blob: 84bc87bf210368e024f677b2853acaf0f27fee91 [file] [log] [blame]
/*
* FreeRTOS Kernel <DEVELOPMENT BRANCH>
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/* Standard includes. */
#include <stdlib.h>
#include <string.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
* all the API functions to use the MPU wrappers. That should only be done when
* task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "stack_macros.h"
/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
* because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
* for the header files above, but not in this file, in order to generate the
* correct privileged Vs unprivileged linkage and placement. */
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
* functions but without including stdio.h here. */
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
/* At the bottom of this file are two optional functions that can be used
* to generate human readable text from the raw data generated by the
* uxTaskGetSystemState() function. Note the formatting functions are provided
* for convenience only, and are NOT considered part of the kernel. */
#include <stdio.h>
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
#if ( configUSE_PREEMPTION == 0 )
/* If the cooperative scheduler is being used then a yield should not be
* performed just because a higher priority task has been woken. */
#define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB )
#define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB )
#else
#if ( configNUMBER_OF_CORES == 1 )
/* This macro requests the running task pxTCB to yield. In single core
* scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API()
* can be used to request the task running on core 0 to yield. Therefore, pxTCB
* is not used in this macro. */
#define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \
do { \
( void ) ( pxTCB ); \
portYIELD_WITHIN_API(); \
} while( 0 )
#define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \
do { \
if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority ) \
{ \
portYIELD_WITHIN_API(); \
} \
else \
{ \
mtCOVERAGE_TEST_MARKER(); \
} \
} while( 0 )
#else /* if ( configNUMBER_OF_CORES == 1 ) */
/* Yield the core on which this task is running. */
#define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldCore( ( pxTCB )->xTaskRunState )
/* Yield for the task if a running task has priority lower than this task. */
#define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldForTask( pxTCB )
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
#endif /* if ( configUSE_PREEMPTION == 0 ) */
/* Values that can be assigned to the ucNotifyState member of the TCB. */
#define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
#define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
#define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
/*
* The value used to fill the stack of a task when the task is created. This
* is used purely for checking the high water mark for tasks.
*/
#define tskSTACK_FILL_BYTE ( 0xa5U )
/* Bits used to record how a task's stack and TCB were allocated. */
#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
#define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
/* If any of the following are set then task stacks are filled with a known
* value so the high water mark can be determined. If none of the following are
* set then don't fill the stack so there is no unnecessary dependency on memset. */
#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
#define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
#else
#define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
#endif
/*
* Macros used by vListTask to indicate which state a task is in.
*/
#define tskRUNNING_CHAR ( 'X' )
#define tskBLOCKED_CHAR ( 'B' )
#define tskREADY_CHAR ( 'R' )
#define tskDELETED_CHAR ( 'D' )
#define tskSUSPENDED_CHAR ( 'S' )
/*
* Some kernel aware debuggers require the data the debugger needs access to to
* be global, rather than file scope.
*/
#ifdef portREMOVE_STATIC_QUALIFIER
#define static
#endif
/* The name allocated to the Idle task. This can be overridden by defining
* configIDLE_TASK_NAME in FreeRTOSConfig.h. */
#ifndef configIDLE_TASK_NAME
#define configIDLE_TASK_NAME "IDLE"
#endif
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
* performed in a generic way that is not optimised to any particular
* microcontroller architecture. */
/* uxTopReadyPriority holds the priority of the highest priority ready
* state task. */
#define taskRECORD_READY_PRIORITY( uxPriority ) \
do { \
if( ( uxPriority ) > uxTopReadyPriority ) \
{ \
uxTopReadyPriority = ( uxPriority ); \
} \
} while( 0 ) /* taskRECORD_READY_PRIORITY */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES == 1 )
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
do { \
UBaseType_t uxTopPriority = uxTopReadyPriority; \
\
/* Find the highest priority queue that contains ready tasks. */ \
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
{ \
configASSERT( uxTopPriority ); \
--uxTopPriority; \
} \
\
/* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
* the same priority get an equal share of the processor time. */ \
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
uxTopReadyPriority = uxTopPriority; \
} while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */
#else /* if ( configNUMBER_OF_CORES == 1 ) */
#define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID ) prvSelectHighestPriorityTask( xCoreID )
#endif /* if ( configNUMBER_OF_CORES == 1 ) */
/*-----------------------------------------------------------*/
/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
* they are only required when a port optimised method of task selection is
* being used. */
#define taskRESET_READY_PRIORITY( uxPriority )
#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
* performed in a way that is tailored to the particular microcontroller
* architecture being used. */
/* A port optimised version is provided. Call the port defined macros. */
#define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority )
/*-----------------------------------------------------------*/
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
do { \
UBaseType_t uxTopPriority; \
\
/* Find the highest priority list that contains ready tasks. */ \
portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
} while( 0 )
/*-----------------------------------------------------------*/
/* A port optimised version is provided, call it only if the TCB being reset
* is being referenced from a ready list. If it is referenced from a delayed
* or suspended list then it won't be in a ready list. */
#define taskRESET_READY_PRIORITY( uxPriority ) \
do { \
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
{ \
portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
} \
} while( 0 )
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
* count overflows. */
#define taskSWITCH_DELAYED_LISTS() \
do { \
List_t * pxTemp; \
\
/* The delayed tasks list should be empty when the lists are switched. */ \
configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\
pxTemp = pxDelayedTaskList; \
pxDelayedTaskList = pxOverflowDelayedTaskList; \
pxOverflowDelayedTaskList = pxTemp; \
xNumOfOverflows++; \
prvResetNextTaskUnblockTime(); \
} while( 0 )
/*-----------------------------------------------------------*/
/*
* Place the task represented by pxTCB into the appropriate ready list for
* the task. It is inserted at the end of the list.
*/
#define prvAddTaskToReadyList( pxTCB ) \
do { \
traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ); \
} while( 0 )
/*-----------------------------------------------------------*/
/*
* Several functions take a TaskHandle_t parameter that can optionally be NULL,
* where NULL is used to indicate that the handle of the currently executing
* task should be used in place of the parameter. This macro simply checks to
* see if the parameter is NULL and returns a pointer to the appropriate TCB.
