blob: 85352756386c5b63af3870dd69f9eadbffbd9173 [file] [log] [blame]
/*
FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/******************************************************************************
* NOTE 1: This project provides two demo applications. A simple blinky
* style project, and a more comprehensive test and demo application. The
* mainSELECTED_APPLICATION setting in main.c is used to select between the two.
* See the notes on using mainSELECTED_APPLICATION where it is defined below.
*
* NOTE 2: This file only contains the source code that is not specific to
* either the simply blinky or full demos - this includes initialisation code
* and callback functions.
*/
/* Standard includes. */
#include <stdio.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Xilinx includes. */
#include "platform.h"
#include "xttcps.h"
#include "xscugic.h"
/* mainSELECTED_APPLICATION is used to select between two demo applications,
* as described at the top of this file.
*
* When mainSELECTED_APPLICATION is set to 0 the simple blinky example will
* be run.
*
* When mainSELECTED_APPLICATION is set to 1 the comprehensive test and demo
* application will be run.
*/
#define mainSELECTED_APPLICATION 1
/*-----------------------------------------------------------*/
/*
* Configure the hardware as necessary to run this demo.
*/
static void prvSetupHardware( void );
/*
* See the comments at the top of this file and above the
* mainSELECTED_APPLICATION definition.
*/
#if ( mainSELECTED_APPLICATION == 0 )
extern void main_blinky( void );
#elif ( mainSELECTED_APPLICATION == 1 )
extern void main_full( void );
#else
#error Invalid mainSELECTED_APPLICATION setting. See the comments at the top of this file and above the mainSELECTED_APPLICATION definition.
#endif
/* Prototypes for the standard FreeRTOS callback/hook functions implemented
within this file. */
void vApplicationMallocFailedHook( void );
void vApplicationIdleHook( void );
void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName );
void vApplicationTickHook( void );
/*-----------------------------------------------------------*/
/* The interrupt controller is initialised in this file, and made available to
other modules. */
XScuGic xInterruptController;
/*-----------------------------------------------------------*/
int main( void )
{
/* Configure the hardware ready to run the demo. */
prvSetupHardware();
/* The mainSELECTED_APPLICATION setting is described at the top
of this file. */
#if( mainSELECTED_APPLICATION == 0 )
{
main_blinky();
}
#elif( mainSELECTED_APPLICATION == 1 )
{
main_full();
}
#endif
/* Don't expect to reach here. */
return 0;
}
/*-----------------------------------------------------------*/
static void prvSetupHardware( void )
{
BaseType_t xStatus;
XScuGic_Config *pxGICConfig;
/* Ensure no interrupts execute while the scheduler is in an inconsistent
state. Interrupts are automatically enabled when the scheduler is
started. */
portDISABLE_INTERRUPTS();
/* Obtain the configuration of the GIC. */
pxGICConfig = XScuGic_LookupConfig( XPAR_SCUGIC_SINGLE_DEVICE_ID );
/* Sanity check the FreeRTOSConfig.h settings are correct for the
hardware. */
configASSERT( pxGICConfig );
configASSERT( pxGICConfig->CpuBaseAddress == ( configINTERRUPT_CONTROLLER_BASE_ADDRESS + configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET ) );
configASSERT( pxGICConfig->DistBaseAddress == configINTERRUPT_CONTROLLER_BASE_ADDRESS );
/* Install a default handler for each GIC interrupt. */
xStatus = XScuGic_CfgInitialize( &xInterruptController, pxGICConfig, pxGICConfig->CpuBaseAddress );
configASSERT( xStatus == XST_SUCCESS );
( void ) xStatus; /* Remove compiler warning if configASSERT() is not defined. */
}
/*-----------------------------------------------------------*/
void vApplicationMallocFailedHook( void )
{
/* Called if a call to pvPortMalloc() fails because there is insufficient
free memory available in the FreeRTOS heap. pvPortMalloc() is called
internally by FreeRTOS API functions that create tasks, queues, software
timers, and semaphores. The size of the FreeRTOS heap is set by the
configTOTAL_HEAP_SIZE configuration constant in FreeRTOSConfig.h. */
taskDISABLE_INTERRUPTS();
for( ;; );
}
/*-----------------------------------------------------------*/
void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName )
{
( void ) pcTaskName;
( void ) pxTask;
/* Run time stack overflow checking is performed if
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
function is called if a stack overflow is detected. */
taskDISABLE_INTERRUPTS();
for( ;; );
}
/*-----------------------------------------------------------*/
void vApplicationIdleHook( void )
{
volatile size_t xFreeHeapSpace;
/* This is just a trivial example of an idle hook. It is called on each
