/* | |
FreeRTOS.org V5.3.0 - Copyright (C) 2003-2009 Richard Barry. | |
This file is part of the FreeRTOS.org distribution. | |
FreeRTOS.org is free software; you can redistribute it and/or modify it | |
under the terms of the GNU General Public License (version 2) as published | |
by the Free Software Foundation and modified by the FreeRTOS exception. | |
**NOTE** The exception to the GPL is included to allow you to distribute a | |
combined work that includes FreeRTOS.org without being obliged to provide | |
the source code for any proprietary components. Alternative commercial | |
license and support terms are also available upon request. See the | |
licensing section of http://www.FreeRTOS.org for full details. | |
FreeRTOS.org is distributed in the hope that it will be useful, but WITHOUT | |
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
more details. | |
You should have received a copy of the GNU General Public License along | |
with FreeRTOS.org; if not, write to the Free Software Foundation, Inc., 59 | |
Temple Place, Suite 330, Boston, MA 02111-1307 USA. | |
*************************************************************************** | |
* * | |
* Get the FreeRTOS eBook! See http://www.FreeRTOS.org/Documentation * | |
* * | |
* This is a concise, step by step, 'hands on' guide that describes both * | |
* general multitasking concepts and FreeRTOS specifics. It presents and * | |
* explains numerous examples that are written using the FreeRTOS API. * | |
* Full source code for all the examples is provided in an accompanying * | |
* .zip file. * | |
* * | |
*************************************************************************** | |
1 tab == 4 spaces! | |
Please ensure to read the configuration and relevant port sections of the | |
online documentation. | |
http://www.FreeRTOS.org - Documentation, latest information, license and | |
contact details. | |
http://www.SafeRTOS.com - A version that is certified for use in safety | |
critical systems. | |
http://www.OpenRTOS.com - Commercial support, development, porting, | |
licensing and training services. | |
*/ | |
#include <stdio.h> | |
#include <stdlib.h> | |
#include <string.h> | |
#include "FreeRTOS.h" | |
#include "task.h" | |
#include "StackMacros.h" | |
/* | |
* Macro to define the amount of stack available to the idle task. | |
*/ | |
#define tskIDLE_STACK_SIZE configMINIMAL_STACK_SIZE | |
/* | |
* Task control block. A task control block (TCB) is allocated to each task, | |
* and stores the context of the task. | |
*/ | |
typedef struct tskTaskControlBlock | |
{ | |
volatile portSTACK_TYPE *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE STRUCT. */ | |
xListItem xGenericListItem; /*< List item used to place the TCB in ready and blocked queues. */ | |
xListItem xEventListItem; /*< List item used to place the TCB in event lists. */ | |
unsigned portBASE_TYPE uxPriority; /*< The priority of the task where 0 is the lowest priority. */ | |
portSTACK_TYPE *pxStack; /*< Points to the start of the stack. */ | |
signed portCHAR pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ | |
#if ( portSTACK_GROWTH > 0 ) | |
portSTACK_TYPE *pxEndOfStack; /*< Used for stack overflow checking on architectures where the stack grows up from low memory. */ | |
#endif | |
#if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
unsigned portBASE_TYPE uxCriticalNesting; | |
#endif | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
unsigned portBASE_TYPE uxTCBNumber; /*< This is used for tracing the scheduler and making debugging easier only. */ | |
#endif | |
#if ( configUSE_MUTEXES == 1 ) | |
unsigned portBASE_TYPE uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */ | |
#endif | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
pdTASK_HOOK_CODE pxTaskTag; | |
#endif | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
unsigned portLONG ulRunTimeCounter; /*< Used for calculating how much CPU time each task is utilising. */ | |
#endif | |
} tskTCB; | |
/* | |
* Some kernel aware debuggers require data to be viewed to be global, rather | |
* than file scope. | |
*/ | |
#ifdef portREMOVE_STATIC_QUALIFIER | |
#define static | |
#endif | |
/*lint -e956 */ | |
tskTCB * volatile pxCurrentTCB = NULL; | |
/* Lists for ready and blocked tasks. --------------------*/ | |
static xList pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */ | |
static xList xDelayedTaskList1; /*< Delayed tasks. */ | |
static xList xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */ | |
static xList * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */ | |
static xList * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */ | |
static xList xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready queue when the scheduler is resumed. */ | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
static volatile xList xTasksWaitingTermination; /*< Tasks that have been deleted - but the their memory not yet freed. */ | |
static volatile unsigned portBASE_TYPE uxTasksDeleted = ( unsigned portBASE_TYPE ) 0; | |
#endif | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
static xList xSuspendedTaskList; /*< Tasks that are currently suspended. */ | |
#endif | |
/* File private variables. --------------------------------*/ | |
static volatile unsigned portBASE_TYPE uxCurrentNumberOfTasks = ( unsigned portBASE_TYPE ) 0; | |
static volatile portTickType xTickCount = ( portTickType ) 0; | |
static unsigned portBASE_TYPE uxTopUsedPriority = tskIDLE_PRIORITY; | |
static volatile unsigned portBASE_TYPE uxTopReadyPriority = tskIDLE_PRIORITY; | |
static volatile signed portBASE_TYPE xSchedulerRunning = pdFALSE; | |
static volatile unsigned portBASE_TYPE uxSchedulerSuspended = ( unsigned portBASE_TYPE ) pdFALSE; | |
static volatile unsigned portBASE_TYPE uxMissedTicks = ( unsigned portBASE_TYPE ) 0; | |
static volatile portBASE_TYPE xMissedYield = ( portBASE_TYPE ) pdFALSE; | |
static volatile portBASE_TYPE xNumOfOverflows = ( portBASE_TYPE ) 0; | |
static unsigned portBASE_TYPE uxTaskNumber = ( unsigned portBASE_TYPE ) 0; | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
static portCHAR pcStatsString[ 50 ]; | |
static unsigned portLONG ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */ | |
static void prvGenerateRunTimeStatsForTasksInList( const signed portCHAR *pcWriteBuffer, xList *pxList, unsigned portLONG ulTotalRunTime ); | |
#endif | |
/* Debugging and trace facilities private variables and macros. ------------*/ | |
/* | |
* The value used to fill the stack of a task when the task is created. This | |
* is used purely for checking the high water mark for tasks. | |
*/ | |
#define tskSTACK_FILL_BYTE ( 0xa5 ) | |
/* | |
* Macros used by vListTask to indicate which state a task is in. | |
*/ | |
#define tskBLOCKED_CHAR ( ( signed portCHAR ) 'B' ) | |
#define tskREADY_CHAR ( ( signed portCHAR ) 'R' ) | |
#define tskDELETED_CHAR ( ( signed portCHAR ) 'D' ) | |
#define tskSUSPENDED_CHAR ( ( signed portCHAR ) 'S' ) | |
/* | |
* Macros and private variables used by the trace facility. | |
*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
#define tskSIZE_OF_EACH_TRACE_LINE ( ( unsigned portLONG ) ( sizeof( unsigned portLONG ) + sizeof( unsigned portLONG ) ) ) | |
static volatile signed portCHAR * volatile pcTraceBuffer; | |
static signed portCHAR *pcTraceBufferStart; | |
static signed portCHAR *pcTraceBufferEnd; | |
static signed portBASE_TYPE xTracing = pdFALSE; | |
static unsigned portBASE_TYPE uxPreviousTask = 255; | |
static portCHAR pcStatusString[ 50 ]; | |
#endif | |
/*-----------------------------------------------------------*/ | |
/* | |
* Macro that writes a trace of scheduler activity to a buffer. This trace | |
* shows which task is running when and is very useful as a debugging tool. | |
* As this macro is called each context switch it is a good idea to undefine | |
* it if not using the facility. | |
*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
#define vWriteTraceToBuffer() \ | |
{ \ | |
if( xTracing ) \ | |
{ \ | |
if( uxPreviousTask != pxCurrentTCB->uxTCBNumber ) \ | |
{ \ | |
if( ( pcTraceBuffer + tskSIZE_OF_EACH_TRACE_LINE ) < pcTraceBufferEnd ) \ | |
{ \ | |
uxPreviousTask = pxCurrentTCB->uxTCBNumber; \ | |
*( unsigned portLONG * ) pcTraceBuffer = ( unsigned portLONG ) xTickCount; \ | |
pcTraceBuffer += sizeof( unsigned portLONG ); \ | |