*/
#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )
/* The item value of the event list item is normally used to hold the priority
* of the task to which it belongs (coded to allow it to be held in reverse
* priority order). However, it is occasionally borrowed for other purposes. It
* is important its value is not updated due to a task priority change while it is
* being used for another purpose. The following bit definition is used to inform
* the scheduler that the value should not be changed - in which case it is the
* responsibility of whichever module is using the value to ensure it gets set back
* to its original value when it is released. */
#if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
#elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
#elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS )
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000000000000000ULL
#endif
/* Indicates that the task is not actively running on any core. */
#define taskTASK_NOT_RUNNING ( ( BaseType_t ) ( -1 ) )
/* Indicates that the task is actively running but scheduled to yield. */
#define taskTASK_SCHEDULED_TO_YIELD ( ( BaseType_t ) ( -2 ) )
/* Returns pdTRUE if the task is actively running and not scheduled to yield. */
#if ( configNUMBER_OF_CORES == 1 )
#define taskTASK_IS_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
#define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) )
#else
#define taskTASK_IS_RUNNING( pxTCB ) ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) )
#define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) )
#endif
/* Indicates that the task is an Idle task. */
#define taskATTRIBUTE_IS_IDLE ( UBaseType_t ) ( 1UL << 0UL )
#if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) )
#define portGET_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting )
#define portSET_CRITICAL_NESTING_COUNT( x ) ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) )
#define portINCREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ )
#define portDECREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- )
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */
/* Code below here allows infinite loop controlling, especially for the infinite loop
* in idle task function (for example when performing unit tests). */
#ifndef INFINITE_LOOP
#define INFINITE_LOOP() 1
#endif
#define taskBITS_PER_BYTE ( ( size_t ) 8 )
/*
* Task control block. A task control block (TCB) is allocated for each task,
* and stores task state information, including a pointer to the task's context
* (the task's run time environment, including register values)
*/
typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
{
volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
#if ( portUSING_MPU_WRAPPERS == 1 )
xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
#endif
#if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 )
UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores. UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */
#endif
ListItem_t xStateListItem; /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
ListItem_t xEventListItem; /**< Used to reference a task from an event list. */
UBaseType_t uxPriority; /**< The priority of the task. 0 is the lowest priority. */
StackType_t * pxStack; /**< Points to the start of the stack. */
#if ( configNUMBER_OF_CORES > 1 )
volatile BaseType_t xTaskRunState; /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */
UBaseType_t uxTaskAttributes; /**< Task's attributes - currently used to identify the idle tasks. */
#endif
char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */
#endif
#if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */
#endif
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
#endif
#if ( configUSE_TRACE_FACILITY == 1 )
UBaseType_t uxTCBNumber; /**< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */
#endif
#if ( configUSE_MUTEXES == 1 )
UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */
UBaseType_t uxMutexesHeld;
#endif
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
TaskHookFunction_t pxTaskTag;
#endif
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */
#endif
#if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */
#endif
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
#endif
/* See the comments in FreeRTOS.h with the definition of
* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
#endif
#if ( INCLUDE_xTaskAbortDelay == 1 )
uint8_t ucDelayAborted;
#endif
#if ( configUSE_POSIX_ERRNO == 1 )
int iTaskErrno;
#endif
} tskTCB;
/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
* below to enable the use of older kernel aware debuggers. */
typedef tskTCB TCB_t;
/*lint -save -e956 A manual analysis and inspection has been used to determine
* which static variables must be declared volatile. */
#if ( configNUMBER_OF_CORES == 1 )
portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
#else
/* MISRA Ref 8.4.1 [Declaration shall be visible] */
/* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */
/* coverity[misra_c_2012_rule_8_4_violation] */
portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ];
#define pxCurrentTCB xTaskGetCurrentTaskHandle()
#endif
/* Lists for ready and blocked tasks. --------------------
* xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
* doing so breaks some kernel aware debuggers and debuggers that rely on removing
* the static qualifier. */
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList1; /**< Delayed tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList2; /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /**< Points to the delayed task list currently being used. */
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t xPendingReadyList; /**< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
#if ( INCLUDE_vTaskDelete == 1 )
PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */
PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */
#endif
/* Global POSIX errno. Its value is changed upon context switching to match
* the errno of the currently running task. */
#if ( configUSE_POSIX_ERRNO == 1 )
int FreeRTOS_errno = 0;
#endif
/* Other file private variables. --------------------------------*/
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE };
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ]; /**< Holds the handles of the idle tasks. The idle tasks are created automatically when the scheduler is started. */
/* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
* For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
* to determine the number of priority lists to read back from the remote target. */
const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;
/* Context switches are held pending while the scheduler is suspended. Also,
* interrupts must not manipulate the xStateListItem of a TCB, or any of the
* lists the xStateListItem can be referenced from, if the scheduler is suspended.
* If an interrupt needs to unblock a task while the scheduler is suspended then it
* moves the task's event list item into the xPendingReadyList, ready for the
* kernel to move the task from the pending ready list into the real ready list
* when the scheduler is unsuspended. The pending ready list itself can only be
* accessed from a critical section.
*
* Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock
* and must not be done from an ISR. Reads must be protected by either lock and may be done
* from either an ISR or a task. */
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U;
#if ( configGENERATE_RUN_TIME_STATS == 1 )
/* Do not move these variables to function scope as doing so prevents the
* code working with debuggers that need to remove the static qualifier. */
PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the value of a timer/counter the last time a task was switched in. */
PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */
#endif
#if ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configNUMBER_OF_CORES > 1 )
/* Do not move these variables to function scope as doing so prevents the
* code working with debuggers that need to remove the static qualifier. */
static StaticTask_t xIdleTCBBuffers[ configNUMBER_OF_CORES - 1 ];
static StackType_t xIdleTaskStackBuffers[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ];
#endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */
/*lint -restore */
/*-----------------------------------------------------------*/
/* File private functions. --------------------------------*/
/*
* Creates the idle tasks during scheduler start.
*/
static BaseType_t prvCreateIdleTasks( void );
#if ( configNUMBER_OF_CORES > 1 )
/*
* Checks to see if another task moved the current task out of the ready
* list while it was waiting to enter a critical section and yields, if so.
*/
static void prvCheckForRunStateChange( void );
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
#if ( configNUMBER_OF_CORES > 1 )
/*
* Yields the given core.
*/
static void prvYieldCore( BaseType_t xCoreID );
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
#if ( configNUMBER_OF_CORES > 1 )
/*
* Yields a core, or cores if multiple priorities are not allowed to run
* simultaneously, to allow the task pxTCB to run.
*/
static void prvYieldForTask( const TCB_t * pxTCB );
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
#if ( configNUMBER_OF_CORES > 1 )
/*
* Selects the highest priority available task for the given core.
*/
static void prvSelectHighestPriorityTask( BaseType_t xCoreID );
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/**
* Utility task that simply returns pdTRUE if the task referenced by xTask is
* currently in the Suspended state, or pdFALSE if the task referenced by xTask
* is in any other state.
*/
#if ( INCLUDE_vTaskSuspend == 1 )
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
#endif /* INCLUDE_vTaskSuspend */
/*
* Utility to ready all the lists used by the scheduler. This is called
* automatically upon the creation of the first task.
*/
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
/*
* The idle task, which as all tasks is implemented as a never ending loop.
* The idle task is automatically created and added to the ready lists upon
* creation of the first user task.
*
* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 minimal idle tasks are also
* created to ensure that each core has an idle task to run when no other
* task is available to run.
*
* The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
* language extensions. The equivalent prototype for these functions are:
*
* void prvIdleTask( void *pvParameters );
* void prvMinimalIdleTask( void *pvParameters );
*
*/
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
#if ( configNUMBER_OF_CORES > 1 )
static portTASK_FUNCTION_PROTO( prvMinimalIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
#endif
/*
* Utility to free all memory allocated by the scheduler to hold a TCB,
* including the stack pointed to by the TCB.
*
* This does not free memory allocated by the task itself (i.e. memory
* allocated by calls to pvPortMalloc from within the tasks application code).
*/
#if ( INCLUDE_vTaskDelete == 1 )
static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
#endif
/*
* Used only by the idle task. This checks to see if anything has been placed
* in the list of tasks waiting to be deleted. If so the task is cleaned up
* and its TCB deleted.
*/
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
/*
* The currently executing task is entering the Blocked state. Add the task to
* either the current or the overflow delayed task list.