cycle of the idle task. It must *NOT* attempt to block. In this case the
idle task just queries the amount of FreeRTOS heap that remains. See the
memory management section on the http://www.FreeRTOS.org web site for memory
management options. If there is a lot of heap memory free then the
configTOTAL_HEAP_SIZE value in FreeRTOSConfig.h can be reduced to free up
RAM. */
xFreeHeapSpace = xPortGetFreeHeapSize();
/* Remove compiler warning about xFreeHeapSpace being set but never used. */
( void ) xFreeHeapSpace;
}
/*-----------------------------------------------------------*/
void vApplicationTickHook( void )
{
#if( mainSELECTED_APPLICATION == 1 )
{
/* Only the comprehensive demo actually uses the tick hook. */
extern void vFullDemoTickHook( void );
vFullDemoTickHook();
}
#endif
}
/*-----------------------------------------------------------*/
/* configUSE_STATIC_ALLOCATION is set to 1, so the application must provide an
implementation of vApplicationGetIdleTaskMemory() to provide the memory that is
used by the Idle task. */
void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize )
{
/* If the buffers to be provided to the Idle task are declared inside this
function then they must be declared static - otherwise they will be allocated on
the stack and so not exists after this function exits. */
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
/* Pass out a pointer to the StaticTask_t structure in which the Idle task's
state will be stored. */
*ppxIdleTaskTCBBuffer = &xIdleTaskTCB;
/* Pass out the array that will be used as the Idle task's stack. */
*ppxIdleTaskStackBuffer = uxIdleTaskStack;
/* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
Note that, as the array is necessarily of type StackType_t,
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
}
/*-----------------------------------------------------------*/
/* configUSE_STATIC_ALLOCATION and configUSE_TIMERS are both set to 1, so the
application must provide an implementation of vApplicationGetTimerTaskMemory()
to provide the memory that is used by the Timer service task. */
void vApplicationGetTimerTaskMemory( StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize )
{
/* If the buffers to be provided to the Timer task are declared inside this
function then they must be declared static - otherwise they will be allocated on
the stack and so not exists after this function exits. */
static StaticTask_t xTimerTaskTCB;
static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];
/* Pass out a pointer to the StaticTask_t structure in which the Timer
task's state will be stored. */
*ppxTimerTaskTCBBuffer = &xTimerTaskTCB;
/* Pass out the array that will be used as the Timer task's stack. */
*ppxTimerTaskStackBuffer = uxTimerTaskStack;
/* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer.
Note that, as the array is necessarily of type StackType_t,
configMINIMAL_STACK_SIZE is specified in words, not bytes. */
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}
/*-----------------------------------------------------------*/
void *memcpy( void *pvDest, const void *pvSource, size_t xBytes )
{
/* The compiler used during development seems to err unless these volatiles are
included at -O3 optimisation. */
volatile unsigned char *pcDest = ( volatile unsigned char * ) pvDest, *pcSource = ( volatile unsigned char * ) pvSource;
size_t x;
/* Extremely crude standard library implementations in lieu of having a C
library. */
if( pvDest != pvSource )
{
for( x = 0; x < xBytes; x++ )
{
pcDest[ x ] = pcSource[ x ];
}
}
return pvDest;
}
/*-----------------------------------------------------------*/
void *memset( void *pvDest, int iValue, size_t xBytes )
{
/* The compiler used during development seems to err unless these volatiles are
included at -O3 optimisation. */
volatile unsigned char * volatile pcDest = ( volatile unsigned char * volatile ) pvDest;
volatile size_t x;
/* Extremely crude standard library implementations in lieu of having a C
library. */
for( x = 0; x < xBytes; x++ )
{
pcDest[ x ] = ( unsigned char ) iValue;
}
return pvDest;
}
/*-----------------------------------------------------------*/
int memcmp( const void *pvMem1, const void *pvMem2, size_t xBytes )
{
const volatile unsigned char *pucMem1 = pvMem1, *pucMem2 = pvMem2;
volatile size_t x;
/* Extremely crude standard library implementations in lieu of having a C
library. */
for( x = 0; x < xBytes; x++ )
{
if( pucMem1[ x ] != pucMem2[ x ] )
{
break;
}
}
return xBytes - x;
}
/*-----------------------------------------------------------*/
void vMainAssertCalled( const char *pcFileName, uint32_t ulLineNumber )
{
xil_printf( "ASSERT! Line %lu of file %s\r\n", ulLineNumber, pcFileName );
taskENTER_CRITICAL();
for( ;; );
}