*( unsigned portLONG * ) pcTraceBuffer = ( unsigned portLONG ) uxPreviousTask; \ | |
pcTraceBuffer += sizeof( unsigned portLONG ); \ | |
} \ | |
else \ | |
{ \ | |
xTracing = pdFALSE; \ | |
} \ | |
} \ | |
} \ | |
} | |
#else | |
#define vWriteTraceToBuffer() | |
#endif | |
/*-----------------------------------------------------------*/ | |
/* | |
* Place the task represented by pxTCB into the appropriate ready queue for | |
* the task. It is inserted at the end of the list. One quirk of this is | |
* that if the task being inserted is at the same priority as the currently | |
* executing task, then it will only be rescheduled after the currently | |
* executing task has been rescheduled. | |
*/ | |
#define prvAddTaskToReadyQueue( pxTCB ) \ | |
{ \ | |
if( pxTCB->uxPriority > uxTopReadyPriority ) \ | |
{ \ | |
uxTopReadyPriority = pxTCB->uxPriority; \ | |
} \ | |
vListInsertEnd( ( xList * ) &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xGenericListItem ) ); \ | |
} | |
/*-----------------------------------------------------------*/ | |
/* | |
* Macro that looks at the list of tasks that are currently delayed to see if | |
* any require waking. | |
* | |
* Tasks are stored in the queue in the order of their wake time - meaning | |
* once one tasks has been found whose timer has not expired we need not look | |
* any further down the list. | |
*/ | |
#define prvCheckDelayedTasks() \ | |
{ \ | |
register tskTCB *pxTCB; \ | |
\ | |
while( ( pxTCB = ( tskTCB * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ) ) != NULL ) \ | |
{ \ | |
if( xTickCount < listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem ) ) ) \ | |
{ \ | |
break; \ | |
} \ | |
vListRemove( &( pxTCB->xGenericListItem ) ); \ | |
/* Is the task waiting on an event also? */ \ | |
if( pxTCB->xEventListItem.pvContainer ) \ | |
{ \ | |
vListRemove( &( pxTCB->xEventListItem ) ); \ | |
} \ | |
prvAddTaskToReadyQueue( pxTCB ); \ | |
} \ | |
} | |
/*-----------------------------------------------------------*/ | |
/* | |
* Several functions take an xTaskHandle parameter that can optionally be NULL, | |
* where NULL is used to indicate that the handle of the currently executing | |
* task should be used in place of the parameter. This macro simply checks to | |
* see if the parameter is NULL and returns a pointer to the appropriate TCB. | |
*/ | |
#define prvGetTCBFromHandle( pxHandle ) ( ( pxHandle == NULL ) ? ( tskTCB * ) pxCurrentTCB : ( tskTCB * ) pxHandle ) | |
/* File private functions. --------------------------------*/ | |
/* | |
* Utility to ready a TCB for a given task. Mainly just copies the parameters | |
* into the TCB structure. | |
*/ | |
static void prvInitialiseTCBVariables( tskTCB *pxTCB, const signed portCHAR * const pcName, unsigned portBASE_TYPE uxPriority ); | |
/* | |
* Utility to ready all the lists used by the scheduler. This is called | |
* automatically upon the creation of the first task. | |
*/ | |
static void prvInitialiseTaskLists( void ); | |
/* | |
* The idle task, which as all tasks is implemented as a never ending loop. | |
* The idle task is automatically created and added to the ready lists upon | |
* creation of the first user task. | |
* | |
* The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific | |
* language extensions. The equivalent prototype for this function is: | |
* | |
* void prvIdleTask( void *pvParameters ); | |
* | |
*/ | |
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ); | |
/* | |
* Utility to free all memory allocated by the scheduler to hold a TCB, | |
* including the stack pointed to by the TCB. | |
* | |
* This does not free memory allocated by the task itself (i.e. memory | |
* allocated by calls to pvPortMalloc from within the tasks application code). | |
*/ | |
#if ( ( INCLUDE_vTaskDelete == 1 ) || ( INCLUDE_vTaskCleanUpResources == 1 ) ) | |
static void prvDeleteTCB( tskTCB *pxTCB ); | |
#endif | |
/* | |
* Used only by the idle task. This checks to see if anything has been placed | |
* in the list of tasks waiting to be deleted. If so the task is cleaned up | |
* and its TCB deleted. | |
*/ | |
static void prvCheckTasksWaitingTermination( void ); | |
/* | |
* Allocates memory from the heap for a TCB and associated stack. Checks the | |
* allocation was successful. | |
*/ | |
static tskTCB *prvAllocateTCBAndStack( unsigned portSHORT usStackDepth ); | |
/* | |
* Called from vTaskList. vListTasks details all the tasks currently under | |
* control of the scheduler. The tasks may be in one of a number of lists. | |
* prvListTaskWithinSingleList accepts a list and details the tasks from | |
* within just that list. | |
* | |
* THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM | |
* NORMAL APPLICATION CODE. | |
*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
static void prvListTaskWithinSingleList( const signed portCHAR *pcWriteBuffer, xList *pxList, signed portCHAR cStatus ); | |
#endif | |
/* | |
* When a task is created, the stack of the task is filled with a known value. | |
* This function determines the 'high water mark' of the task stack by | |
* determining how much of the stack remains at the original preset value. | |
*/ | |
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) | |
unsigned portSHORT usTaskCheckFreeStackSpace( const unsigned portCHAR * pucStackByte ); | |
#endif | |
/*lint +e956 */ | |
/*----------------------------------------------------------- | |
* TASK CREATION API documented in task.h | |
*----------------------------------------------------------*/ | |
signed portBASE_TYPE xTaskCreate( pdTASK_CODE pvTaskCode, const signed portCHAR * const pcName, unsigned portSHORT usStackDepth, void *pvParameters, unsigned portBASE_TYPE uxPriority, xTaskHandle *pxCreatedTask ) | |
{ | |
signed portBASE_TYPE xReturn; | |
tskTCB * pxNewTCB; | |
/* Allocate the memory required by the TCB and stack for the new task. | |
checking that the allocation was successful. */ | |
pxNewTCB = prvAllocateTCBAndStack( usStackDepth ); | |
if( pxNewTCB != NULL ) | |
{ | |
portSTACK_TYPE *pxTopOfStack; | |
/* Setup the newly allocated TCB with the initial state of the task. */ | |
prvInitialiseTCBVariables( pxNewTCB, pcName, uxPriority ); | |
/* Calculate the top of stack address. This depends on whether the | |
stack grows from high memory to low (as per the 80x86) or visa versa. | |
portSTACK_GROWTH is used to make the result positive or negative as | |
required by the port. */ | |
#if portSTACK_GROWTH < 0 | |
{ | |
pxTopOfStack = pxNewTCB->pxStack + ( usStackDepth - 1 ); | |
} | |
#else | |
{ | |
pxTopOfStack = pxNewTCB->pxStack; | |
/* If we want to use stack checking on architectures that use | |
a positive stack growth direction then we also need to store the | |
other extreme of the stack space. */ | |
pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( usStackDepth - 1 ); | |
} | |
#endif | |
/* Initialize the TCB stack to look as if the task was already running, | |
but had been interrupted by the scheduler. The return address is set | |
to the start of the task function. Once the stack has been initialised | |
the top of stack variable is updated. */ | |
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pvTaskCode, pvParameters ); | |
/* We are going to manipulate the task queues to add this task to a | |
ready list, so must make sure no interrupts occur. */ | |
portENTER_CRITICAL(); | |
{ | |
uxCurrentNumberOfTasks++; | |
if( uxCurrentNumberOfTasks == ( unsigned portBASE_TYPE ) 1 ) | |
{ | |
/* As this is the first task it must also be the current task. */ | |
pxCurrentTCB = pxNewTCB; | |
/* This is the first task to be created so do the preliminary | |
initialisation required. We will not recover if this call | |
fails, but we will report the failure. */ | |
prvInitialiseTaskLists(); | |
} | |
else | |
{ | |
/* If the scheduler is not already running, make this task the | |
current task if it is the highest priority task to be created | |
so far. */ | |
if( xSchedulerRunning == pdFALSE ) | |
{ | |
if( pxCurrentTCB->uxPriority <= uxPriority ) | |
{ | |
pxCurrentTCB = pxNewTCB; | |
} | |
} | |
} | |
/* Remember the top priority to make context switching faster. Use | |
the priority in pxNewTCB as this has been capped to a valid value. */ | |
if( pxNewTCB->uxPriority > uxTopUsedPriority ) | |
{ | |
uxTopUsedPriority = pxNewTCB->uxPriority; | |
} | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
{ | |
/* Add a counter into the TCB for tracing only. */ | |
pxNewTCB->uxTCBNumber = uxTaskNumber; | |
} | |
#endif | |
uxTaskNumber++; | |
prvAddTaskToReadyQueue( pxNewTCB ); | |
xReturn = pdPASS; | |
traceTASK_CREATE( pxNewTCB ); | |
} | |
portEXIT_CRITICAL(); | |
} | |
else | |
{ | |
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; | |
traceTASK_CREATE_FAILED( pxNewTCB ); | |
} | |
if( xReturn == pdPASS ) | |
{ | |
if( ( void * ) pxCreatedTask != NULL ) | |
{ | |
/* Pass the TCB out - in an anonymous way. The calling function/ | |
task can use this as a handle to delete the task later if | |
required.*/ | |
*pxCreatedTask = ( xTaskHandle ) pxNewTCB; | |
} | |
if( xSchedulerRunning != pdFALSE ) | |
{ | |
/* If the created task is of a higher priority than the current task | |
then it should run now. */ | |
if( pxCurrentTCB->uxPriority < uxPriority ) | |
{ | |
taskYIELD(); | |
} | |
} | |
} | |
return xReturn; | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
void vTaskDelete( xTaskHandle pxTaskToDelete ) | |
{ | |
tskTCB *pxTCB; | |
taskENTER_CRITICAL(); | |
{ | |
/* Ensure a yield is performed if the current task is being | |
deleted. */ | |
if( pxTaskToDelete == pxCurrentTCB ) | |
{ | |
pxTaskToDelete = NULL; | |
} | |
/* If null is passed in here then we are deleting ourselves. */ | |
pxTCB = prvGetTCBFromHandle( pxTaskToDelete ); | |
/* Remove task from the ready list and place in the termination list. | |
This will stop the task from be scheduled. The idle task will check | |
the termination list and free up any memory allocated by the | |
scheduler for the TCB and stack. */ | |
vListRemove( &( pxTCB->xGenericListItem ) ); | |
/* Is the task waiting on an event also? */ | |
if( pxTCB->xEventListItem.pvContainer ) | |
{ | |
vListRemove( &( pxTCB->xEventListItem ) ); | |
} | |
vListInsertEnd( ( xList * ) &xTasksWaitingTermination, &( pxTCB->xGenericListItem ) ); | |
/* Increment the ucTasksDeleted variable so the idle task knows | |
there is a task that has been deleted and that it should therefore | |
check the xTasksWaitingTermination list. */ | |
++uxTasksDeleted; | |
/* Increment the uxTaskNumberVariable also so kernel aware debuggers | |
can detect that the task lists need re-generating. */ | |
uxTaskNumber++; | |
traceTASK_DELETE( pxTCB ); | |
} | |
taskEXIT_CRITICAL(); | |
/* Force a reschedule if we have just deleted the current task. */ | |
if( xSchedulerRunning != pdFALSE ) | |
{ | |
if( ( void * ) pxTaskToDelete == NULL ) | |
{ | |
taskYIELD(); | |
} | |
} | |
} | |
#endif | |
/*----------------------------------------------------------- | |
* TASK CONTROL API documented in task.h | |
*----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskDelayUntil == 1 ) | |
void vTaskDelayUntil( portTickType * const pxPreviousWakeTime, portTickType xTimeIncrement ) | |
{ | |
portTickType xTimeToWake; | |
portBASE_TYPE xAlreadyYielded, xShouldDelay = pdFALSE; | |
vTaskSuspendAll(); | |
{ | |
/* Generate the tick time at which the task wants to wake. */ | |
xTimeToWake = *pxPreviousWakeTime + xTimeIncrement; | |
if( xTickCount < *pxPreviousWakeTime ) | |
{ | |
/* The tick count has overflowed since this function was | |
lasted called. In this case the only time we should ever | |
actually delay is if the wake time has also overflowed, | |
and the wake time is greater than the tick time. When this | |
is the case it is as if neither time had overflowed. */ | |
if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xTickCount ) ) | |
{ | |
xShouldDelay = pdTRUE; | |
} | |
} | |
else | |
{ | |
/* The tick time has not overflowed. In this case we will | |
delay if either the wake time has overflowed, and/or the | |
tick time is less than the wake time. */ | |
if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xTickCount ) ) | |
{ | |
xShouldDelay = pdTRUE; | |
} | |
} | |
/* Update the wake time ready for the next call. */ | |
*pxPreviousWakeTime = xTimeToWake; | |
if( xShouldDelay ) | |
{ | |
traceTASK_DELAY_UNTIL(); | |
/* We must remove ourselves from the ready list before adding | |
ourselves to the blocked list as the same list item is used for | |
both lists. */ | |
vListRemove( ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
/* The list item will be inserted in wake time order. */ | |
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake ); | |
if( xTimeToWake < xTickCount ) | |
{ | |
/* Wake time has overflowed. Place this item in the | |
overflow list. */ | |
vListInsert( ( xList * ) pxOverflowDelayedTaskList, ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
else | |
{ | |
/* The wake time has not overflowed, so we can use the | |
current block list. */ | |
vListInsert( ( xList * ) pxDelayedTaskList, ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
} | |
} | |
xAlreadyYielded = xTaskResumeAll(); | |
/* Force a reschedule if xTaskResumeAll has not already done so, we may | |
have put ourselves to sleep. */ | |
if( !xAlreadyYielded ) | |
{ | |
taskYIELD(); | |
} | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskDelay == 1 ) | |
void vTaskDelay( portTickType xTicksToDelay ) | |
{ | |
portTickType xTimeToWake; | |
signed portBASE_TYPE xAlreadyYielded = pdFALSE; | |
/* A delay time of zero just forces a reschedule. */ | |
if( xTicksToDelay > ( portTickType ) 0 ) | |
{ | |
vTaskSuspendAll(); | |
{ | |
traceTASK_DELAY(); | |
/* A task that is removed from the event list while the | |
scheduler is suspended will not get placed in the ready | |
list or removed from the blocked list until the scheduler | |
is resumed. | |
This task cannot be in an event list as it is the currently | |
executing task. */ | |
/* Calculate the time to wake - this may overflow but this is | |
not a problem. */ | |
xTimeToWake = xTickCount + xTicksToDelay; | |
/* We must remove ourselves from the ready list before adding | |
ourselves to the blocked list as the same list item is used for | |
both lists. */ | |
vListRemove( ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
/* The list item will be inserted in wake time order. */ | |
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake ); | |
if( xTimeToWake < xTickCount ) | |
{ | |
/* Wake time has overflowed. Place this item in the | |
overflow list. */ | |
vListInsert( ( xList * ) pxOverflowDelayedTaskList, ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
else | |
{ | |
/* The wake time has not overflowed, so we can use the | |
current block list. */ | |
vListInsert( ( xList * ) pxDelayedTaskList, ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
} | |
xAlreadyYielded = xTaskResumeAll(); | |
} | |
/* Force a reschedule if xTaskResumeAll has not already done so, we may | |
have put ourselves to sleep. */ | |
if( !xAlreadyYielded ) | |
{ | |
taskYIELD(); | |
} | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_uxTaskPriorityGet == 1 ) | |
unsigned portBASE_TYPE uxTaskPriorityGet( xTaskHandle pxTask ) | |
{ | |
tskTCB *pxTCB; | |
unsigned portBASE_TYPE uxReturn; | |
taskENTER_CRITICAL(); | |
{ | |
/* If null is passed in here then we are changing the | |
priority of the calling function. */ | |
pxTCB = prvGetTCBFromHandle( pxTask ); | |
uxReturn = pxTCB->uxPriority; | |
} | |
taskEXIT_CRITICAL(); | |
return uxReturn; | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskPrioritySet == 1 ) | |
void vTaskPrioritySet( xTaskHandle pxTask, unsigned portBASE_TYPE uxNewPriority ) | |
{ | |
tskTCB *pxTCB; | |
unsigned portBASE_TYPE uxCurrentPriority, xYieldRequired = pdFALSE; | |
/* Ensure the new priority is valid. */ | |
if( uxNewPriority >= configMAX_PRIORITIES ) | |
{ | |
uxNewPriority = configMAX_PRIORITIES - 1; | |
} | |
taskENTER_CRITICAL(); | |
{ | |
if( pxTask == pxCurrentTCB ) | |
{ | |
pxTask = NULL; | |
} | |
/* If null is passed in here then we are changing the | |
priority of the calling function. */ | |
pxTCB = prvGetTCBFromHandle( pxTask ); | |
traceTASK_PRIORITY_SET( pxTask, uxNewPriority ); | |
#if ( configUSE_MUTEXES == 1 ) | |
{ | |
uxCurrentPriority = pxTCB->uxBasePriority; | |
} | |
#else | |
{ | |
uxCurrentPriority = pxTCB->uxPriority; | |
} | |
#endif | |
if( uxCurrentPriority != uxNewPriority ) | |
{ | |
/* The priority change may have readied a task of higher | |
priority than the calling task. */ | |