*/
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
/*
* Fills an TaskStatus_t structure with information on each task that is
* referenced from the pxList list (which may be a ready list, a delayed list,
* a suspended list, etc.).
*
* THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
* NORMAL APPLICATION CODE.
*/
#if ( configUSE_TRACE_FACILITY == 1 )
static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
List_t * pxList,
eTaskState eState ) PRIVILEGED_FUNCTION;
#endif
/*
* Searches pxList for a task with name pcNameToQuery - returning a handle to
* the task if it is found, or NULL if the task is not found.
*/
#if ( INCLUDE_xTaskGetHandle == 1 )
static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
#endif
/*
* When a task is created, the stack of the task is filled with a known value.
* This function determines the 'high water mark' of the task stack by
* determining how much of the stack remains at the original preset value.
*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
#endif
/*
* Return the amount of time, in ticks, that will pass before the kernel will
* next move a task from the Blocked state to the Running state.
*
* This conditional compilation should use inequality to 0, not equality to 1.
* This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
* defined low power mode implementations require configUSE_TICKLESS_IDLE to be
* set to a value other than 1.
*/
#if ( configUSE_TICKLESS_IDLE != 0 )
static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
#endif
/*
* Set xNextTaskUnblockTime to the time at which the next Blocked state task
* will exit the Blocked state.
*/
static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
#if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 )
/*
* Helper function used to pad task names with spaces when printing out
* human readable tables of task information.
*/
static char * prvWriteNameToBuffer( char * pcBuffer,
const char * pcTaskName ) PRIVILEGED_FUNCTION;
#endif
/*
* Called after a Task_t structure has been allocated either statically or
* dynamically to fill in the structure's members.
*/
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
TCB_t * pxNewTCB,
const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;
/*
* Called after a new task has been created and initialised to place the task
* under the control of the scheduler.
*/
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
/*
* freertos_tasks_c_additions_init() should only be called if the user definable
* macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
* called by the function.
*/
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
#endif
#if ( configUSE_MINIMAL_IDLE_HOOK == 1 )
extern void vApplicationMinimalIdleHook( void );
#endif /* #if ( configUSE_MINIMAL_IDLE_HOOK == 1 ) */
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
/*
* Convert the snprintf return value to the number of characters
* written. The following are the possible cases:
*
* 1. The buffer supplied to snprintf is large enough to hold the
* generated string. The return value in this case is the number
* of characters actually written, not counting the terminating
* null character.
* 2. The buffer supplied to snprintf is NOT large enough to hold
* the generated string. The return value in this case is the
* number of characters that would have been written if the
* buffer had been sufficiently large, not counting the
* terminating null character.
* 3. Encoding error. The return value in this case is a negative
* number.
*
* From 1 and 2 above ==> Only when the return value is non-negative
* and less than the supplied buffer length, the string has been
* completely written.
*/
static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
size_t n );
#endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static void prvCheckForRunStateChange( void )
{
UBaseType_t uxPrevCriticalNesting;
const TCB_t * pxThisTCB;
/* This must only be called from within a task. */
portASSERT_IF_IN_ISR();
/* This function is always called with interrupts disabled
* so this is safe. */
pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ];
while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD )
{
/* We are only here if we just entered a critical section
* or if we just suspended the scheduler, and another task
* has requested that we yield.
*
* This is slightly complicated since we need to save and restore
* the suspension and critical nesting counts, as well as release
* and reacquire the correct locks. And then, do it all over again
* if our state changed again during the reacquisition. */
uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT();
if( uxPrevCriticalNesting > 0U )
{
portSET_CRITICAL_NESTING_COUNT( 0U );
portRELEASE_ISR_LOCK();
}
else
{
/* The scheduler is suspended. uxSchedulerSuspended is updated
* only when the task is not requested to yield. */
mtCOVERAGE_TEST_MARKER();
}
portRELEASE_TASK_LOCK();
portMEMORY_BARRIER();
configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD );
portENABLE_INTERRUPTS();
/* Enabling interrupts should cause this core to immediately
* service the pending interrupt and yield. If the run state is still
* yielding here then that is a problem. */
configASSERT( pxThisTCB->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD );
portDISABLE_INTERRUPTS();
portGET_TASK_LOCK();
portGET_ISR_LOCK();
portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting );
if( uxPrevCriticalNesting == 0U )
{
portRELEASE_ISR_LOCK();
}
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static void prvYieldCore( BaseType_t xCoreID )
{
/* This must be called from a critical section and xCoreID must be valid. */
if( ( portCHECK_IF_IN_ISR() == pdTRUE ) && ( xCoreID == ( BaseType_t ) portGET_CORE_ID() ) )
{
xYieldPendings[ xCoreID ] = pdTRUE;
}
else
{
if( pxCurrentTCBs[ xCoreID ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD )
{
if( xCoreID == ( BaseType_t ) portGET_CORE_ID() )
{
xYieldPendings[ xCoreID ] = pdTRUE;
}
else
{
portYIELD_CORE( xCoreID );
pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD;
}
}
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static void prvYieldForTask( const TCB_t * pxTCB )
{
BaseType_t xLowestPriorityToPreempt;
BaseType_t xCurrentCoreTaskPriority;
BaseType_t xLowestPriorityCore = ( BaseType_t ) -1;
BaseType_t xCoreID;
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
BaseType_t xYieldCount = 0;
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
/* This must be called from a critical section. */
configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U );
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
/* No task should yield for this one if it is a lower priority
* than priority level of currently ready tasks. */
if( pxTCB->uxPriority >= uxTopReadyPriority )
#else
/* Yield is not required for a task which is already running. */
if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
#endif
{
xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority;
/* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB
* is 0. This is ok as we will give system idle tasks a priority of -1 below. */
--xLowestPriorityToPreempt;
for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
{
xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority;
/* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */
if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
{
xCurrentCoreTaskPriority = xCurrentCoreTaskPriority - 1;
}
if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) )
{
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE )
#endif
{
if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt )
{
#if ( configUSE_CORE_AFFINITY == 1 )
if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
#endif
{
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE )
#endif
{
xLowestPriorityToPreempt = xCurrentCoreTaskPriority;
xLowestPriorityCore = xCoreID;
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
/* Yield all currently running non-idle tasks with a priority lower than
* the task that needs to run. */
if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) &&
( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) )
{
prvYieldCore( xCoreID );
xYieldCount++;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) )
#else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
if( xLowestPriorityCore >= 0 )
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
{
prvYieldCore( xLowestPriorityCore );
}
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
/* Verify that the calling core always yields to higher priority tasks. */
if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0 ) &&
( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) )
{
configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) ||
( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) );
}
#endif
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES > 1 )
static void prvSelectHighestPriorityTask( BaseType_t xCoreID )
{
UBaseType_t uxCurrentPriority = uxTopReadyPriority;
BaseType_t xTaskScheduled = pdFALSE;
BaseType_t xDecrementTopPriority = pdTRUE;
#if ( configUSE_CORE_AFFINITY == 1 )
const TCB_t * pxPreviousTCB = NULL;
#endif
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
BaseType_t xPriorityDropped = pdFALSE;
#endif
/* This function should be called when scheduler is running. */
configASSERT( xSchedulerRunning == pdTRUE );
/* A new task is created and a running task with the same priority yields
* itself to run the new task. When a running task yields itself, it is still
* in the ready list. This running task will be selected before the new task
* since the new task is always added to the end of the ready list.
