blob: 0f15a5526a6ed2eda7c22cf20802bbc7e00435fd [file] [log] [blame]
/*
* FreeRTOS Kernel V10.0.1
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/* BASIC INTERRUPT DRIVEN SERIAL PORT DRIVER for port 1.
Note that this driver is written to test the RTOS port and is not intended
to represent an optimised solution. In particular no use is made of the DMA
peripheral. */
/* Standard include files. */
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "queue.h"
#include "task.h"
/* Demo application include files. */
#include "serial.h"
/* The queues used to communicate between the task code and the interrupt
service routines. */
static QueueHandle_t xRxedChars;
static QueueHandle_t xCharsForTx;
/* Hardware specific constants. */
#define serTX_INTERRUPT ( ( unsigned char ) 0x80 )
#define serRX_INTERRUPT ( ( unsigned char ) 0x40 )
#define serTX_ENABLE ( ( unsigned char ) 0x20 )
#define serRX_ENABLE ( ( unsigned char ) 0x10 )
/* Macros to turn on and off the serial port THRE interrupt while leaving the
other register bits in their correct state. The Rx interrupt is always
enabled. */
#define serTX_INTERRUPT_ON() SCR1 = serTX_INTERRUPT | serRX_INTERRUPT | serTX_ENABLE | serRX_ENABLE;
#define serTX_INTERRUPT_OFF() SCR1 = serRX_INTERRUPT | serTX_ENABLE | serRX_ENABLE;
/* Bit used to switch on the channel 1 serial port in the module stop
register. */
#define serMSTP6 ( ( unsigned short ) 0x0040 )
/* Interrupt service routines. Note that the Rx and Tx service routines can
cause a context switch and are therefore defined with the saveall attribute in
addition to the interrupt_handler attribute. See the FreeRTOS.org WEB site
documentation for a full explanation.*/
void vCOM_1_Rx_ISR( void ) __attribute__ ( ( saveall, interrupt_handler ) );
void vCOM_1_Tx_ISR( void ) __attribute__ ( ( saveall, interrupt_handler ) );
void vCOM_1_Error_ISR( void ) __attribute__ ( ( interrupt_handler ) );
/*-----------------------------------------------------------*/
/*
* Initialise port 1 for interrupt driven communications.
*/
xComPortHandle xSerialPortInitMinimal( unsigned long ulWantedBaud, unsigned portBASE_TYPE uxQueueLength )
{
/* Create the queues used to communicate between the tasks and the
interrupt service routines. */
xRxedChars = xQueueCreate( uxQueueLength, ( unsigned portBASE_TYPE ) sizeof( signed char ) );
xCharsForTx = xQueueCreate( uxQueueLength, ( unsigned portBASE_TYPE ) sizeof( signed char ) );
/* No parity, 8 data bits and 1 stop bit is the default so does not require
configuration - setup the remains of the hardware. */
portENTER_CRITICAL();
{
/* Turn channel 1 on. */
MSTPCR &= ~serMSTP6;
/* Enable the channels and the Rx interrupt. The Tx interrupt is only
enabled when data is being transmitted. */
SCR1 = serRX_INTERRUPT | serTX_ENABLE | serRX_ENABLE;
/* Bit rate settings for 22.1184MHz clock only!. */
switch( ulWantedBaud )
{
case 4800 : BRR1 = 143;
break;
case 9600 : BRR1 = 71;
break;
case 19200 : BRR1 = 35;
break;
case 38400 : BRR1 = 17;
break;
case 57600 : BRR1 = 11;
break;
case 115200 : BRR1 = 5;
break;
default : BRR1 = 5;
break;
}
}
portEXIT_CRITICAL();
/* Unlike some ports, this driver code does not allow for more than one
com port. We therefore don't return a pointer to a port structure and can
instead just return NULL. */
return NULL;
}
/*-----------------------------------------------------------*/
signed portBASE_TYPE xSerialGetChar( xComPortHandle pxPort, signed char *pcRxedChar, TickType_t xBlockTime )
{
/* Get the next character from the buffer queue. Return false if no characters
are available, or arrive before xBlockTime expires. */
if( xQueueReceive( xRxedChars, pcRxedChar, xBlockTime ) )
{
return pdTRUE;
}
else
{
return pdFALSE;
}
}
/*-----------------------------------------------------------*/
signed portBASE_TYPE xSerialPutChar( xComPortHandle pxPort, signed char cOutChar, TickType_t xBlockTime )
{
signed portBASE_TYPE xReturn = pdPASS;
/* Return false if after the block time there is no room on the Tx queue. */
portENTER_CRITICAL();
{
/* Send a character to the queue of characters waiting transmission.