if( uxNewPriority > uxCurrentPriority ) | |
{ | |
if( pxTask != NULL ) | |
{ | |
/* The priority of another task is being raised. If we | |
were raising the priority of the currently running task | |
there would be no need to switch as it must have already | |
been the highest priority task. */ | |
xYieldRequired = pdTRUE; | |
} | |
} | |
else if( pxTask == NULL ) | |
{ | |
/* Setting our own priority down means there may now be another | |
task of higher priority that is ready to execute. */ | |
xYieldRequired = pdTRUE; | |
} | |
#if ( configUSE_MUTEXES == 1 ) | |
{ | |
/* Only change the priority being used if the task is not | |
currently using an inherited priority. */ | |
if( pxTCB->uxBasePriority == pxTCB->uxPriority ) | |
{ | |
pxTCB->uxPriority = uxNewPriority; | |
} | |
/* The base priority gets set whatever. */ | |
pxTCB->uxBasePriority = uxNewPriority; | |
} | |
#else | |
{ | |
pxTCB->uxPriority = uxNewPriority; | |
} | |
#endif | |
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( configMAX_PRIORITIES - ( portTickType ) uxNewPriority ) ); | |
/* If the task is in the blocked or suspended list we need do | |
nothing more than change it's priority variable. However, if | |
the task is in a ready list it needs to be removed and placed | |
in the queue appropriate to its new priority. */ | |
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxCurrentPriority ] ), &( pxTCB->xGenericListItem ) ) ) | |
{ | |
/* The task is currently in its ready list - remove before adding | |
it to it's new ready list. As we are in a critical section we | |
can do this even if the scheduler is suspended. */ | |
vListRemove( &( pxTCB->xGenericListItem ) ); | |
prvAddTaskToReadyQueue( pxTCB ); | |
} | |
if( xYieldRequired == pdTRUE ) | |
{ | |
taskYIELD(); | |
} | |
} | |
} | |
taskEXIT_CRITICAL(); | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
void vTaskSuspend( xTaskHandle pxTaskToSuspend ) | |
{ | |
tskTCB *pxTCB; | |
taskENTER_CRITICAL(); | |
{ | |
/* Ensure a yield is performed if the current task is being | |
suspended. */ | |
if( pxTaskToSuspend == pxCurrentTCB ) | |
{ | |
pxTaskToSuspend = NULL; | |
} | |
/* If null is passed in here then we are suspending ourselves. */ | |
pxTCB = prvGetTCBFromHandle( pxTaskToSuspend ); | |
traceTASK_SUSPEND( pxTCB ); | |
/* Remove task from the ready/delayed list and place in the suspended list. */ | |
vListRemove( &( pxTCB->xGenericListItem ) ); | |
/* Is the task waiting on an event also? */ | |
if( pxTCB->xEventListItem.pvContainer ) | |
{ | |
vListRemove( &( pxTCB->xEventListItem ) ); | |
} | |
vListInsertEnd( ( xList * ) &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ); | |
} | |
taskEXIT_CRITICAL(); | |
/* We may have just suspended the current task. */ | |
if( ( void * ) pxTaskToSuspend == NULL ) | |
{ | |
taskYIELD(); | |
} | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
signed portBASE_TYPE xTaskIsTaskSuspended( xTaskHandle xTask ) | |
{ | |
portBASE_TYPE xReturn = pdFALSE; | |
const tskTCB * const pxTCB = ( tskTCB * ) xTask; | |
/* Is the task we are attempting to resume actually in the | |
suspended list? */ | |
if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ) != pdFALSE ) | |
{ | |
/* Has the task already been resumed from within an ISR? */ | |
if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdTRUE ) | |
{ | |
/* Is it in the suspended list because it is in the | |
Suspended state? It is possible to be in the suspended | |
list because it is blocked on a task with no timeout | |
specified. */ | |
if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) == pdTRUE ) | |
{ | |
xReturn = pdTRUE; | |
} | |
} | |
} | |
return xReturn; | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
void vTaskResume( xTaskHandle pxTaskToResume ) | |
{ | |
tskTCB *pxTCB; | |
/* Remove the task from whichever list it is currently in, and place | |
it in the ready list. */ | |
pxTCB = ( tskTCB * ) pxTaskToResume; | |
/* The parameter cannot be NULL as it is impossible to resume the | |
currently executing task. */ | |
if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB ) ) | |
{ | |
taskENTER_CRITICAL(); | |
{ | |
if( xTaskIsTaskSuspended( pxTCB ) == pdTRUE ) | |
{ | |
traceTASK_RESUME( pxTCB ); | |
/* As we are in a critical section we can access the ready | |
lists even if the scheduler is suspended. */ | |
vListRemove( &( pxTCB->xGenericListItem ) ); | |
prvAddTaskToReadyQueue( pxTCB ); | |
/* We may have just resumed a higher priority task. */ | |
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
{ | |
/* This yield may not cause the task just resumed to run, but | |
will leave the lists in the correct state for the next yield. */ | |
taskYIELD(); | |
} | |
} | |
} | |
taskEXIT_CRITICAL(); | |
} | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) | |
portBASE_TYPE xTaskResumeFromISR( xTaskHandle pxTaskToResume ) | |
{ | |
portBASE_TYPE xYieldRequired = pdFALSE; | |
tskTCB *pxTCB; | |
pxTCB = ( tskTCB * ) pxTaskToResume; | |
if( xTaskIsTaskSuspended( pxTCB ) == pdTRUE ) | |
{ | |
traceTASK_RESUME_FROM_ISR( pxTCB ); | |
if( uxSchedulerSuspended == ( unsigned portBASE_TYPE ) pdFALSE ) | |
{ | |
xYieldRequired = ( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ); | |
vListRemove( &( pxTCB->xGenericListItem ) ); | |
prvAddTaskToReadyQueue( pxTCB ); | |
} | |
else | |
{ | |
/* We cannot access the delayed or ready lists, so will hold this | |
task pending until the scheduler is resumed, at which point a | |
yield will be performed if necessary. */ | |
vListInsertEnd( ( xList * ) &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); | |
} | |
} | |
return xYieldRequired; | |
} | |
#endif | |
/*----------------------------------------------------------- | |
* PUBLIC SCHEDULER CONTROL documented in task.h | |
*----------------------------------------------------------*/ | |
void vTaskStartScheduler( void ) | |
{ | |
portBASE_TYPE xReturn; | |
/* Add the idle task at the lowest priority. */ | |
xReturn = xTaskCreate( prvIdleTask, ( signed portCHAR * ) "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, ( xTaskHandle * ) NULL ); | |
if( xReturn == pdPASS ) | |
{ | |
/* Interrupts are turned off here, to ensure a tick does not occur | |
before or during the call to xPortStartScheduler(). The stacks of | |
the created tasks contain a status word with interrupts switched on | |
so interrupts will automatically get re-enabled when the first task | |
starts to run. | |
STEPPING THROUGH HERE USING A DEBUGGER CAN CAUSE BIG PROBLEMS IF THE | |
DEBUGGER ALLOWS INTERRUPTS TO BE PROCESSED. */ | |
portDISABLE_INTERRUPTS(); | |
xSchedulerRunning = pdTRUE; | |
xTickCount = ( portTickType ) 0; | |
/* If configGENERATE_RUN_TIME_STATS is defined then the following | |
macro must be defined to configure the timer/counter used to generate | |
the run time counter time base. */ | |
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS(); | |
/* Setting up the timer tick is hardware specific and thus in the | |
portable interface. */ | |
if( xPortStartScheduler() ) | |
{ | |
/* Should not reach here as if the scheduler is running the | |
function will not return. */ | |
} | |
else | |
{ | |
/* Should only reach here if a task calls xTaskEndScheduler(). */ | |
} | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
void vTaskEndScheduler( void ) | |
{ | |
/* Stop the scheduler interrupts and call the portable scheduler end | |
routine so the original ISRs can be restored if necessary. The port | |
layer must ensure interrupts enable bit is left in the correct state. */ | |
portDISABLE_INTERRUPTS(); | |
xSchedulerRunning = pdFALSE; | |
vPortEndScheduler(); | |
} | |
/*----------------------------------------------------------*/ | |
void vTaskSuspendAll( void ) | |
{ | |
/* A critical section is not required as the variable is of type | |
portBASE_TYPE. */ | |
++uxSchedulerSuspended; | |
} | |
/*----------------------------------------------------------*/ | |
signed portBASE_TYPE xTaskResumeAll( void ) | |
{ | |
register tskTCB *pxTCB; | |
signed portBASE_TYPE xAlreadyYielded = pdFALSE; | |
/* It is possible that an ISR caused a task to be removed from an event | |
list while the scheduler was suspended. If this was the case then the | |
removed task will have been added to the xPendingReadyList. Once the | |
scheduler has been resumed it is safe to move all the pending ready | |