* The other problem is that the running task still in the same position of
* the ready list when it yields itself. It is possible that it will be selected
* earlier then other tasks which waits longer than this task.
*
* To fix these problems, the running task should be put to the end of the
* ready list before searching for the ready task in the ready list. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
&pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE )
{
( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem );
vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ),
&pxCurrentTCBs[ xCoreID ]->xStateListItem );
}
while( xTaskScheduled == pdFALSE )
{
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
if( uxCurrentPriority < uxTopReadyPriority )
{
/* We can't schedule any tasks, other than idle, that have a
* priority lower than the priority of a task currently running
* on another core. */
uxCurrentPriority = tskIDLE_PRIORITY;
}
}
#endif
if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE )
{
const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] );
const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList );
ListItem_t * pxIterator;
/* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority
* must not be decremented any further. */
xDecrementTopPriority = pdFALSE;
for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) )
{
TCB_t * pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator );
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
/* When falling back to the idle priority because only one priority
* level is allowed to run at a time, we should ONLY schedule the true
* idle tasks, not user tasks at the idle priority. */
if( uxCurrentPriority < uxTopReadyPriority )
{
if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0 )
{
continue;
}
}
}
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
{
#if ( configUSE_CORE_AFFINITY == 1 )
if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
#endif
{
/* If the task is not being executed by any core swap it in. */
pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING;
#if ( configUSE_CORE_AFFINITY == 1 )
pxPreviousTCB = pxCurrentTCBs[ xCoreID ];
#endif
pxTCB->xTaskRunState = xCoreID;
pxCurrentTCBs[ xCoreID ] = pxTCB;
xTaskScheduled = pdTRUE;
}
}
else if( pxTCB == pxCurrentTCBs[ xCoreID ] )
{
configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) );
#if ( configUSE_CORE_AFFINITY == 1 )
if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
#endif
{
/* The task is already running on this core, mark it as scheduled. */
pxTCB->xTaskRunState = xCoreID;
xTaskScheduled = pdTRUE;
}
}
else
{
/* This task is running on the core other than xCoreID. */
mtCOVERAGE_TEST_MARKER();
}
if( xTaskScheduled != pdFALSE )
{
/* A task has been selected to run on this core. */
break;
}
}
}
else
{
if( xDecrementTopPriority != pdFALSE )
{
uxTopReadyPriority--;
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
xPriorityDropped = pdTRUE;
}
#endif
}
}
/* There are configNUMBER_OF_CORES Idle tasks created when scheduler started.
* The scheduler should be able to select a task to run when uxCurrentPriority
* is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow
* tskIDLE_PRIORITY. */
if( uxCurrentPriority > tskIDLE_PRIORITY )
{
uxCurrentPriority--;
}
else
{
/* This function is called when idle task is not created. Break the
* loop to prevent uxCurrentPriority overrun. */
break;
}
}
#if ( configRUN_MULTIPLE_PRIORITIES == 0 )
{
if( xTaskScheduled == pdTRUE )
{
if( xPriorityDropped != pdFALSE )
{
/* There may be several ready tasks that were being prevented from running because there was
* a higher priority task running. Now that the last of the higher priority tasks is no longer
* running, make sure all the other idle tasks yield. */
BaseType_t x;
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ )
{
if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0 )
{
prvYieldCore( x );
}
}
}
}
}
#endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */
#if ( configUSE_CORE_AFFINITY == 1 )
{
if( xTaskScheduled == pdTRUE )
{
if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) )
{
/* A ready task was just evicted from this core. See if it can be
* scheduled on any other core. */
UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask;
BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority;
BaseType_t xLowestPriorityCore = -1;
BaseType_t x;
if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
{
xLowestPriority = xLowestPriority - 1;
}
if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U )
{
/* The ready task that was removed from this core is not excluded from it.
* Only look at the intersection of the cores the removed task is allowed to run
* on with the cores that the new task is excluded from. It is possible that the
* new task was only placed onto this core because it is excluded from another.
* Check to see if the previous task could run on one of those cores. */
uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask );
}
else
{
/* The ready task that was removed from this core is excluded from it. */
}
uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U );
for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- )
{
UBaseType_t uxCore = ( UBaseType_t ) x;
BaseType_t xTaskPriority;
if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U )
{
xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority;
if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
{
xTaskPriority = xTaskPriority - ( BaseType_t ) 1;
}
uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore );
if( ( xTaskPriority < xLowestPriority ) &&
( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) &&
( xYieldPendings[ uxCore ] == pdFALSE ) )
{
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE )
#endif
{
xLowestPriority = xTaskPriority;
xLowestPriorityCore = ( BaseType_t ) uxCore;
}
}
}
}
if( xLowestPriorityCore >= 0 )
{
prvYieldCore( xLowestPriorityCore );
}
}
}
}
#endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */
}
#endif /* ( configNUMBER_OF_CORES > 1 ) */
/*-----------------------------------------------------------*/
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer )
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
return xTaskCreateStaticAffinitySet( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, tskNO_AFFINITY );
}
TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
StackType_t * const puxStackBuffer,
StaticTask_t * const pxTaskBuffer,
UBaseType_t uxCoreAffinityMask )
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
{
TCB_t * pxNewTCB;
TaskHandle_t xReturn;
traceENTER_xTaskCreateStatic( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer );
configASSERT( puxStackBuffer != NULL );
configASSERT( pxTaskBuffer != NULL );
#if ( configASSERT_DEFINED == 1 )
{
/* Sanity check that the size of the structure used to declare a
* variable of type StaticTask_t equals the size of the real task
* structure. */
volatile size_t xSize = sizeof( StaticTask_t );
configASSERT( xSize == sizeof( TCB_t ) );
( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
}
#endif /* configASSERT_DEFINED */
if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
{
/* The memory used for the task's TCB and stack are passed into this
* function - use them. */
pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
{
/* Tasks can be created statically or dynamically, so note this
* task was created statically in case the task is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
}
#endif
prvAddNewTaskToReadyList( pxNewTCB );
}
else
{
xReturn = NULL;
}
traceRETURN_xTaskCreateStatic( xReturn );
return xReturn;
}
#endif /* SUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * pxCreatedTask )
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
return xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, tskNO_AFFINITY, pxCreatedTask );
}
BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
UBaseType_t uxCoreAffinityMask,
TaskHandle_t * pxCreatedTask )
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
{
TCB_t * pxNewTCB;
BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask );
configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
{
/* Allocate space for the TCB. Where the memory comes from depends
* on the implementation of the port malloc function and whether or
* not static allocation is being used. */
pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note this
* task was created statically in case the task is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
pxTaskDefinition->pcName,
( uint32_t ) pxTaskDefinition->usStackDepth,
pxTaskDefinition->pvParameters,
pxTaskDefinition->uxPriority,
pxCreatedTask, pxNewTCB,
pxTaskDefinition->xRegions );
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
}
#endif
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
traceRETURN_xTaskCreateRestrictedStatic( xReturn );
return xReturn;
}
#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/*-----------------------------------------------------------*/
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
TaskHandle_t * pxCreatedTask )
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
return xTaskCreateRestrictedAffinitySet( pxTaskDefinition, tskNO_AFFINITY, pxCreatedTask );
}
BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
UBaseType_t uxCoreAffinityMask,
TaskHandle_t * pxCreatedTask )
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
{
TCB_t * pxNewTCB;
BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask );
configASSERT( pxTaskDefinition->puxStackBuffer );
if( pxTaskDefinition->puxStackBuffer != NULL )
{
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
{
/* Tasks can be created statically or dynamically, so note
* this task had a statically allocated stack in case it is
* later deleted. The TCB was allocated dynamically. */
pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
pxTaskDefinition->pcName,
( uint32_t ) pxTaskDefinition->usStackDepth,
pxTaskDefinition->pvParameters,
pxTaskDefinition->uxPriority,
pxCreatedTask, pxNewTCB,
pxTaskDefinition->xRegions );
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
}
#endif
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
}
traceRETURN_xTaskCreateRestricted( xReturn );
return xReturn;
}
#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/
#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const configSTACK_DEPTH_TYPE usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask )
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
return xTaskCreateAffinitySet( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, tskNO_AFFINITY, pxCreatedTask );
}
BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const configSTACK_DEPTH_TYPE usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
UBaseType_t uxCoreAffinityMask,
TaskHandle_t * const pxCreatedTask )
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
{
TCB_t * pxNewTCB;
BaseType_t xReturn;
traceENTER_xTaskCreate( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask );
/* If the stack grows down then allocate the stack then the TCB so the stack
* does not grow into the TCB. Likewise if the stack grows up then allocate
* the TCB then the stack. */
#if ( portSTACK_GROWTH > 0 )
{
/* Allocate space for the TCB. Where the memory comes from depends on
* the implementation of the port malloc function and whether or not static
* allocation is being used. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Allocate space for the stack used by the task being created.
