blob: 786540b62ae4181f31cd04acf6f3f4148e34dd9b [file] [log] [blame]
/*
* FreeRTOS Kernel V10.3.1
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the Cygnal port.
*----------------------------------------------------------*/
/* Standard includes. */
#include <string.h>
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
/* Constants required to setup timer 2 to produce the RTOS tick. */
#define portCLOCK_DIVISOR ( ( uint32_t ) 12 )
#define portMAX_TIMER_VALUE ( ( uint32_t ) 0xffff )
#define portENABLE_TIMER ( ( uint8_t ) 0x04 )
#define portTIMER_2_INTERRUPT_ENABLE ( ( uint8_t ) 0x20 )
/* The value used in the IE register when a task first starts. */
#define portGLOBAL_INTERRUPT_BIT ( ( StackType_t ) 0x80 )
/* The value used in the PSW register when a task first starts. */
#define portINITIAL_PSW ( ( StackType_t ) 0x00 )
/* Macro to clear the timer 2 interrupt flag. */
#define portCLEAR_INTERRUPT_FLAG() TMR2CN &= ~0x80;
/* Used during a context switch to store the size of the stack being copied
* to or from XRAM. */
data static uint8_t ucStackBytes;
/* Used during a context switch to point to the next byte in XRAM from/to which
* a RAM byte is to be copied. */
xdata static StackType_t * data pxXRAMStack;
/* Used during a context switch to point to the next byte in RAM from/to which
* an XRAM byte is to be copied. */
data static StackType_t * data pxRAMStack;
/* We require the address of the pxCurrentTCB variable, but don't want to know
* any details of its type. */
typedef void TCB_t;
extern volatile TCB_t * volatile pxCurrentTCB;
/*
* Setup the hardware to generate an interrupt off timer 2 at the required
* frequency.
*/
static void prvSetupTimerInterrupt( void );
/*-----------------------------------------------------------*/
/*
* Macro that copies the current stack from internal RAM to XRAM. This is
* required as the 8051 only contains enough internal RAM for a single stack,
* but we have a stack for every task.
*/
#define portCOPY_STACK_TO_XRAM() \
{ \
/* pxCurrentTCB points to a TCB which itself points to the location into \
* which the first stack byte should be copied. Set pxXRAMStack to point \
* to the location into which the first stack byte is to be copied. */ \
pxXRAMStack = ( xdata StackType_t * ) *( ( xdata StackType_t ** ) pxCurrentTCB ); \
\
/* Set pxRAMStack to point to the first byte to be coped from the stack. */ \
pxRAMStack = ( data StackType_t * data ) configSTACK_START; \
\
/* Calculate the size of the stack we are about to copy from the current \
* stack pointer value. */ \
ucStackBytes = SP - ( configSTACK_START - 1 ); \
\
/* Before starting to copy the stack, store the calculated stack size so \
* the stack can be restored when the task is resumed. */\
* pxXRAMStack = ucStackBytes; \
\
/* Copy each stack byte in turn. pxXRAMStack is incremented first as we \
* have already stored the stack size into XRAM. */\
while( ucStackBytes ) \
{ \
pxXRAMStack ++; \
* pxXRAMStack = * pxRAMStack; \
pxRAMStack ++; \
ucStackBytes --; \
} \
}
/*-----------------------------------------------------------*/
/*
* Macro that copies the stack of the task being resumed from XRAM into
* internal RAM.
*/
#define portCOPY_XRAM_TO_STACK() \
{ \
/* Setup the pointers as per portCOPY_STACK_TO_XRAM(), but this time to \
* copy the data back out of XRAM and into the stack. */ \
pxXRAMStack = ( xdata StackType_t * ) *( ( xdata StackType_t ** ) pxCurrentTCB ); \
pxRAMStack = ( data StackType_t * data )( configSTACK_START - 1 ); \
\
/* The first value stored in XRAM was the size of the stack - i.e. the \
* number of bytes we need to copy back. */ \
ucStackBytes = pxXRAMStack[ 0 ]; \
\
/* Copy the required number of bytes back into the stack. */ \
do \
{ \
pxXRAMStack ++; \
pxRAMStack ++; \
* pxRAMStack = * pxXRAMStack; \
ucStackBytes --; \
} while( ucStackBytes ); \
\
/* Restore the stack pointer ready to use the restored stack. */ \
SP = ( uint8_t ) pxRAMStack; \
}
/*-----------------------------------------------------------*/
/*
* Macro to push the current execution context onto the stack, before the stack
* is moved to XRAM.