tasks from this list into their appropriate ready list. */ | |
portENTER_CRITICAL(); | |
{ | |
--uxSchedulerSuspended; | |
if( uxSchedulerSuspended == ( unsigned portBASE_TYPE ) pdFALSE ) | |
{ | |
if( uxCurrentNumberOfTasks > ( unsigned portBASE_TYPE ) 0 ) | |
{ | |
portBASE_TYPE xYieldRequired = pdFALSE; | |
/* Move any readied tasks from the pending list into the | |
appropriate ready list. */ | |
while( ( pxTCB = ( tskTCB * ) listGET_OWNER_OF_HEAD_ENTRY( ( ( xList * ) &xPendingReadyList ) ) ) != NULL ) | |
{ | |
vListRemove( &( pxTCB->xEventListItem ) ); | |
vListRemove( &( pxTCB->xGenericListItem ) ); | |
prvAddTaskToReadyQueue( pxTCB ); | |
/* If we have moved a task that has a priority higher than | |
the current task then we should yield. */ | |
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
{ | |
xYieldRequired = pdTRUE; | |
} | |
} | |
/* If any ticks occurred while the scheduler was suspended then | |
they should be processed now. This ensures the tick count does not | |
slip, and that any delayed tasks are resumed at the correct time. */ | |
if( uxMissedTicks > ( unsigned portBASE_TYPE ) 0 ) | |
{ | |
while( uxMissedTicks > ( unsigned portBASE_TYPE ) 0 ) | |
{ | |
vTaskIncrementTick(); | |
--uxMissedTicks; | |
} | |
/* As we have processed some ticks it is appropriate to yield | |
to ensure the highest priority task that is ready to run is | |
the task actually running. */ | |
#if configUSE_PREEMPTION == 1 | |
{ | |
xYieldRequired = pdTRUE; | |
} | |
#endif | |
} | |
if( ( xYieldRequired == pdTRUE ) || ( xMissedYield == pdTRUE ) ) | |
{ | |
xAlreadyYielded = pdTRUE; | |
xMissedYield = pdFALSE; | |
taskYIELD(); | |
} | |
} | |
} | |
} | |
portEXIT_CRITICAL(); | |
return xAlreadyYielded; | |
} | |
/*----------------------------------------------------------- | |
* PUBLIC TASK UTILITIES documented in task.h | |
*----------------------------------------------------------*/ | |
portTickType xTaskGetTickCount( void ) | |
{ | |
portTickType xTicks; | |
/* Critical section required if running on a 16 bit processor. */ | |
taskENTER_CRITICAL(); | |
{ | |
xTicks = xTickCount; | |
} | |
taskEXIT_CRITICAL(); | |
return xTicks; | |
} | |
/*-----------------------------------------------------------*/ | |
unsigned portBASE_TYPE uxTaskGetNumberOfTasks( void ) | |
{ | |
/* A critical section is not required because the variables are of type | |
portBASE_TYPE. */ | |
return uxCurrentNumberOfTasks; | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
void vTaskList( signed portCHAR *pcWriteBuffer ) | |
{ | |
unsigned portBASE_TYPE uxQueue; | |
/* This is a VERY costly function that should be used for debug only. | |
It leaves interrupts disabled for a LONG time. */ | |
vTaskSuspendAll(); | |
{ | |
/* Run through all the lists that could potentially contain a TCB and | |
report the task name, state and stack high water mark. */ | |
pcWriteBuffer[ 0 ] = ( signed portCHAR ) 0x00; | |
strcat( ( portCHAR * ) pcWriteBuffer, ( const portCHAR * ) "\r\n" ); | |
uxQueue = uxTopUsedPriority + 1; | |
do | |
{ | |
uxQueue--; | |
if( !listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxQueue ] ) ) ) | |
{ | |
prvListTaskWithinSingleList( pcWriteBuffer, ( xList * ) &( pxReadyTasksLists[ uxQueue ] ), tskREADY_CHAR ); | |
} | |
}while( uxQueue > ( unsigned portSHORT ) tskIDLE_PRIORITY ); | |
if( !listLIST_IS_EMPTY( pxDelayedTaskList ) ) | |
{ | |
prvListTaskWithinSingleList( pcWriteBuffer, ( xList * ) pxDelayedTaskList, tskBLOCKED_CHAR ); | |
} | |
if( !listLIST_IS_EMPTY( pxOverflowDelayedTaskList ) ) | |
{ | |
prvListTaskWithinSingleList( pcWriteBuffer, ( xList * ) pxOverflowDelayedTaskList, tskBLOCKED_CHAR ); | |
} | |
#if( INCLUDE_vTaskDelete == 1 ) | |
{ | |
if( !listLIST_IS_EMPTY( &xTasksWaitingTermination ) ) | |
{ | |
prvListTaskWithinSingleList( pcWriteBuffer, ( xList * ) &xTasksWaitingTermination, tskDELETED_CHAR ); | |
} | |
} | |
#endif | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
{ | |
if( !listLIST_IS_EMPTY( &xSuspendedTaskList ) ) | |
{ | |
prvListTaskWithinSingleList( pcWriteBuffer, ( xList * ) &xSuspendedTaskList, tskSUSPENDED_CHAR ); | |
} | |
} | |
#endif | |
} | |
xTaskResumeAll(); | |
} | |
#endif | |
/*----------------------------------------------------------*/ | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
void vTaskGetRunTimeStats( signed portCHAR *pcWriteBuffer ) | |
{ | |
unsigned portBASE_TYPE uxQueue; | |
unsigned portLONG ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); | |
/* This is a VERY costly function that should be used for debug only. | |
It leaves interrupts disabled for a LONG time. */ | |
vTaskSuspendAll(); | |
{ | |
/* Run through all the lists that could potentially contain a TCB, | |
generating a table of run timer percentages in the provided | |
buffer. */ | |
pcWriteBuffer[ 0 ] = ( signed portCHAR ) 0x00; | |
strcat( ( portCHAR * ) pcWriteBuffer, ( const portCHAR * ) "\r\n" ); | |
uxQueue = uxTopUsedPriority + 1; | |
do | |
{ | |
uxQueue--; | |
if( !listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxQueue ] ) ) ) | |
{ | |
prvGenerateRunTimeStatsForTasksInList( pcWriteBuffer, ( xList * ) &( pxReadyTasksLists[ uxQueue ] ), ulTotalRunTime ); | |
} | |
}while( uxQueue > ( unsigned portSHORT ) tskIDLE_PRIORITY ); | |
if( !listLIST_IS_EMPTY( pxDelayedTaskList ) ) | |
{ | |
prvGenerateRunTimeStatsForTasksInList( pcWriteBuffer, ( xList * ) pxDelayedTaskList, ulTotalRunTime ); | |
} | |
if( !listLIST_IS_EMPTY( pxOverflowDelayedTaskList ) ) | |
{ | |
prvGenerateRunTimeStatsForTasksInList( pcWriteBuffer, ( xList * ) pxOverflowDelayedTaskList, ulTotalRunTime ); | |
} | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
{ | |
if( !listLIST_IS_EMPTY( &xTasksWaitingTermination ) ) | |
{ | |
prvGenerateRunTimeStatsForTasksInList( pcWriteBuffer, ( xList * ) &xTasksWaitingTermination, ulTotalRunTime ); | |
} | |
} | |
#endif | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
{ | |
if( !listLIST_IS_EMPTY( &xSuspendedTaskList ) ) | |
{ | |
prvGenerateRunTimeStatsForTasksInList( pcWriteBuffer, ( xList * ) &xSuspendedTaskList, ulTotalRunTime ); | |
} | |
} | |
#endif | |
} | |
xTaskResumeAll(); | |
} | |
#endif | |
/*----------------------------------------------------------*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
void vTaskStartTrace( signed portCHAR * pcBuffer, unsigned portLONG ulBufferSize ) | |
{ | |
portENTER_CRITICAL(); | |
{ | |
pcTraceBuffer = ( signed portCHAR * )pcBuffer; | |
pcTraceBufferStart = pcBuffer; | |
pcTraceBufferEnd = pcBuffer + ( ulBufferSize - tskSIZE_OF_EACH_TRACE_LINE ); | |
xTracing = pdTRUE; | |
} | |
portEXIT_CRITICAL(); | |
} | |
#endif | |
/*----------------------------------------------------------*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
unsigned portLONG ulTaskEndTrace( void ) | |
{ | |
unsigned portLONG ulBufferLength; | |
portENTER_CRITICAL(); | |
xTracing = pdFALSE; | |
portEXIT_CRITICAL(); | |
ulBufferLength = ( unsigned portLONG ) ( pcTraceBuffer - pcTraceBufferStart ); | |
return ulBufferLength; | |
} | |
#endif | |
/*----------------------------------------------------------- | |
* SCHEDULER INTERNALS AVAILABLE FOR PORTING PURPOSES | |
* documented in task.h | |
*----------------------------------------------------------*/ | |
void vTaskIncrementTick( void ) | |
{ | |
/* Called by the portable layer each time a tick interrupt occurs. | |
Increments the tick then checks to see if the new tick value will cause any | |
tasks to be unblocked. */ | |
if( uxSchedulerSuspended == ( unsigned portBASE_TYPE ) pdFALSE ) | |
{ | |
++xTickCount; | |
if( xTickCount == ( portTickType ) 0 ) | |
{ | |
xList *pxTemp; | |
/* Tick count has overflowed so we need to swap the delay lists. | |
If there are any items in pxDelayedTaskList here then there is | |
an error! */ | |
pxTemp = pxDelayedTaskList; | |
pxDelayedTaskList = pxOverflowDelayedTaskList; | |
pxOverflowDelayedTaskList = pxTemp; | |
xNumOfOverflows++; | |
} | |
/* See if this tick has made a timeout expire. */ | |
prvCheckDelayedTasks(); | |
} | |
else | |
{ | |
++uxMissedTicks; | |
/* The tick hook gets called at regular intervals, even if the | |
scheduler is locked. */ | |
#if ( configUSE_TICK_HOOK == 1 ) | |
{ | |
extern void vApplicationTickHook( void ); | |
vApplicationTickHook(); | |
} | |
#endif | |
} | |