* The base of the stack memory stored in the TCB so the task can
* be deleted later if required. */
pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
if( pxNewTCB->pxStack == NULL )
{
/* Could not allocate the stack. Delete the allocated TCB. */
vPortFree( pxNewTCB );
pxNewTCB = NULL;
}
}
}
#else /* portSTACK_GROWTH */
{
StackType_t * pxStack;
/* Allocate space for the stack used by the task being created. */
pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
if( pxStack != NULL )
{
/* Allocate space for the TCB. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
if( pxNewTCB != NULL )
{
( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) );
/* Store the stack location in the TCB. */
pxNewTCB->pxStack = pxStack;
}
else
{
/* The stack cannot be used as the TCB was not created. Free
* it again. */
vPortFreeStack( pxStack );
}
}
else
{
pxNewTCB = NULL;
}
}
#endif /* portSTACK_GROWTH */
if( pxNewTCB != NULL )
{
#if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
{
/* Tasks can be created statically or dynamically, so note this
* task was created dynamically in case it is later deleted. */
pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
}
#endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
/* Set the task's affinity before scheduling it. */
pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
}
#endif
prvAddNewTaskToReadyList( pxNewTCB );
xReturn = pdPASS;
}
else
{
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
}
traceRETURN_xTaskCreate( xReturn );
return xReturn;
}
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
/*-----------------------------------------------------------*/
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
const uint32_t ulStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask,
TCB_t * pxNewTCB,
const MemoryRegion_t * const xRegions )
{
StackType_t * pxTopOfStack;
UBaseType_t x;
#if ( portUSING_MPU_WRAPPERS == 1 )
/* Should the task be created in privileged mode? */
BaseType_t xRunPrivileged;
if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
{
xRunPrivileged = pdTRUE;
}
else
{
xRunPrivileged = pdFALSE;
}
uxPriority &= ~portPRIVILEGE_BIT;
#endif /* portUSING_MPU_WRAPPERS == 1 */
/* Avoid dependency on memset() if it is not required. */
#if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
{
/* Fill the stack with a known value to assist debugging. */
( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
}
#endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
/* Calculate the top of stack address. This depends on whether the stack
* grows from high memory to low (as per the 80x86) or vice versa.
* portSTACK_GROWTH is used to make the result positive or negative as required
* by the port. */
#if ( portSTACK_GROWTH < 0 )
{
pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
/* Check the alignment of the calculated top of stack is correct. */
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
#if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
{
/* Also record the stack's high address, which may assist
* debugging. */
pxNewTCB->pxEndOfStack = pxTopOfStack;
}
#endif /* configRECORD_STACK_HIGH_ADDRESS */
}
#else /* portSTACK_GROWTH */
{
pxTopOfStack = pxNewTCB->pxStack;
pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
/* Check the alignment of the calculated top of stack is correct. */
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
/* The other extreme of the stack space is required if stack checking is
* performed. */
pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
}
#endif /* portSTACK_GROWTH */
/* Store the task name in the TCB. */
if( pcName != NULL )
{
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
{
pxNewTCB->pcTaskName[ x ] = pcName[ x ];
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
* configMAX_TASK_NAME_LEN characters just in case the memory after the
* string is not accessible (extremely unlikely). */
if( pcName[ x ] == ( char ) 0x00 )
{
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Ensure the name string is terminated in the case that the string length
* was greater or equal to configMAX_TASK_NAME_LEN. */
pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* This is used as an array index so must ensure it's not too large. */
configASSERT( uxPriority < configMAX_PRIORITIES );
if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
pxNewTCB->uxPriority = uxPriority;
#if ( configUSE_MUTEXES == 1 )
{
pxNewTCB->uxBasePriority = uxPriority;
}
#endif /* configUSE_MUTEXES */
vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
/* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
* back to the containing TCB from a generic item in a list. */
listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
/* Event lists are always in priority order. */
listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
#if ( portUSING_MPU_WRAPPERS == 1 )
{
vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
}
#else
{
/* Avoid compiler warning about unreferenced parameter. */
( void ) xRegions;
}
#endif
#if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 )
{
/* Allocate and initialize memory for the task's TLS Block. */
configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack );
}
#endif
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
{
pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
}
#endif
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
{
pxNewTCB->xPreemptionDisable = 0;
}
#endif
/* Initialize the TCB stack to look as if the task was already running,
* but had been interrupted by the scheduler. The return address is set
* to the start of the task function. Once the stack has been initialised
* the top of stack variable is updated. */
#if ( portUSING_MPU_WRAPPERS == 1 )
{
/* If the port has capability to detect stack overflow,
* pass the stack end address to the stack initialization
* function as well. */
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
{
#if ( portSTACK_GROWTH < 0 )
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
}
#else /* portSTACK_GROWTH */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
}
#endif /* portSTACK_GROWTH */
}
#else /* portHAS_STACK_OVERFLOW_CHECKING */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) );
}
#endif /* portHAS_STACK_OVERFLOW_CHECKING */
}
#else /* portUSING_MPU_WRAPPERS */
{
/* If the port has capability to detect stack overflow,
* pass the stack end address to the stack initialization
* function as well. */
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
{
#if ( portSTACK_GROWTH < 0 )
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
}
#else /* portSTACK_GROWTH */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
}
#endif /* portSTACK_GROWTH */
}
#else /* portHAS_STACK_OVERFLOW_CHECKING */
{
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
}
#endif /* portHAS_STACK_OVERFLOW_CHECKING */
}
#endif /* portUSING_MPU_WRAPPERS */
/* Initialize task state and task attributes. */
#if ( configNUMBER_OF_CORES > 1 )
{
pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING;
/* Is this an idle task? */
if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvMinimalIdleTask ) )
{
pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE;
}
}
#endif /* #if ( configNUMBER_OF_CORES > 1 ) */
if( pxCreatedTask != NULL )
{
/* Pass the handle out in an anonymous way. The handle can be used to
* change the created task's priority, delete the created task, etc.*/
*pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/*-----------------------------------------------------------*/
#if ( configNUMBER_OF_CORES == 1 )
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
{
/* Ensure interrupts don't access the task lists while the lists are being
* updated. */
taskENTER_CRITICAL();
{
uxCurrentNumberOfTasks++;
if( pxCurrentTCB == NULL )
{
/* There are no other tasks, or all the other tasks are in
* the suspended state - make this the current task. */
pxCurrentTCB = pxNewTCB;
if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
{
/* This is the first task to be created so do the preliminary
* initialisation required. We will not recover if this call
* fails, but we will report the failure. */
prvInitialiseTaskLists();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* If the scheduler is not already running, make this task the
* current task if it is the highest priority task to be created
* so far. */
if( xSchedulerRunning == pdFALSE )
{
if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
{
pxCurrentTCB = pxNewTCB;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
uxTaskNumber++;
#if ( configUSE_TRACE_FACILITY == 1 )
{
/* Add a counter into the TCB for tracing only. */
pxNewTCB->uxTCBNumber = uxTaskNumber;
}
#endif /* configUSE_TRACE_FACILITY */
traceTASK_CREATE( pxNewTCB );