*/
#define portSAVE_CONTEXT() \
{ \
_asm \
/* Push ACC first, as when restoring the context it must be restored \
* last (it is used to set the IE register). */ \
push ACC \
/* Store the IE register then disable interrupts. */ \
push IE \
clr _EA \
push DPL \
push DPH \
push b \
push ar2 \
push ar3 \
push ar4 \
push ar5 \
push ar6 \
push ar7 \
push ar0 \
push ar1 \
push PSW \
_endasm; \
PSW = 0; \
_asm \
push _bp \
_endasm; \
}
/*-----------------------------------------------------------*/
/*
* Macro that restores the execution context from the stack. The execution
* context was saved into the stack before the stack was copied into XRAM.
*/
#define portRESTORE_CONTEXT() \
{ \
_asm \
pop _bp \
pop PSW \
pop ar1 \
pop ar0 \
pop ar7 \
pop ar6 \
pop ar5 \
pop ar4 \
pop ar3 \
pop ar2 \
pop b \
pop DPH \
pop DPL \
/* The next byte of the stack is the IE register. Only the global \
* enable bit forms part of the task context. Pop off the IE then set \
* the global enable bit to match that of the stored IE register. */\
pop ACC \
JB ACC .7, 00 98$ \
CLR IE .7 \
LJMP 00 99$ \
00 98$ : \
SETB IE .7 \
00 99$ : \
/* Finally pop off the ACC, which was the first register saved. */ \
pop ACC \
reti \
_endasm; \
}
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
TaskFunction_t pxCode,
void * pvParameters )
{
uint32_t ulAddress;
StackType_t * pxStartOfStack;
/* Leave space to write the size of the stack as the first byte. */
pxStartOfStack = pxTopOfStack;
pxTopOfStack++;
/* Place a few bytes of known values on the bottom of the stack.
* This is just useful for debugging and can be uncommented if required.
* pxTopOfStack = 0x11;
* pxTopOfStack++;
* pxTopOfStack = 0x22;
* pxTopOfStack++;
* pxTopOfStack = 0x33;
* pxTopOfStack++;
*/
/* Simulate how the stack would look after a call to the scheduler tick
* ISR.
*
* The return address that would have been pushed by the MCU. */
ulAddress = ( uint32_t ) pxCode;
*pxTopOfStack = ( StackType_t ) ulAddress;
ulAddress >>= 8;
pxTopOfStack++;
*pxTopOfStack = ( StackType_t ) ( ulAddress );
pxTopOfStack++;
/* Next all the registers will have been pushed by portSAVE_CONTEXT(). */
*pxTopOfStack = 0xaa; /* acc */
pxTopOfStack++;
/* We want tasks to start with interrupts enabled. */
*pxTopOfStack = portGLOBAL_INTERRUPT_BIT;
pxTopOfStack++;
/* The function parameters will be passed in the DPTR and B register as
* a three byte generic pointer is used. */
ulAddress = ( uint32_t ) pvParameters;
*pxTopOfStack = ( StackType_t ) ulAddress; /* DPL */
ulAddress >>= 8;
*pxTopOfStack++;
*pxTopOfStack = ( StackType_t ) ulAddress; /* DPH */
ulAddress >>= 8;
pxTopOfStack++;
*pxTopOfStack = ( StackType_t ) ulAddress; /* b */
pxTopOfStack++;
/* The remaining registers are straight forward. */
*pxTopOfStack = 0x02; /* R2 */
pxTopOfStack++;
*pxTopOfStack = 0x03; /* R3 */
pxTopOfStack++;
*pxTopOfStack = 0x04; /* R4 */
pxTopOfStack++;
*pxTopOfStack = 0x05; /* R5 */
pxTopOfStack++;
*pxTopOfStack = 0x06; /* R6 */
pxTopOfStack++;
*pxTopOfStack = 0x07; /* R7 */
pxTopOfStack++;
*pxTopOfStack = 0x00; /* R0 */
pxTopOfStack++;
*pxTopOfStack = 0x01; /* R1 */
pxTopOfStack++;
*pxTopOfStack = 0x00; /* PSW */
pxTopOfStack++;
*pxTopOfStack = 0xbb; /* BP */
/* Dont increment the stack size here as we don't want to include
* the stack size byte as part of the stack size count.