#if ( configUSE_TICK_HOOK == 1 ) | |
{ | |
extern void vApplicationTickHook( void ); | |
/* Guard against the tick hook being called when the missed tick | |
count is being unwound (when the scheduler is being unlocked. */ | |
if( uxMissedTicks == 0 ) | |
{ | |
vApplicationTickHook(); | |
} | |
} | |
#endif | |
traceTASK_INCREMENT_TICK( xTickCount ); | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( ( INCLUDE_vTaskCleanUpResources == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) | |
void vTaskCleanUpResources( void ) | |
{ | |
unsigned portSHORT usQueue; | |
volatile tskTCB *pxTCB; | |
usQueue = ( unsigned portSHORT ) uxTopUsedPriority + ( unsigned portSHORT ) 1; | |
/* Remove any TCB's from the ready queues. */ | |
do | |
{ | |
usQueue--; | |
while( !listLIST_IS_EMPTY( &( pxReadyTasksLists[ usQueue ] ) ) ) | |
{ | |
listGET_OWNER_OF_NEXT_ENTRY( pxTCB, &( pxReadyTasksLists[ usQueue ] ) ); | |
vListRemove( ( xListItem * ) &( pxTCB->xGenericListItem ) ); | |
prvDeleteTCB( ( tskTCB * ) pxTCB ); | |
} | |
}while( usQueue > ( unsigned portSHORT ) tskIDLE_PRIORITY ); | |
/* Remove any TCB's from the delayed queue. */ | |
while( !listLIST_IS_EMPTY( &xDelayedTaskList1 ) ) | |
{ | |
listGET_OWNER_OF_NEXT_ENTRY( pxTCB, &xDelayedTaskList1 ); | |
vListRemove( ( xListItem * ) &( pxTCB->xGenericListItem ) ); | |
prvDeleteTCB( ( tskTCB * ) pxTCB ); | |
} | |
/* Remove any TCB's from the overflow delayed queue. */ | |
while( !listLIST_IS_EMPTY( &xDelayedTaskList2 ) ) | |
{ | |
listGET_OWNER_OF_NEXT_ENTRY( pxTCB, &xDelayedTaskList2 ); | |
vListRemove( ( xListItem * ) &( pxTCB->xGenericListItem ) ); | |
prvDeleteTCB( ( tskTCB * ) pxTCB ); | |
} | |
while( !listLIST_IS_EMPTY( &xSuspendedTaskList ) ) | |
{ | |
listGET_OWNER_OF_NEXT_ENTRY( pxTCB, &xSuspendedTaskList ); | |
vListRemove( ( xListItem * ) &( pxTCB->xGenericListItem ) ); | |
prvDeleteTCB( ( tskTCB * ) pxTCB ); | |
} | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
void vTaskSetApplicationTaskTag( xTaskHandle xTask, pdTASK_HOOK_CODE pxTagValue ) | |
{ | |
tskTCB *xTCB; | |
/* If xTask is NULL then we are setting our own task hook. */ | |
if( xTask == NULL ) | |
{ | |
xTCB = ( tskTCB * ) pxCurrentTCB; | |
} | |
else | |
{ | |
xTCB = ( tskTCB * ) xTask; | |
} | |
/* Save the hook function in the TCB. A critical section is required as | |
the value can be accessed from an interrupt. */ | |
portENTER_CRITICAL(); | |
xTCB->pxTaskTag = pxTagValue; | |
portEXIT_CRITICAL(); | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
pdTASK_HOOK_CODE xTaskGetApplicationTaskTag( xTaskHandle xTask ) | |
{ | |
tskTCB *xTCB; | |
pdTASK_HOOK_CODE xReturn; | |
/* If xTask is NULL then we are setting our own task hook. */ | |
if( xTask == NULL ) | |
{ | |
xTCB = ( tskTCB * ) pxCurrentTCB; | |
} | |
else | |
{ | |
xTCB = ( tskTCB * ) xTask; | |
} | |
/* Save the hook function in the TCB. A critical section is required as | |
the value can be accessed from an interrupt. */ | |
portENTER_CRITICAL(); | |
xReturn = xTCB->pxTaskTag; | |
portEXIT_CRITICAL(); | |
return xReturn; | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
portBASE_TYPE xTaskCallApplicationTaskHook( xTaskHandle xTask, void *pvParameter ) | |
{ | |
tskTCB *xTCB; | |
portBASE_TYPE xReturn; | |
/* If xTask is NULL then we are calling our own task hook. */ | |
if( xTask == NULL ) | |
{ | |
xTCB = ( tskTCB * ) pxCurrentTCB; | |
} | |
else | |
{ | |
xTCB = ( tskTCB * ) xTask; | |
} | |
if( xTCB->pxTaskTag != NULL ) | |
{ | |
xReturn = xTCB->pxTaskTag( pvParameter ); | |
} | |
else | |
{ | |
xReturn = pdFAIL; | |
} | |
return xReturn; | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
void vTaskSwitchContext( void ) | |
{ | |
if( uxSchedulerSuspended != ( unsigned portBASE_TYPE ) pdFALSE ) | |
{ | |
/* The scheduler is currently suspended - do not allow a context | |
switch. */ | |
xMissedYield = pdTRUE; | |
return; | |
} | |
traceTASK_SWITCHED_OUT(); | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
{ | |
unsigned portLONG ulTempCounter = portGET_RUN_TIME_COUNTER_VALUE(); | |
/* Add the amount of time the task has been running to the accumulated | |
time so far. The time the task started running was stored in | |
ulTaskSwitchedInTime. Note that there is no overflow protection here | |
so count values are only valid until the timer overflows. Generally | |
this will be about 1 hour assuming a 1uS timer increment. */ | |
pxCurrentTCB->ulRunTimeCounter += ( ulTempCounter - ulTaskSwitchedInTime ); | |
ulTaskSwitchedInTime = ulTempCounter; | |
} | |
#endif | |
taskFIRST_CHECK_FOR_STACK_OVERFLOW(); | |
taskSECOND_CHECK_FOR_STACK_OVERFLOW(); | |
/* Find the highest priority queue that contains ready tasks. */ | |
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) ) | |
{ | |
--uxTopReadyPriority; | |
} | |
/* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the tasks of the | |
same priority get an equal share of the processor time. */ | |
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopReadyPriority ] ) ); | |
traceTASK_SWITCHED_IN(); | |
vWriteTraceToBuffer(); | |
} | |
/*-----------------------------------------------------------*/ | |
void vTaskPlaceOnEventList( const xList * const pxEventList, portTickType xTicksToWait ) | |
{ | |
portTickType xTimeToWake; | |
/* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED OR THE | |
SCHEDULER SUSPENDED. */ | |
/* Place the event list item of the TCB in the appropriate event list. | |
This is placed in the list in priority order so the highest priority task | |
is the first to be woken by the event. */ | |
vListInsert( ( xList * ) pxEventList, ( xListItem * ) &( pxCurrentTCB->xEventListItem ) ); | |
/* We must remove ourselves from the ready list before adding ourselves | |
to the blocked list as the same list item is used for both lists. We have | |
exclusive access to the ready lists as the scheduler is locked. */ | |
vListRemove( ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
{ | |
if( xTicksToWait == portMAX_DELAY ) | |
{ | |
/* Add ourselves to the suspended task list instead of a delayed task | |
list to ensure we are not woken by a timing event. We will block | |
indefinitely. */ | |
vListInsertEnd( ( xList * ) &xSuspendedTaskList, ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
else | |
{ | |
/* Calculate the time at which the task should be woken if the event does | |
not occur. This may overflow but this doesn't matter. */ | |
xTimeToWake = xTickCount + xTicksToWait; | |
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake ); | |
if( xTimeToWake < xTickCount ) | |
{ | |
/* Wake time has overflowed. Place this item in the overflow list. */ | |
vListInsert( ( xList * ) pxOverflowDelayedTaskList, ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
else | |
{ | |
/* The wake time has not overflowed, so we can use the current block list. */ | |
vListInsert( ( xList * ) pxDelayedTaskList, ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
} | |
} | |
#else | |
{ | |
/* Calculate the time at which the task should be woken if the event does | |
not occur. This may overflow but this doesn't matter. */ | |
xTimeToWake = xTickCount + xTicksToWait; | |
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake ); | |
if( xTimeToWake < xTickCount ) | |
{ | |
/* Wake time has overflowed. Place this item in the overflow list. */ | |
vListInsert( ( xList * ) pxOverflowDelayedTaskList, ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
else | |
{ | |
/* The wake time has not overflowed, so we can use the current block list. */ | |
vListInsert( ( xList * ) pxDelayedTaskList, ( xListItem * ) &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
} | |
#endif | |
} | |
/*-----------------------------------------------------------*/ | |
signed portBASE_TYPE xTaskRemoveFromEventList( const xList * const pxEventList ) | |
{ | |
tskTCB *pxUnblockedTCB; | |
portBASE_TYPE xReturn; | |
/* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED OR THE | |
SCHEDULER SUSPENDED. It can also be called from within an ISR. */ | |
/* The event list is sorted in priority order, so we can remove the | |
first in the list, remove the TCB from the delayed list, and add | |
it to the ready list. | |
If an event is for a queue that is locked then this function will never | |
get called - the lock count on the queue will get modified instead. This | |
