blob: 24af3ff99f5db26932c3186121404ae16b472dcb [file] [log] [blame]
/*
* FreeRTOS Kernel V10.0.1
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/*
* Defines the 'dice' tasks as described at the top of main.c
*/
/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Delays used within the dice functionality. All delays are defined in milliseconds. */
#define diceDELAY_BETWEEN_RANDOM_NUMBERS_ms ( 20 / portTICK_PERIOD_MS )
#define diceSHAKE_TIME ( ( 2000 / portTICK_PERIOD_MS ) / diceDELAY_BETWEEN_RANDOM_NUMBERS_ms )
#define diceSHORT_PAUSE_BEFORE_SHAKE ( 250 / portTICK_PERIOD_MS )
#define diceDELAY_WHILE_DISPLAYING_RESULT ( 5000 / portTICK_PERIOD_MS )
/* Macro to access the display ports. */
#define dice7SEG_Value( x ) ( *( pucDisplayOutput[ x ] ) )
/* Checks the semaphore use to communicate button push events. A block time
can be specified - this is the time to wait for a button push to occur should
one have not already occurred. */
#define prvButtonHit( ucIndex, xTicksToWait ) xSemaphoreTake( xSemaphores[ ucIndex ], xTicksToWait )
/* Defines the outputs required for each digit on the display. */
static const char cDisplaySegments[ 2 ][ 11 ] =
{
{ 0x48, 0xeb, 0x8c, 0x89, 0x2b, 0x19, 0x18, 0xcb, 0x08, 0x09, 0xf7 }, /* Left display. */
{ 0xa0, 0xf3, 0xc4, 0xc1, 0x93, 0x89, 0x88, 0xe3, 0x80, 0x81, 0x7f } /* Right display. */
};
/* The semaphores used to communicate button push events between the button
input interrupt handlers and the dice tasks. Two dice tasks are created so two
semaphores are required. */
static SemaphoreHandle_t xSemaphores[ 2 ] = { 0 };
/* Defines the ports used to write to the display. This variable is defined in
partest.c, which contains the LED set/clear/toggle functions. */
extern volatile unsigned char *pucDisplayOutput[ 2 ];
/*-----------------------------------------------------------*/
/*
* Defines the 'dice' tasks as described at the top of main.c
*/
void vDiceTask( void *pvParameters )
{
unsigned char ucDiceValue, ucIndex;
unsigned long ulDiceRunTime;
extern void vSuspendFlashTasks( unsigned char ucIndex, short sSuspendTasks );
/* Two instances of this task are created so the task parameter is used
to pass in a constant that indicates whether this task is controlling
the left side or right side display. The constant is used as an index
into the arrays defined at file scope within this file. */
ucIndex = ( unsigned char ) pvParameters;
/* A binary semaphore is used to signal button push events. Create the
semaphore before it is used. */
vSemaphoreCreateBinary( xSemaphores[ ucIndex ] );
/* Make sure the semaphore starts in the wanted state - no button pushes
pending. This call will just clear any button pushes that are latched.
Passing in 0 as the block time means the call will not wait for any further
button pushes but instead return immediately. */
prvButtonHit( ucIndex, 0 );
/* Seed the random number generator. */
srand( ( unsigned char ) diceSHAKE_TIME );
/* Start the task proper. A loop will be performed each time a button is
pushed. The task will remain in the blocked state (sleeping) until a
button is pushed. */
for( ;; )
{
/* Wait for a button push. This task will enter the Blocked state
(will not run again) until after a button has been pushed. */
prvButtonHit( ucIndex, portMAX_DELAY );
/* The next line will only execute after a button has been pushed -
initialise the variable used to control the time the dice is shaken
for. */
ulDiceRunTime = diceSHAKE_TIME;
/* Suspend the flash tasks so this task has exclusive access to the
display. */
vSuspendFlashTasks( ucIndex, pdTRUE );
/* Clear the display and pause for a short time, before starting to
shake. */
*pucDisplayOutput[ ucIndex ] = 0xff;
vTaskDelay( diceSHORT_PAUSE_BEFORE_SHAKE );
/* Keep generating and displaying random numbers until the shake time
expires. */
while( ulDiceRunTime > 0 )
{
ulDiceRunTime--;
/* Generate and display a random number. */
ucDiceValue = rand() % 6 + 1;
dice7SEG_Value( ucIndex ) = ( dice7SEG_Value( ucIndex ) | 0xf7 ) & cDisplaySegments[ ucIndex ][ ucDiceValue ];
/* Block/sleep for a very short time before generating the next
random number. */
vTaskDelay( diceDELAY_BETWEEN_RANDOM_NUMBERS_ms );
}
/* Clear any button pushes that are pending because a button bounced, or
was pressed while the dice were shaking. Again a block time of zero is
used so the function does not wait for any pushes but instead returns
immediately. */
prvButtonHit( ucIndex, 0 );
/* Delay for a short while to display the dice shake result. Use a queue
peek here instead of a vTaskDelay() allows the delay to be interrupted by
a button push. If a button is pressed xQueuePeek() will return but the
button push will remain pending to be read again at the top of this for
loop. It is safe to uses a queue function on a semaphore handle as
semaphores are implemented as macros that uses queues, so the two are
basically the same thing. */
xQueuePeek( xSemaphores[ ucIndex ], NULL, diceDELAY_WHILE_DISPLAYING_RESULT );
/* Clear the display then resume the tasks or co-routines that were using
the segments of the display. */
*pucDisplayOutput[ ucIndex ] = 0xff;
vSuspendFlashTasks( ucIndex, pdFALSE );
}
}
/*-----------------------------------------------------------*/
/* Handler for the SW2 button push interrupt. */
__interrupt void vExternalInt8Handler( void )
{
short sHigherPriorityTaskWoken = pdFALSE;
/* Reset the interrupt. */
EIRR1_ER8 = 0;
/* Check the semaphore has been created before attempting to use it. */
if( xSemaphores[ configLEFT_DISPLAY ] != NULL )
{
/* Send a message via the semaphore to the dice task that controls the
left side display. This will unblock the task if it is blocked waiting
for a button push. */
xSemaphoreGiveFromISR( xSemaphores[ configLEFT_DISPLAY ], &sHigherPriorityTaskWoken );
}
/* If sending the semaphore unblocked a task, and the unblocked task has a
priority that is higher than the currently running task, then force a context
switch. */
if( sHigherPriorityTaskWoken != pdFALSE )
{
portYIELD_FROM_ISR();
}
}
/*-----------------------------------------------------------*/
/* As per vExternalInt8Handler(), but for SW3 and the right side display. */
__interrupt void vExternalInt9Handler( void )
{
short sHigherPriorityTaskWoken = pdFALSE;
/* Reset the interrupt. */
EIRR1_ER9 = 0;
if( xSemaphores[ configRIGHT_DISPLAY ] != NULL )
{
xSemaphoreGiveFromISR( xSemaphores[ configRIGHT_DISPLAY ], &sHigherPriorityTaskWoken );
}
if( sHigherPriorityTaskWoken != pdFALSE )
{
portYIELD_FROM_ISR();
}
}