
* automatically be set to 0 when the first task is started. */
volatile uint32_t ulCriticalNesting = 9999UL;
/* Saved as part of the task context. If ulPortTaskHasFPUContext is non-zero then
* a floating point context must be saved and restored for the task. */
uint32_t ulPortTaskHasFPUContext = pdFALSE;
/* Set to 1 to pend a context switch from an ISR. */
uint32_t ulPortYieldRequired = pdFALSE;
/* Counts the interrupt nesting depth. A context switch is only performed if
* if the nesting depth is 0. */
uint32_t ulPortInterruptNesting = 0UL;
/* Used in asm code. */
__attribute__( ( used ) ) const uint32_t ulICCIAR = portICCIAR_INTERRUPT_ACKNOWLEDGE_REGISTER_ADDRESS;
__attribute__( ( used ) ) const uint32_t ulICCEOIR = portICCEOIR_END_OF_INTERRUPT_REGISTER_ADDRESS;
__attribute__( ( used ) ) const uint32_t ulICCPMR = portICCPMR_PRIORITY_MASK_REGISTER_ADDRESS;
__attribute__( ( used ) ) const uint32_t ulMaxAPIPriorityMask = ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT );
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
TaskFunction_t pxCode,
void * pvParameters )
{
/* Setup the initial stack of the task. The stack is set exactly as
* expected by the portRESTORE_CONTEXT() macro.
*
* The fist real value on the stack is the status register, which is set for
* system mode, with interrupts enabled. A few NULLs are added first to ensure
* GDB does not try decoding a non-existent return address. */
*pxTopOfStack = ( StackType_t ) NULL;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) NULL;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) NULL;
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) portINITIAL_SPSR;
if( ( ( uint32_t ) pxCode & portTHUMB_MODE_ADDRESS ) != 0x00UL )
{
/* The task will start in THUMB mode. */
*pxTopOfStack |= portTHUMB_MODE_BIT;
}
pxTopOfStack--;
/* Next the return address, which in this case is the start of the task. */
*pxTopOfStack = ( StackType_t ) pxCode;
pxTopOfStack--;
/* Next all the registers other than the stack pointer. */
*pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* R14 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x12121212; /* R12 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x11111111; /* R11 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x10101010; /* R10 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x09090909; /* R9 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x08080808; /* R8 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x07070707; /* R7 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x06060606; /* R6 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x05050505; /* R5 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x04040404; /* R4 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x03030303; /* R3 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x02020202; /* R2 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) 0x01010101; /* R1 */
pxTopOfStack--;
*pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
pxTopOfStack--;
/* The task will start with a critical nesting count of 0 as interrupts are
* enabled. */
*pxTopOfStack = portNO_CRITICAL_NESTING;
pxTopOfStack--;
/* The task will start without a floating point context. A task that uses
* the floating point hardware must call vPortTaskUsesFPU() before executing
* any floating point instructions. */
*pxTopOfStack = portNO_FLOATING_POINT_CONTEXT;
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
static void prvTaskExitError( void )
{
/* A function that implements a task must not exit or attempt to return to
* its caller as there is nothing to return to. If a task wants to exit it
* should instead call vTaskDelete( NULL ).
*
* Artificially force an assert() to be triggered if configASSERT() is
* defined, then stop here so application writers can catch the error. */
configASSERT( ulPortInterruptNesting == ~0UL );
portDISABLE_INTERRUPTS();
for( ; ; )
{
}
}
/*-----------------------------------------------------------*/
BaseType_t xPortStartScheduler( void )
{
uint32_t ulAPSR, ulCycles = 8; /* 8 bits per byte. */
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( configINTERRUPT_CONTROLLER_BASE_ADDRESS + portINTERRUPT_PRIORITY_REGISTER_OFFSET );
volatile uint8_t ucMaxPriorityValue;
/* Determine how many priority bits are implemented in the GIC.