means we can always expect exclusive access to the event list here. */ | |
pxUnblockedTCB = ( tskTCB * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); | |
vListRemove( &( pxUnblockedTCB->xEventListItem ) ); | |
if( uxSchedulerSuspended == ( unsigned portBASE_TYPE ) pdFALSE ) | |
{ | |
vListRemove( &( pxUnblockedTCB->xGenericListItem ) ); | |
prvAddTaskToReadyQueue( pxUnblockedTCB ); | |
} | |
else | |
{ | |
/* We cannot access the delayed or ready lists, so will hold this | |
task pending until the scheduler is resumed. */ | |
vListInsertEnd( ( xList * ) &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) ); | |
} | |
if( pxUnblockedTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
{ | |
/* Return true if the task removed from the event list has | |
a higher priority than the calling task. This allows | |
the calling task to know if it should force a context | |
switch now. */ | |
xReturn = pdTRUE; | |
} | |
else | |
{ | |
xReturn = pdFALSE; | |
} | |
return xReturn; | |
} | |
/*-----------------------------------------------------------*/ | |
void vTaskSetTimeOutState( xTimeOutType * const pxTimeOut ) | |
{ | |
pxTimeOut->xOverflowCount = xNumOfOverflows; | |
pxTimeOut->xTimeOnEntering = xTickCount; | |
} | |
/*-----------------------------------------------------------*/ | |
portBASE_TYPE xTaskCheckForTimeOut( xTimeOutType * const pxTimeOut, portTickType * const pxTicksToWait ) | |
{ | |
portBASE_TYPE xReturn; | |
portENTER_CRITICAL(); | |
{ | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
/* If INCLUDE_vTaskSuspend is set to 1 and the block time specified is | |
the maximum block time then the task should block indefinitely, and | |
therefore never time out. */ | |
if( *pxTicksToWait == portMAX_DELAY ) | |
{ | |
xReturn = pdFALSE; | |
} | |
else /* We are not blocking indefinitely, perform the checks below. */ | |
#endif | |
if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xTickCount >= pxTimeOut->xTimeOnEntering ) ) | |
{ | |
/* The tick count is greater than the time at which vTaskSetTimeout() | |
was called, but has also overflowed since vTaskSetTimeOut() was called. | |
It must have wrapped all the way around and gone past us again. This | |
passed since vTaskSetTimeout() was called. */ | |
xReturn = pdTRUE; | |
} | |
else if( ( xTickCount - pxTimeOut->xTimeOnEntering ) < *pxTicksToWait ) | |
{ | |
/* Not a genuine timeout. Adjust parameters for time remaining. */ | |
*pxTicksToWait -= ( xTickCount - pxTimeOut->xTimeOnEntering ); | |
vTaskSetTimeOutState( pxTimeOut ); | |
xReturn = pdFALSE; | |
} | |
else | |
{ | |
xReturn = pdTRUE; | |
} | |
} | |
portEXIT_CRITICAL(); | |
return xReturn; | |
} | |
/*-----------------------------------------------------------*/ | |
void vTaskMissedYield( void ) | |
{ | |
xMissedYield = pdTRUE; | |
} | |
/* | |
* ----------------------------------------------------------- | |
* The Idle task. | |
* ---------------------------------------------------------- | |
* | |
* The portTASK_FUNCTION() macro is used to allow port/compiler specific | |
* language extensions. The equivalent prototype for this function is: | |
* | |
* void prvIdleTask( void *pvParameters ); | |
* | |
*/ | |
static portTASK_FUNCTION( prvIdleTask, pvParameters ) | |
{ | |
/* Stop warnings. */ | |
( void ) pvParameters; | |
for( ;; ) | |
{ | |
/* See if any tasks have been deleted. */ | |
prvCheckTasksWaitingTermination(); | |
#if ( configUSE_PREEMPTION == 0 ) | |
{ | |
/* If we are not using preemption we keep forcing a task switch to | |
see if any other task has become available. If we are using | |
preemption we don't need to do this as any task becoming available | |
will automatically get the processor anyway. */ | |
taskYIELD(); | |
} | |
#endif | |
#if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) | |
{ | |
/* When using preemption tasks of equal priority will be | |
timesliced. If a task that is sharing the idle priority is ready | |
to run then the idle task should yield before the end of the | |
timeslice. | |
A critical region is not required here as we are just reading from | |
the list, and an occasional incorrect value will not matter. If | |
the ready list at the idle priority contains more than one task | |
then a task other than the idle task is ready to execute. */ | |
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( unsigned portBASE_TYPE ) 1 ) | |
{ | |
taskYIELD(); | |
} | |
} | |
#endif | |
#if ( configUSE_IDLE_HOOK == 1 ) | |
{ | |
extern void vApplicationIdleHook( void ); | |
/* Call the user defined function from within the idle task. This | |
allows the application designer to add background functionality | |
without the overhead of a separate task. | |
NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, | |
CALL A FUNCTION THAT MIGHT BLOCK. */ | |
vApplicationIdleHook(); | |
} | |
#endif | |
} | |
} /*lint !e715 pvParameters is not accessed but all task functions require the same prototype. */ | |
/*----------------------------------------------------------- | |
* File private functions documented at the top of the file. | |
*----------------------------------------------------------*/ | |
static void prvInitialiseTCBVariables( tskTCB *pxTCB, const signed portCHAR * const pcName, unsigned portBASE_TYPE uxPriority ) | |
{ | |
/* Store the function name in the TCB. */ | |
#if configMAX_TASK_NAME_LEN > 1 | |
{ | |
/* Don't bring strncpy into the build unnecessarily. */ | |
strncpy( ( char * ) pxTCB->pcTaskName, ( const char * ) pcName, ( unsigned portSHORT ) configMAX_TASK_NAME_LEN ); | |
} | |
#endif | |
pxTCB->pcTaskName[ ( unsigned portSHORT ) configMAX_TASK_NAME_LEN - ( unsigned portSHORT ) 1 ] = '\0'; | |
/* This is used as an array index so must ensure it's not too large. */ | |
if( uxPriority >= configMAX_PRIORITIES ) | |
{ | |
uxPriority = configMAX_PRIORITIES - 1; | |
} | |
pxTCB->uxPriority = uxPriority; | |
#if ( configUSE_MUTEXES == 1 ) | |
{ | |
pxTCB->uxBasePriority = uxPriority; | |
} | |
#endif | |
vListInitialiseItem( &( pxTCB->xGenericListItem ) ); | |
vListInitialiseItem( &( pxTCB->xEventListItem ) ); | |
/* Set the pxTCB as a link back from the xListItem. This is so we can get | |
back to the containing TCB from a generic item in a list. */ | |
listSET_LIST_ITEM_OWNER( &( pxTCB->xGenericListItem ), pxTCB ); | |
/* Event lists are always in priority order. */ | |
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), configMAX_PRIORITIES - ( portTickType ) uxPriority ); | |
listSET_LIST_ITEM_OWNER( &( pxTCB->xEventListItem ), pxTCB ); | |
#if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
{ | |
pxTCB->uxCriticalNesting = ( unsigned portBASE_TYPE ) 0; | |
} | |
#endif | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
{ | |
pxTCB->pxTaskTag = NULL; | |
} | |
#endif | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
{ | |
pxTCB->ulRunTimeCounter = 0UL; | |
} | |
#endif | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvInitialiseTaskLists( void ) | |
{ | |
unsigned portBASE_TYPE uxPriority; | |
for( uxPriority = 0; uxPriority < configMAX_PRIORITIES; uxPriority++ ) | |
{ | |
vListInitialise( ( xList * ) &( pxReadyTasksLists[ uxPriority ] ) ); | |
} | |
vListInitialise( ( xList * ) &xDelayedTaskList1 ); | |
vListInitialise( ( xList * ) &xDelayedTaskList2 ); | |
vListInitialise( ( xList * ) &xPendingReadyList ); | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
{ | |
vListInitialise( ( xList * ) &xTasksWaitingTermination ); | |
} | |
#endif | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
{ | |
vListInitialise( ( xList * ) &xSuspendedTaskList ); | |
} | |
#endif | |
/* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList | |
using list2. */ | |
pxDelayedTaskList = &xDelayedTaskList1; | |
pxOverflowDelayedTaskList = &xDelayedTaskList2; | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvCheckTasksWaitingTermination( void ) | |
{ | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
{ | |
portBASE_TYPE xListIsEmpty; | |
/* ucTasksDeleted is used to prevent vTaskSuspendAll() being called | |
too often in the idle task. */ | |
if( uxTasksDeleted > ( unsigned portBASE_TYPE ) 0 ) | |
{ | |
vTaskSuspendAll(); | |
xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination ); | |
xTaskResumeAll(); | |
if( !xListIsEmpty ) | |
{ | |
tskTCB *pxTCB; | |
portENTER_CRITICAL(); | |
{ | |