The queue is serviced by the Tx ISR. */
if( xQueueSend( xCharsForTx, &cOutChar, xBlockTime ) != pdPASS )
{
/* Could not post onto the queue. */
xReturn = pdFAIL;
}
else
{
/* The message was posted onto the queue so we turn on the Tx
interrupt to allow the Tx ISR to remove the character from the
queue. */
serTX_INTERRUPT_ON();
}
}
portEXIT_CRITICAL();
return xReturn;
}
/*-----------------------------------------------------------*/
void vSerialClose( xComPortHandle xPort )
{
/* Not supported. */
( void ) xPort;
}
/*-----------------------------------------------------------*/
void vCOM_1_Rx_ISR( void )
{
/* This can cause a context switch so this macro must be the first line
in the function. */
portENTER_SWITCHING_ISR();
/* As this is a switching ISR the local variables must be declared as
static. */
static char cRxByte;
static portBASE_TYPE xHigherPriorityTaskWoken;
xHigherPriorityTaskWoken = pdFALSE;
/* Get the character. */
cRxByte = RDR1;
/* Post the character onto the queue of received characters - noting
whether or not this wakes a task. */
xQueueSendFromISR( xRxedChars, &cRxByte, &xHigherPriorityTaskWoken );
/* Clear the interrupt. */
SSR1 &= ~serRX_INTERRUPT;
/* This must be the last line in the function. We pass cTaskWokenByPost so
a context switch will occur if the received character woke a task that has
a priority higher than the task we interrupted. */
portEXIT_SWITCHING_ISR( xHigherPriorityTaskWoken );
}
/*-----------------------------------------------------------*/
void vCOM_1_Tx_ISR( void )
{
/* This can cause a context switch so this macro must be the first line
in the function. */
portENTER_SWITCHING_ISR();
/* As this is a switching ISR the local variables must be declared as
static. */
static char cTxByte;
static signed portBASE_TYPE xTaskWokenByTx;
/* This variable is static so must be explicitly reinitialised each
time the function executes. */
xTaskWokenByTx = pdFALSE;
/* The interrupt was caused by the THR becoming empty. Are there any
more characters to transmit? Note whether or not the Tx interrupt has
woken a task. */
if( xQueueReceiveFromISR( xCharsForTx, &cTxByte, &xTaskWokenByTx ) == pdTRUE )
{
/* A character was retrieved from the queue so can be sent to the
THR now. */
TDR1 = cTxByte;
/* Clear the interrupt. */
SSR1 &= ~serTX_INTERRUPT;
}
else
{
/* Queue empty, nothing to send so turn off the Tx interrupt. */
serTX_INTERRUPT_OFF();
}
/* This must be the last line in the function. We pass cTaskWokenByTx so
a context switch will occur if the Tx'ed character woke a task that has
a priority higher than the task we interrupted. */
portEXIT_SWITCHING_ISR( xTaskWokenByTx );
}
/*-----------------------------------------------------------*/
/*
* This ISR cannot cause a context switch so requires no special
* considerations.
*/
void vCOM_1_Error_ISR( void )
{
volatile unsigned char ucIn;
ucIn = SSR1;
SSR1 = 0;
}