prvAddTaskToReadyList( pxNewTCB );
portSETUP_TCB( pxNewTCB );
}
taskEXIT_CRITICAL();
if( xSchedulerRunning != pdFALSE )
{
/* If the created task is of a higher priority than the current task
* then it should run now. */
taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
{
/* Ensure interrupts don't access the task lists while the lists are being
* updated. */
taskENTER_CRITICAL();
{
uxCurrentNumberOfTasks++;
if( xSchedulerRunning == pdFALSE )
{
if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
{
/* This is the first task to be created so do the preliminary
* initialisation required. We will not recover if this call
* fails, but we will report the failure. */
prvInitialiseTaskLists();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( ( pxNewTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U )
{
BaseType_t xCoreID;
/* Check if a core is free. */
for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
{
if( pxCurrentTCBs[ xCoreID ] == NULL )
{
pxNewTCB->xTaskRunState = xCoreID;
pxCurrentTCBs[ xCoreID ] = pxNewTCB;
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
uxTaskNumber++;
#if ( configUSE_TRACE_FACILITY == 1 )
{
/* Add a counter into the TCB for tracing only. */
pxNewTCB->uxTCBNumber = uxTaskNumber;
}
#endif /* configUSE_TRACE_FACILITY */
traceTASK_CREATE( pxNewTCB );
prvAddTaskToReadyList( pxNewTCB );
portSETUP_TCB( pxNewTCB );
if( xSchedulerRunning != pdFALSE )
{
/* If the created task is of a higher priority than another
* currently running task and preemption is on then it should
* run now. */
taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
/*-----------------------------------------------------------*/
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue,
size_t n )
{
size_t uxCharsWritten;
if( iSnprintfReturnValue < 0 )
{
/* Encoding error - Return 0 to indicate that nothing
* was written to the buffer. */
uxCharsWritten = 0;
}
else if( iSnprintfReturnValue >= ( int ) n )
{
/* This is the case when the supplied buffer is not
* large to hold the generated string. Return the
* number of characters actually written without
* counting the terminating NULL character. */
uxCharsWritten = n - 1;
}
else
{
/* Complete string was written to the buffer. */
uxCharsWritten = ( size_t ) iSnprintfReturnValue;
}
return uxCharsWritten;
}
#endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelete == 1 )
void vTaskDelete( TaskHandle_t xTaskToDelete )
{
TCB_t * pxTCB;
traceENTER_vTaskDelete( xTaskToDelete );
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the calling task that is
* being deleted. */
pxTCB = prvGetTCBFromHandle( xTaskToDelete );
/* Remove task from the ready/delayed list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Is the task waiting on an event also? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Increment the uxTaskNumber also so kernel aware debuggers can
* detect that the task lists need re-generating. This is done before
* portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
* not return. */
uxTaskNumber++;
/* If the task is running (or yielding), we must add it to the
* termination list so that an idle task can delete it when it is
* no longer running. */
if( taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) != pdFALSE )
{
/* A running task or a task which is scheduled to yield is being
* deleted. This cannot complete when the task is still running
* on a core, as a context switch to another task is required.
* Place the task in the termination list. The idle task will check
* the termination list and free up any memory allocated by the
* scheduler for the TCB and stack of the deleted task. */
vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
/* Increment the ucTasksDeleted variable so the idle task knows
* there is a task that has been deleted and that it should therefore
* check the xTasksWaitingTermination list. */
++uxDeletedTasksWaitingCleanUp;
/* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
* portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
traceTASK_DELETE( pxTCB );
/* The pre-delete hook is primarily for the Windows simulator,
* in which Windows specific clean up operations are performed,
* after which it is not possible to yield away from this task -
* hence xYieldPending is used to latch that a context switch is
* required. */
#if ( configNUMBER_OF_CORES == 1 )
portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) );
#else
portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) );
#endif
}
else
{
--uxCurrentNumberOfTasks;
traceTASK_DELETE( pxTCB );
/* Reset the next expected unblock time in case it referred to
* the task that has just been deleted. */
prvResetNextTaskUnblockTime();
}
}
#if ( configNUMBER_OF_CORES == 1 )
{
taskEXIT_CRITICAL();
/* If the task is not deleting itself, call prvDeleteTCB from outside of
* critical section. If a task deletes itself, prvDeleteTCB is called
* from prvCheckTasksWaitingTermination which is called from Idle task. */
if( pxTCB != pxCurrentTCB )
{
prvDeleteTCB( pxTCB );
}
/* Force a reschedule if it is the currently running task that has just
* been deleted. */
if( xSchedulerRunning != pdFALSE )
{
if( pxTCB == pxCurrentTCB )
{
configASSERT( uxSchedulerSuspended == 0 );
portYIELD_WITHIN_API();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
/* If a running task is not deleting itself, call prvDeleteTCB. If a running
* task deletes itself, prvDeleteTCB is called from prvCheckTasksWaitingTermination
* which is called from Idle task. */
if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
{
prvDeleteTCB( pxTCB );
}
/* Force a reschedule if the task that has just been deleted was running. */
if( ( xSchedulerRunning != pdFALSE ) && ( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) )
{
if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() )
{
configASSERT( uxSchedulerSuspended == 0 );
vTaskYieldWithinAPI();
}
else
{
prvYieldCore( pxTCB->xTaskRunState );
}
}
taskEXIT_CRITICAL();
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
traceRETURN_vTaskDelete();
}
#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/
#if ( INCLUDE_xTaskDelayUntil == 1 )
BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
const TickType_t xTimeIncrement )
{
TickType_t xTimeToWake;
BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement );
configASSERT( pxPreviousWakeTime );
configASSERT( ( xTimeIncrement > 0U ) );
vTaskSuspendAll();
{
/* Minor optimisation. The tick count cannot change in this
* block. */
const TickType_t xConstTickCount = xTickCount;
configASSERT( uxSchedulerSuspended == 1U );
/* Generate the tick time at which the task wants to wake. */
xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
if( xConstTickCount < *pxPreviousWakeTime )
{
/* The tick count has overflowed since this function was
* lasted called. In this case the only time we should ever
* actually delay is if the wake time has also overflowed,
* and the wake time is greater than the tick time. When this
* is the case it is as if neither time had overflowed. */
if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
{
xShouldDelay = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* The tick time has not overflowed. In this case we will
* delay if either the wake time has overflowed, and/or the
* tick time is less than the wake time. */
if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
{
xShouldDelay = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Update the wake time ready for the next call. */
*pxPreviousWakeTime = xTimeToWake;
if( xShouldDelay != pdFALSE )
{
traceTASK_DELAY_UNTIL( xTimeToWake );
/* prvAddCurrentTaskToDelayedList() needs the block time, not
* the time to wake, so subtract the current tick count. */
prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
xAlreadyYielded = xTaskResumeAll();
/* Force a reschedule if xTaskResumeAll has not already done so, we may
* have put ourselves to sleep. */
if( xAlreadyYielded == pdFALSE )
{
#if ( configNUMBER_OF_CORES == 1 )
portYIELD_WITHIN_API();
#else
vTaskYieldWithinAPI();
#endif
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_xTaskDelayUntil( xShouldDelay );
return xShouldDelay;
}
#endif /* INCLUDE_xTaskDelayUntil */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskDelay == 1 )
void vTaskDelay( const TickType_t xTicksToDelay )
{
BaseType_t xAlreadyYielded = pdFALSE;
traceENTER_vTaskDelay( xTicksToDelay );
/* A delay time of zero just forces a reschedule. */
if( xTicksToDelay > ( TickType_t ) 0U )
{
vTaskSuspendAll();
{
configASSERT( uxSchedulerSuspended == 1U );
traceTASK_DELAY();
/* A task that is removed from the event list while the
* scheduler is suspended will not get placed in the ready
* list or removed from the blocked list until the scheduler
* is resumed.