*
* Finally we place the stack size at the beginning. */
*pxStartOfStack = ( StackType_t ) ( pxTopOfStack - pxStartOfStack );
/* Unlike most ports, we return the start of the stack as this is where the
* size of the stack is stored. */
return pxStartOfStack;
}
/*-----------------------------------------------------------*/
/*
* See header file for description.
*/
BaseType_t xPortStartScheduler( void )
{
/* Setup timer 2 to generate the RTOS tick. */
prvSetupTimerInterrupt();
/* Make sure we start with the expected SFR page. This line should not
* really be required. */
SFRPAGE = 0;
/* Copy the stack for the first task to execute from XRAM into the stack,
* restore the task context from the new stack, then start running the task. */
portCOPY_XRAM_TO_STACK();
portRESTORE_CONTEXT();
/* Should never get here! */
return pdTRUE;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* Not implemented for this port. */
}
/*-----------------------------------------------------------*/
/*
* Manual context switch. The first thing we do is save the registers so we
* can use a naked attribute.
*/
void vPortYield( void ) _naked
{
/* Save the execution context onto the stack, then copy the entire stack
* to XRAM. This is necessary as the internal RAM is only large enough to
* hold one stack, and we want one per task.
*
* PERFORMANCE COULD BE IMPROVED BY ONLY COPYING TO XRAM IF A TASK SWITCH
* IS REQUIRED. */
portSAVE_CONTEXT();
portCOPY_STACK_TO_XRAM();
/* Call the standard scheduler context switch function. */
vTaskSwitchContext();
/* Copy the stack of the task about to execute from XRAM into RAM and
* restore it's context ready to run on exiting. */
portCOPY_XRAM_TO_STACK();
portRESTORE_CONTEXT();
}
/*-----------------------------------------------------------*/
#if configUSE_PREEMPTION == 1
void vTimer2ISR( void ) interrupt 5 _naked
{
/* Preemptive context switch function triggered by the timer 2 ISR.
* This does the same as vPortYield() (see above) with the addition
* of incrementing the RTOS tick count. */
portSAVE_CONTEXT();
portCOPY_STACK_TO_XRAM();
if( xTaskIncrementTick() != pdFALSE )
{
vTaskSwitchContext();
}
portCLEAR_INTERRUPT_FLAG();
portCOPY_XRAM_TO_STACK();
portRESTORE_CONTEXT();
}
#else /* if configUSE_PREEMPTION == 1 */
void vTimer2ISR( void ) interrupt 5
{
/* When using the cooperative scheduler the timer 2 ISR is only
* required to increment the RTOS tick count. */
xTaskIncrementTick();
portCLEAR_INTERRUPT_FLAG();
}
#endif /* if configUSE_PREEMPTION == 1 */
/*-----------------------------------------------------------*/
static void prvSetupTimerInterrupt( void )
{
uint8_t ucOriginalSFRPage;
/* Constants calculated to give the required timer capture values. */
const uint32_t ulTicksPerSecond = configCPU_CLOCK_HZ / portCLOCK_DIVISOR;
const uint32_t ulCaptureTime = ulTicksPerSecond / configTICK_RATE_HZ;
const uint32_t ulCaptureValue = portMAX_TIMER_VALUE - ulCaptureTime;
const uint8_t ucLowCaptureByte = ( uint8_t ) ( ulCaptureValue & ( uint32_t ) 0xff );
const uint8_t ucHighCaptureByte = ( uint8_t ) ( ulCaptureValue >> ( uint32_t ) 8 );
/* NOTE: This uses a timer only present on 8052 architecture. */
/* Remember the current SFR page so we can restore it at the end of the
* function. */
ucOriginalSFRPage = SFRPAGE;
SFRPAGE = 0;
/* TMR2CF can be left in its default state. */
TMR2CF = ( uint8_t ) 0;
/* Setup the overflow reload value. */
RCAP2L = ucLowCaptureByte;
RCAP2H = ucHighCaptureByte;
/* The initial load is performed manually. */
TMR2L = ucLowCaptureByte;
TMR2H = ucHighCaptureByte;
/* Enable the timer 2 interrupts. */
IE |= portTIMER_2_INTERRUPT_ENABLE;
/* Interrupts are disabled when this is called so the timer can be started
* here. */
TMR2CN = portENABLE_TIMER;
/* Restore the original SFR page. */
SFRPAGE = ucOriginalSFRPage;
}