pxTCB = ( tskTCB * ) listGET_OWNER_OF_HEAD_ENTRY( ( ( xList * ) &xTasksWaitingTermination ) ); | |
vListRemove( &( pxTCB->xGenericListItem ) ); | |
--uxCurrentNumberOfTasks; | |
--uxTasksDeleted; | |
} | |
portEXIT_CRITICAL(); | |
prvDeleteTCB( pxTCB ); | |
} | |
} | |
} | |
#endif | |
} | |
/*-----------------------------------------------------------*/ | |
static tskTCB *prvAllocateTCBAndStack( unsigned portSHORT usStackDepth ) | |
{ | |
tskTCB *pxNewTCB; | |
/* Allocate space for the TCB. Where the memory comes from depends on | |
the implementation of the port malloc function. */ | |
pxNewTCB = ( tskTCB * ) pvPortMalloc( sizeof( tskTCB ) ); | |
if( pxNewTCB != NULL ) | |
{ | |
/* Allocate space for the stack used by the task being created. | |
The base of the stack memory stored in the TCB so the task can | |
be deleted later if required. */ | |
pxNewTCB->pxStack = ( portSTACK_TYPE * ) pvPortMalloc( ( ( size_t )usStackDepth ) * sizeof( portSTACK_TYPE ) ); | |
if( pxNewTCB->pxStack == NULL ) | |
{ | |
/* Could not allocate the stack. Delete the allocated TCB. */ | |
vPortFree( pxNewTCB ); | |
pxNewTCB = NULL; | |
} | |
else | |
{ | |
/* Just to help debugging. */ | |
memset( pxNewTCB->pxStack, tskSTACK_FILL_BYTE, usStackDepth * sizeof( portSTACK_TYPE ) ); | |
} | |
} | |
return pxNewTCB; | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
static void prvListTaskWithinSingleList( const signed portCHAR *pcWriteBuffer, xList *pxList, signed portCHAR cStatus ) | |
{ | |
volatile tskTCB *pxNextTCB, *pxFirstTCB; | |
unsigned portSHORT usStackRemaining; | |
/* Write the details of all the TCB's in pxList into the buffer. */ | |
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); | |
do | |
{ | |
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); | |
usStackRemaining = usTaskCheckFreeStackSpace( ( unsigned portCHAR * ) pxNextTCB->pxStack ); | |
sprintf( pcStatusString, ( portCHAR * ) "%s\t\t%c\t%u\t%u\t%u\r\n", pxNextTCB->pcTaskName, cStatus, ( unsigned int ) pxNextTCB->uxPriority, usStackRemaining, ( unsigned int ) pxNextTCB->uxTCBNumber ); | |
strcat( ( portCHAR * ) pcWriteBuffer, ( portCHAR * ) pcStatusString ); | |
} while( pxNextTCB != pxFirstTCB ); | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
static void prvGenerateRunTimeStatsForTasksInList( const signed portCHAR *pcWriteBuffer, xList *pxList, unsigned portLONG ulTotalRunTime ) | |
{ | |
volatile tskTCB *pxNextTCB, *pxFirstTCB; | |
unsigned portLONG ulStatsAsPercentage; | |
/* Write the run time stats of all the TCB's in pxList into the buffer. */ | |
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); | |
do | |
{ | |
/* Get next TCB in from the list. */ | |
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); | |
/* Divide by zero check. */ | |
if( ulTotalRunTime > 0UL ) | |
{ | |
/* Has the task run at all? */ | |
if( pxNextTCB->ulRunTimeCounter == 0 ) | |
{ | |
/* The task has used no CPU time at all. */ | |
sprintf( pcStatsString, ( portCHAR * ) "%s\t\t0\t\t0%%\r\n", pxNextTCB->pcTaskName ); | |
} | |
else | |
{ | |
/* What percentage of the total run time as the task used? | |
This will always be rounded down to the nearest integer. */ | |
ulStatsAsPercentage = ( 100UL * pxNextTCB->ulRunTimeCounter ) / ulTotalRunTime; | |
if( ulStatsAsPercentage > 0UL ) | |
{ | |
sprintf( pcStatsString, ( portCHAR * ) "%s\t\t%u\t\t%u%%\r\n", pxNextTCB->pcTaskName, ( unsigned int ) pxNextTCB->ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); | |
} | |
else | |
{ | |
/* If the percentage is zero here then the task has | |
consumed less than 1% of the total run time. */ | |
sprintf( pcStatsString, ( portCHAR * ) "%s\t\t%u\t\t<1%%\r\n", pxNextTCB->pcTaskName, ( unsigned int ) pxNextTCB->ulRunTimeCounter ); | |
} | |
} | |
strcat( ( portCHAR * ) pcWriteBuffer, ( portCHAR * ) pcStatsString ); | |
} | |
} while( pxNextTCB != pxFirstTCB ); | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) | |
unsigned portSHORT usTaskCheckFreeStackSpace( const unsigned portCHAR * pucStackByte ) | |
{ | |
register unsigned portSHORT usCount = 0; | |
while( *pucStackByte == tskSTACK_FILL_BYTE ) | |
{ | |
pucStackByte -= portSTACK_GROWTH; | |
usCount++; | |
} | |
usCount /= sizeof( portSTACK_TYPE ); | |
return usCount; | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) | |
unsigned portBASE_TYPE uxTaskGetStackHighWaterMark( xTaskHandle xTask ) | |
{ | |
tskTCB *pxTCB; | |
unsigned portCHAR *pcEndOfStack; | |
pxTCB = prvGetTCBFromHandle( xTask ); | |
#if portSTACK_GROWTH < 0 | |
{ | |
pcEndOfStack = ( unsigned portCHAR * ) pxTCB->pxStack; | |
} | |
#else | |
{ | |
pcEndOfStack = ( unsigned portCHAR * ) pxTCB->pxEndOfStack; | |
} | |
#endif | |
return usTaskCheckFreeStackSpace( pcEndOfStack ); | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( ( INCLUDE_vTaskDelete == 1 ) || ( INCLUDE_vTaskCleanUpResources == 1 ) ) | |
static void prvDeleteTCB( tskTCB *pxTCB ) | |
{ | |
/* Free up the memory allocated by the scheduler for the task. It is up to | |
the task to free any memory allocated at the application level. */ | |
vPortFree( pxTCB->pxStack ); | |
vPortFree( pxTCB ); | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) | |
xTaskHandle xTaskGetCurrentTaskHandle( void ) | |
{ | |
/* A critical section is not required as this is not called from | |
an interrupt and the current TCB will always be the same for any | |
individual execution thread. */ | |
return pxCurrentTCB; | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_xTaskGetSchedulerState == 1 ) | |
portBASE_TYPE xTaskGetSchedulerState( void ) | |
{ | |
portBASE_TYPE xReturn; | |
if( xSchedulerRunning == pdFALSE ) | |
{ | |
xReturn = taskSCHEDULER_NOT_STARTED; | |
} | |
else | |
{ | |
if( uxSchedulerSuspended == ( unsigned portBASE_TYPE ) pdFALSE ) | |
{ | |
xReturn = taskSCHEDULER_RUNNING; | |
} | |
else | |
{ | |
xReturn = taskSCHEDULER_SUSPENDED; | |
} | |
} | |
return xReturn; | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_MUTEXES == 1 ) | |
void vTaskPriorityInherit( xTaskHandle * const pxMutexHolder ) | |
{ | |
tskTCB * const pxTCB = ( tskTCB * ) pxMutexHolder; | |
if( pxTCB->uxPriority < pxCurrentTCB->uxPriority ) | |
{ | |
/* Adjust the mutex holder state to account for its new priority. */ | |
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), configMAX_PRIORITIES - ( portTickType ) pxCurrentTCB->uxPriority ); | |
/* If the task being modified is in the ready state it will need to | |
be moved in to a new list. */ | |
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xGenericListItem ) ) ) | |
{ | |
vListRemove( &( pxTCB->xGenericListItem ) ); | |
/* Inherit the priority before being moved into the new list. */ | |
pxTCB->uxPriority = pxCurrentTCB->uxPriority; | |
prvAddTaskToReadyQueue( pxTCB ); | |
} | |
else | |
{ | |
/* Just inherit the priority. */ | |
pxTCB->uxPriority = pxCurrentTCB->uxPriority; | |
} | |
} | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_MUTEXES == 1 ) | |
void vTaskPriorityDisinherit( xTaskHandle * const pxMutexHolder ) | |
{ | |
tskTCB * const pxTCB = ( tskTCB * ) pxMutexHolder; | |
if( pxMutexHolder != NULL ) | |
{ | |
if( pxTCB->uxPriority != pxTCB->uxBasePriority ) | |
{ | |
/* We must be the running task to be able to give the mutex back. | |
Remove ourselves from the ready list we currently appear in. */ | |
vListRemove( &( pxTCB->xGenericListItem ) ); | |
/* Disinherit the priority before adding ourselves into the new | |
ready list. */ | |
pxTCB->uxPriority = pxTCB->uxBasePriority; | |
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), configMAX_PRIORITIES - ( portTickType ) pxTCB->uxPriority ); | |
prvAddTaskToReadyQueue( pxTCB ); | |
} | |
} | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
void vTaskEnterCritical( void ) | |
{ | |
portDISABLE_INTERRUPTS(); | |
if( xSchedulerRunning != pdFALSE ) | |
{ | |
pxCurrentTCB->uxCriticalNesting++; | |
} | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |
#if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
void vTaskExitCritical( void ) | |
{ | |
if( xSchedulerRunning != pdFALSE ) | |
{ | |
if( pxCurrentTCB->uxCriticalNesting > 0 ) | |
{ | |
pxCurrentTCB->uxCriticalNesting--; | |
if( pxCurrentTCB->uxCriticalNesting == 0 ) | |
{ | |
portENABLE_INTERRUPTS(); | |
} | |
} | |
} | |
} | |
#endif | |
/*-----------------------------------------------------------*/ | |