*
* This task cannot be in an event list as it is the currently
* executing task. */
prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
}
xAlreadyYielded = xTaskResumeAll();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Force a reschedule if xTaskResumeAll has not already done so, we may
* have put ourselves to sleep. */
if( xAlreadyYielded == pdFALSE )
{
#if ( configNUMBER_OF_CORES == 1 )
portYIELD_WITHIN_API();
#else
vTaskYieldWithinAPI();
#endif
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskDelay();
}
#endif /* INCLUDE_vTaskDelay */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
eTaskState eTaskGetState( TaskHandle_t xTask )
{
eTaskState eReturn;
List_t const * pxStateList;
List_t const * pxEventList;
List_t const * pxDelayedList;
List_t const * pxOverflowedDelayedList;
const TCB_t * const pxTCB = xTask;
traceENTER_eTaskGetState( xTask );
configASSERT( pxTCB );
#if ( configNUMBER_OF_CORES == 1 )
if( pxTCB == pxCurrentTCB )
{
/* The task calling this function is querying its own state. */
eReturn = eRunning;
}
else
#endif
{
taskENTER_CRITICAL();
{
pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) );
pxDelayedList = pxDelayedTaskList;
pxOverflowedDelayedList = pxOverflowDelayedTaskList;
}
taskEXIT_CRITICAL();
if( pxEventList == &xPendingReadyList )
{
/* The task has been placed on the pending ready list, so its
* state is eReady regardless of what list the task's state list
* item is currently placed on. */
eReturn = eReady;
}
else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
{
/* The task being queried is referenced from one of the Blocked
* lists. */
eReturn = eBlocked;
}
#if ( INCLUDE_vTaskSuspend == 1 )
else if( pxStateList == &xSuspendedTaskList )
{
/* The task being queried is referenced from the suspended
* list. Is it genuinely suspended or is it blocked
* indefinitely? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
{
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
/* The task does not appear on the event list item of
* and of the RTOS objects, but could still be in the
* blocked state if it is waiting on its notification
* rather than waiting on an object. If not, is
* suspended. */
eReturn = eSuspended;
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
eReturn = eBlocked;
break;
}
}
}
#else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
{
eReturn = eSuspended;
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
}
else
{
eReturn = eBlocked;
}
}
#endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
#if ( INCLUDE_vTaskDelete == 1 )
else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
{
/* The task being queried is referenced from the deleted
* tasks list, or it is not referenced from any lists at
* all. */
eReturn = eDeleted;
}
#endif
else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
{
#if ( configNUMBER_OF_CORES == 1 )
{
/* If the task is not in any other state, it must be in the
* Ready (including pending ready) state. */
eReturn = eReady;
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
/* Is it actively running on a core? */
eReturn = eRunning;
}
else
{
/* If the task is not in any other state, it must be in the
* Ready (including pending ready) state. */
eReturn = eReady;
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
}
traceRETURN_eTaskGetState( eReturn );
return eReturn;
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
#endif /* INCLUDE_eTaskGetState */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskPriorityGet == 1 )
UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn;
traceENTER_uxTaskPriorityGet( xTask );
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the priority of the task
* that called uxTaskPriorityGet() that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxPriority;
}
taskEXIT_CRITICAL();
traceRETURN_uxTaskPriorityGet( uxReturn );
return uxReturn;
}
#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/
#if ( INCLUDE_uxTaskPriorityGet == 1 )
UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
{
TCB_t const * pxTCB;
UBaseType_t uxReturn;
UBaseType_t uxSavedInterruptStatus;
traceENTER_uxTaskPriorityGetFromISR( xTask );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
{
/* If null is passed in here then it is the priority of the calling
* task that is being queried. */
pxTCB = prvGetTCBFromHandle( xTask );
uxReturn = pxTCB->uxPriority;
}
taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
traceRETURN_uxTaskPriorityGetFromISR( uxReturn );
return uxReturn;
}
#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskPrioritySet == 1 )
void vTaskPrioritySet( TaskHandle_t xTask,
UBaseType_t uxNewPriority )
{
TCB_t * pxTCB;
UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
BaseType_t xYieldRequired = pdFALSE;
traceENTER_vTaskPrioritySet( xTask, uxNewPriority );
#if ( configNUMBER_OF_CORES > 1 )
BaseType_t xYieldForTask = pdFALSE;
#endif
configASSERT( uxNewPriority < configMAX_PRIORITIES );
/* Ensure the new priority is valid. */
if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
{
uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the priority of the calling
* task that is being changed. */
pxTCB = prvGetTCBFromHandle( xTask );
traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
#if ( configUSE_MUTEXES == 1 )
{
uxCurrentBasePriority = pxTCB->uxBasePriority;
}
#else
{
uxCurrentBasePriority = pxTCB->uxPriority;
}
#endif
if( uxCurrentBasePriority != uxNewPriority )
{
/* The priority change may have readied a task of higher
* priority than a running task. */
if( uxNewPriority > uxCurrentBasePriority )
{
#if ( configNUMBER_OF_CORES == 1 )
{
if( pxTCB != pxCurrentTCB )
{
/* The priority of a task other than the currently
* running task is being raised. Is the priority being
* raised above that of the running task? */
if( uxNewPriority > pxCurrentTCB->uxPriority )
{
xYieldRequired = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* The priority of the running task is being raised,
* but the running task must already be the highest
* priority task able to run so no yield is required. */
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
/* The priority of a task is being raised so
* perform a yield for this task later. */
xYieldForTask = pdTRUE;
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
}
else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
/* Setting the priority of a running task down means
* there may now be another task of higher priority that
* is ready to execute. */
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
if( pxTCB->xPreemptionDisable == pdFALSE )
#endif
{
xYieldRequired = pdTRUE;
}
}
else
{
/* Setting the priority of any other task down does not
* require a yield as the running task must be above the
* new priority of the task being modified. */
}
/* Remember the ready list the task might be referenced from
* before its uxPriority member is changed so the
* taskRESET_READY_PRIORITY() macro can function correctly. */