*
* Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
/* Determine the number of priority bits available. First write to
* all possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Shift to the least significant bits. */
while( ( ucMaxPriorityValue & portBIT_0_SET ) != portBIT_0_SET )
{
ucMaxPriorityValue >>= ( uint8_t ) 0x01;
/* If ulCycles reaches 0 then ucMaxPriorityValue must have been
* read as 0, indicating a misconfiguration. */
ulCycles--;
if( ulCycles == 0 )
{
break;
}
}
/* Sanity check configUNIQUE_INTERRUPT_PRIORITIES matches the read
* value. */
configASSERT( ucMaxPriorityValue == portLOWEST_INTERRUPT_PRIORITY );
/* Restore the clobbered interrupt priority register to its original
* value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
}
#endif /* conifgASSERT_DEFINED */
/* Only continue if the CPU is not in User mode. The CPU must be in a
* Privileged mode for the scheduler to start. */
__asm volatile ( "MRS %0, APSR" : "=r" ( ulAPSR )::"memory" );
ulAPSR &= portAPSR_MODE_BITS_MASK;
configASSERT( ulAPSR != portAPSR_USER_MODE );
if( ulAPSR != portAPSR_USER_MODE )
{
/* Only continue if the binary point value is set to its lowest possible
* setting. See the comments in vPortValidateInterruptPriority() below for
* more information. */
configASSERT( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE );
if( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE )
{
/* Interrupts are turned off in the CPU itself to ensure tick does
* not execute while the scheduler is being started. Interrupts are
* automatically turned back on in the CPU when the first task starts
* executing. */
portCPU_IRQ_DISABLE();
/* Start the timer that generates the tick ISR. */
configSETUP_TICK_INTERRUPT();
/* Start the first task executing. */
vPortRestoreTaskContext();
}
}
/* Will only get here if vTaskStartScheduler() was called with the CPU in
* a non-privileged mode or the binary point register was not set to its lowest
* possible value. prvTaskExitError() is referenced to prevent a compiler
* warning about it being defined but not referenced in the case that the user
* defines their own exit address. */
( void ) prvTaskExitError;
return 0;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* Not implemented in ports where there is nothing to return to.
* Artificially force an assert. */
configASSERT( ulCriticalNesting == 1000UL );
}
/*-----------------------------------------------------------*/
void vPortEnterCritical( void )
{
/* Mask interrupts up to the max syscall interrupt priority. */
ulPortSetInterruptMask();
/* Now interrupts are disabled ulCriticalNesting can be accessed
* directly. Increment ulCriticalNesting to keep a count of how many times
* portENTER_CRITICAL() has been called. */
ulCriticalNesting++;
/* This is not the interrupt safe version of the enter critical function so
* assert() if it is being called from an interrupt context. Only API
* functions that end in "FromISR" can be used in an interrupt. Only assert if
* the critical nesting count is 1 to protect against recursive calls if the
* assert function also uses a critical section. */
if( ulCriticalNesting == 1 )
{
configASSERT( ulPortInterruptNesting == 0 );
}
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
if( ulCriticalNesting > portNO_CRITICAL_NESTING )
{
/* Decrement the nesting count as the critical section is being
* exited. */
ulCriticalNesting--;
/* If the nesting level has reached zero then all interrupt
* priorities must be re-enabled. */
if( ulCriticalNesting == portNO_CRITICAL_NESTING )
{
/* Critical nesting has reached zero so all interrupt priorities
* should be unmasked. */
portCLEAR_INTERRUPT_MASK();
}
}
}
/*-----------------------------------------------------------*/
void FreeRTOS_Tick_Handler( void )
{
/* Set interrupt mask before altering scheduler structures. The tick
* handler runs at the lowest priority, so interrupts cannot already be masked,
* so there is no need to save and restore the current mask value. It is
* necessary to turn off interrupts in the CPU itself while the ICCPMR is being
* updated. */
portCPU_IRQ_DISABLE();
portICCPMR_PRIORITY_MASK_REGISTER = ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT );
__asm volatile ( "dsb \n"
"isb \n"::: "memory" );
portCPU_IRQ_ENABLE();
/* Increment the RTOS tick. */
if( xTaskIncrementTick() != pdFALSE )
{
ulPortYieldRequired = pdTRUE;
}
/* Ensure all interrupt priorities are active again. */
portCLEAR_INTERRUPT_MASK();
configCLEAR_TICK_INTERRUPT();
}
/*-----------------------------------------------------------*/
void vPortTaskUsesFPU( void )
{
uint32_t ulInitialFPSCR = 0;
/* A task is registering the fact that it needs an FPU context. Set the
* FPU flag (which is saved as part of the task context). */
ulPortTaskHasFPUContext = pdTRUE;
/* Initialise the floating point status register. */
__asm volatile ( "FMXR FPSCR, %0" ::"r" ( ulInitialFPSCR ) : "memory" );
}
/*-----------------------------------------------------------*/
void vPortClearInterruptMask( uint32_t ulNewMaskValue )
{
if( ulNewMaskValue == pdFALSE )
{
portCLEAR_INTERRUPT_MASK();
}
}
/*-----------------------------------------------------------*/
uint32_t ulPortSetInterruptMask( void )
{
uint32_t ulReturn;
uint32_t wasIRQDisabled;
/* We keep track of if the IRQ are enabled in the CPU (as opposed to interrupts masked in the interrupt controller, like the intend of this function).
