blob: f1453e59b023bf2b448794a748be89326eefb5e7 [file] [log] [blame]
/*
FreeRTOS.org V5.2.0 - Copyright (C) 2003-2009 Richard Barry.
This file is part of the FreeRTOS.org distribution.
FreeRTOS.org is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License (version 2) as published
by the Free Software Foundation and modified by the FreeRTOS exception.
FreeRTOS.org is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with FreeRTOS.org; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA.
A special exception to the GPL is included to allow you to distribute a
combined work that includes FreeRTOS.org without being obliged to provide
the source code for any proprietary components. See the licensing section
of http://www.FreeRTOS.org for full details.
***************************************************************************
* *
* Get the FreeRTOS eBook! See http://www.FreeRTOS.org/Documentation *
* *
* This is a concise, step by step, 'hands on' guide that describes both *
* general multitasking concepts and FreeRTOS specifics. It presents and *
* explains numerous examples that are written using the FreeRTOS API. *
* Full source code for all the examples is provided in an accompanying *
* .zip file. *
* *
***************************************************************************
1 tab == 4 spaces!
Please ensure to read the configuration and relevant port sections of the
online documentation.
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/**
* This is a very simple queue test. See the BlockQ. c documentation for a more
* comprehensive version.
*
* Creates two tasks that communicate over a single queue. One task acts as a
* producer, the other a consumer.
*
* The producer loops for three iteration, posting an incrementing number onto the
* queue each cycle. It then delays for a fixed period before doing exactly the
* same again.
*
* The consumer loops emptying the queue. Each item removed from the queue is
* checked to ensure it contains the expected value. When the queue is empty it
* blocks for a fixed period, then does the same again.
*
* All queue access is performed without blocking. The consumer completely empties
* the queue each time it runs so the producer should never find the queue full.
*
* An error is flagged if the consumer obtains an unexpected value or the producer
* find the queue is full.
*
* \page PollQC pollQ.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
portTickType rather than unsigned portLONG.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "print.h"
/* Demo program include files. */
#include "PollQ.h"
#define pollqSTACK_SIZE ( ( unsigned portSHORT ) configMINIMAL_STACK_SIZE )
/* The task that posts the incrementing number onto the queue. */
static void vPolledQueueProducer( void *pvParameters );
/* The task that empties the queue. */
static void vPolledQueueConsumer( void *pvParameters );
/* Variables that are used to check that the tasks are still running with no errors. */
static volatile portSHORT sPollingConsumerCount = 0, sPollingProducerCount = 0;
/*-----------------------------------------------------------*/
void vStartPolledQueueTasks( unsigned portBASE_TYPE uxPriority )
{
static xQueueHandle xPolledQueue;
const unsigned portBASE_TYPE uxQueueSize = 10;
/* Create the queue used by the producer and consumer. */
xPolledQueue = xQueueCreate( uxQueueSize, ( unsigned portBASE_TYPE ) sizeof( unsigned portSHORT ) );
/* Spawn the producer and consumer. */
xTaskCreate( vPolledQueueConsumer, "QConsNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, NULL );
xTaskCreate( vPolledQueueProducer, "QProdNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, NULL );
}
/*-----------------------------------------------------------*/
static void vPolledQueueProducer( void *pvParameters )
{
unsigned portSHORT usValue = 0, usLoop;
xQueueHandle *pxQueue;
const portTickType xDelay = ( portTickType ) 200 / portTICK_RATE_MS;
const unsigned portSHORT usNumToProduce = 3;
const portCHAR * const pcTaskStartMsg = "Polled queue producer started.\r\n";
const portCHAR * const pcTaskErrorMsg = "Could not post on polled queue.\r\n";
portSHORT sError = pdFALSE;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The queue being used is passed in as the parameter. */
pxQueue = ( xQueueHandle * ) pvParameters;
for( ;; )
{
for( usLoop = 0; usLoop < usNumToProduce; ++usLoop )
{
/* Send an incrementing number on the queue without blocking. */
if( xQueueSendToBack( *pxQueue, ( void * ) &usValue, ( portTickType ) 0 ) != pdPASS )
{
/* We should never find the queue full - this is an error. */
vPrintDisplayMessage( &pcTaskErrorMsg );
sError = pdTRUE;
}
else
{
if( sError == pdFALSE )
{
/* If an error has ever been recorded we stop incrementing the
check variable. */
++sPollingProducerCount;
}
/* Update the value we are going to post next time around. */
++usValue;
}
}
/* Wait before we start posting again to ensure the consumer runs and
empties the queue. */
vTaskDelay( xDelay );
}
}
/*-----------------------------------------------------------*/
static void vPolledQueueConsumer( void *pvParameters )
{
unsigned portSHORT usData, usExpectedValue = 0;
xQueueHandle *pxQueue;
const portTickType xDelay = ( portTickType ) 200 / portTICK_RATE_MS;
const portCHAR * const pcTaskStartMsg = "Polled queue consumer started.\r\n";
const portCHAR * const pcTaskErrorMsg = "Incorrect value received on polled queue.\r\n";
portSHORT sError = pdFALSE;
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The queue being used is passed in as the parameter. */
pxQueue = ( xQueueHandle * ) pvParameters;
for( ;; )
{
/* Loop until the queue is empty. */
while( uxQueueMessagesWaiting( *pxQueue ) )
{
if( xQueueReceive( *pxQueue, &usData, ( portTickType ) 0 ) == pdPASS )
{
if( usData != usExpectedValue )
{
/* This is not what we expected to receive so an error has
occurred. */
vPrintDisplayMessage( &pcTaskErrorMsg );
sError = pdTRUE;
/* Catch-up to the value we received so our next expected value
should again be correct. */
usExpectedValue = usData;
}
else
{
if( sError == pdFALSE )
{
/* Only increment the check variable if no errors have
occurred. */
++sPollingConsumerCount;
}
}
++usExpectedValue;
}
}
/* Now the queue is empty we block, allowing the producer to place more
items in the queue. */
vTaskDelay( xDelay );
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running with no errors. */
portBASE_TYPE xArePollingQueuesStillRunning( void )
{
static portSHORT sLastPollingConsumerCount = 0, sLastPollingProducerCount = 0;
portBASE_TYPE xReturn;
if( ( sLastPollingConsumerCount == sPollingConsumerCount ) ||
( sLastPollingProducerCount == sPollingProducerCount )
)
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
sLastPollingConsumerCount = sPollingConsumerCount;
sLastPollingProducerCount = sPollingProducerCount;
return xReturn;
}