* This is very important because when the CPU is interrupted, among other things, the hardware clears the IRQ Enable bit in the CPSR of the IRQ CPU Mode in which
* we enter. */
wasIRQDisabled = IS_IRQ_DISABLED();
/* Interrupt in the CPU must be turned off while the ICCPMR is being
* updated. */
portCPU_IRQ_DISABLE();
if( portICCPMR_PRIORITY_MASK_REGISTER == ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) )
{
/* Interrupts were already masked. */
ulReturn = pdTRUE;
}
else
{
ulReturn = pdFALSE;
portICCPMR_PRIORITY_MASK_REGISTER = ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT );
__asm volatile ( "dsb \n"
"isb \n"::: "memory" );
}
/* Just like this function returns a value of wether or not the interrupts where masked in the interrupt controller in order to avoid race condition when
* calling its matching vPortClearInterruptMask function, we needed a 'wasIRQDisabled' variable holding the state of the IRQ Enable bit in the CPSR in order
* to leave that bit in it's original state. Like mentioned above, hardware automatically clear the IRQEnable bit upon trapping into IRQ Mode, so the programmer
* cannot make assumption about it's state. Very rare, but very important race condition is avoided with this when this function is called in an ISR. The race
* condition in question was discovered when integrating tracealyzer code. Inside the function 'void vTaskSwitchContext( void )' in tasks.c, there is a macro 'traceTASK_SWITCHED_IN();'
* which gets replaced by something when using the tracing capabilities. That macro protects some critical section with matching calls to 'ulPortSetInterruptMask'
* and 'vPortClearInterruptMask'. At the time of calling those functions, the interrupt mask is not set in the interrupt controller, thus the only protecting barrier
* against the CPU traping into recursive interrupt was the IRQ Enable bit in the CPSR. By not taking it into acount, the very code that protects the CPU against
* critical section violation just enabled it to happen : A SysTick was waiting to happen, and calling 'portCPU_IRQ_ENABLE' would enable it to occur... Thus triggering a
* switch of context while already performing a switch context. */
if( !wasIRQDisabled )
{
portCPU_IRQ_ENABLE();
}
return ulReturn;
}
/*-----------------------------------------------------------*/
#if ( configASSERT_DEFINED == 1 )
void vPortValidateInterruptPriority( void )
{
/* The following assertion will fail if a service routine (ISR) for
* an interrupt that has been assigned a priority above
* configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
* function. ISR safe FreeRTOS API functions must *only* be called
* from interrupts that have been assigned a priority at or below
* configMAX_SYSCALL_INTERRUPT_PRIORITY.
*
* Numerically low interrupt priority numbers represent logically high
* interrupt priorities, therefore the priority of the interrupt must
* be set to a value equal to or numerically *higher* than
* configMAX_SYSCALL_INTERRUPT_PRIORITY.
*
* FreeRTOS maintains separate thread and ISR API functions to ensure
* interrupt entry is as fast and simple as possible. */
configASSERT( portICCRPR_RUNNING_PRIORITY_REGISTER >= ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) );
/* Priority grouping: The interrupt controller (GIC) allows the bits
* that define each interrupt's priority to be split between bits that
* define the interrupt's pre-emption priority bits and bits that define
* the interrupt's sub-priority. For simplicity all bits must be defined
* to be pre-emption priority bits. The following assertion will fail if
* this is not the case (if some bits represent a sub-priority).
*
* The priority grouping is configured by the GIC's binary point register
* (ICCBPR). Writing 0 to ICCBPR will ensure it is set to its lowest
* possible value (which may be above 0). */
configASSERT( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE );
}
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/