uxPriorityUsedOnEntry = pxTCB->uxPriority;
#if ( configUSE_MUTEXES == 1 )
{
/* Only change the priority being used if the task is not
* currently using an inherited priority or the new priority
* is bigger than the inherited priority. */
if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) )
{
pxTCB->uxPriority = uxNewPriority;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The base priority gets set whatever. */
pxTCB->uxBasePriority = uxNewPriority;
}
#else /* if ( configUSE_MUTEXES == 1 ) */
{
pxTCB->uxPriority = uxNewPriority;
}
#endif /* if ( configUSE_MUTEXES == 1 ) */
/* Only reset the event list item value if the value is not
* being used for anything else. */
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
{
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* If the task is in the blocked or suspended list we need do
* nothing more than change its priority variable. However, if
* the task is in a ready list it needs to be removed and placed
* in the list appropriate to its new priority. */
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* The task is currently in its ready list - remove before
* adding it to its new ready list. As we are in a critical
* section we can do this even if the scheduler is suspended. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
/* It is known that the task is in its ready list so
* there is no need to check again and the port level
* reset macro can be called directly. */
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
prvAddTaskToReadyList( pxTCB );
}
else
{
#if ( configNUMBER_OF_CORES == 1 )
{
mtCOVERAGE_TEST_MARKER();
}
#else
{
/* It's possible that xYieldForTask was already set to pdTRUE because
* its priority is being raised. However, since it is not in a ready list
* we don't actually need to yield for it. */
xYieldForTask = pdFALSE;
}
#endif
}
if( xYieldRequired != pdFALSE )
{
/* The running task priority is set down. Request the task to yield. */
taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB );
}
else
{
#if ( configNUMBER_OF_CORES > 1 )
if( xYieldForTask != pdFALSE )
{
/* The priority of the task is being raised. If a running
* task has priority lower than this task, it should yield
* for this task. */
taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
}
else
#endif /* if ( configNUMBER_OF_CORES > 1 ) */
{
mtCOVERAGE_TEST_MARKER();
}
}
/* Remove compiler warning about unused variables when the port
* optimised task selection is not being used. */
( void ) uxPriorityUsedOnEntry;
}
}
taskEXIT_CRITICAL();
traceRETURN_vTaskPrioritySet();
}
#endif /* INCLUDE_vTaskPrioritySet */
/*-----------------------------------------------------------*/
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
void vTaskCoreAffinitySet( const TaskHandle_t xTask,
UBaseType_t uxCoreAffinityMask )
{
TCB_t * pxTCB;
BaseType_t xCoreID;
UBaseType_t uxPrevCoreAffinityMask;
#if ( configUSE_PREEMPTION == 1 )
UBaseType_t uxPrevNotAllowedCores;
#endif
traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask );
taskENTER_CRITICAL();
{
pxTCB = prvGetTCBFromHandle( xTask );
uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask;
pxTCB->uxCoreAffinityMask = uxCoreAffinityMask;
if( xSchedulerRunning != pdFALSE )
{
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
/* If the task can no longer run on the core it was running,
* request the core to yield. */
if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U )
{
prvYieldCore( xCoreID );
}
}
else
{
#if ( configUSE_PREEMPTION == 1 )
{
/* Calculate the cores on which this task was not allowed to
* run previously. */
uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U );
/* Does the new core mask enables this task to run on any of the
* previously not allowed cores? If yes, check if this task can be
* scheduled on any of those cores. */
if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U )
{
prvYieldForTask( pxTCB );
}
}
#else /* #if( configUSE_PREEMPTION == 1 ) */
{
mtCOVERAGE_TEST_MARKER();
}
#endif /* #if( configUSE_PREEMPTION == 1 ) */
}
}
}
taskEXIT_CRITICAL();
traceRETURN_vTaskCoreAffinitySet();
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask )
{
const TCB_t * pxTCB;
UBaseType_t uxCoreAffinityMask;
traceENTER_vTaskCoreAffinityGet( xTask );
taskENTER_CRITICAL();
{
pxTCB = prvGetTCBFromHandle( xTask );
uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
}
taskEXIT_CRITICAL();
traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask );
return uxCoreAffinityMask;
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
void vTaskPreemptionDisable( const TaskHandle_t xTask )
{
TCB_t * pxTCB;
traceENTER_vTaskPreemptionDisable( xTask );
taskENTER_CRITICAL();
{
pxTCB = prvGetTCBFromHandle( xTask );
pxTCB->xPreemptionDisable = pdTRUE;
}
taskEXIT_CRITICAL();
traceRETURN_vTaskPreemptionDisable();
}
#endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
/*-----------------------------------------------------------*/
#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
void vTaskPreemptionEnable( const TaskHandle_t xTask )
{
TCB_t * pxTCB;
BaseType_t xCoreID;
traceENTER_vTaskPreemptionEnable( xTask );
taskENTER_CRITICAL();
{
pxTCB = prvGetTCBFromHandle( xTask );
pxTCB->xPreemptionDisable = pdFALSE;
if( xSchedulerRunning != pdFALSE )
{
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
prvYieldCore( xCoreID );
}
}
}
taskEXIT_CRITICAL();
traceRETURN_vTaskPreemptionEnable();
}
#endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
void vTaskSuspend( TaskHandle_t xTaskToSuspend )
{
TCB_t * pxTCB;
#if ( configNUMBER_OF_CORES > 1 )
BaseType_t xTaskRunningOnCore;
#endif
traceENTER_vTaskSuspend( xTaskToSuspend );
taskENTER_CRITICAL();
{
/* If null is passed in here then it is the running task that is
* being suspended. */
pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
traceTASK_SUSPEND( pxTCB );
#if ( configNUMBER_OF_CORES > 1 )
xTaskRunningOnCore = pxTCB->xTaskRunState;
#endif
/* Remove task from the ready/delayed list and place in the
* suspended list. */
if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
{
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Is the task waiting on an event also? */
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
{
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
{
BaseType_t x;
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
{
if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
{
/* The task was blocked to wait for a notification, but is
* now suspended, so no notification was received. */
pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
}
}
}
#endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
}
#if ( configNUMBER_OF_CORES == 1 )
{
taskEXIT_CRITICAL();
if( xSchedulerRunning != pdFALSE )
{
/* Reset the next expected unblock time in case it referred to the
* task that is now in the Suspended state. */
taskENTER_CRITICAL();
{
prvResetNextTaskUnblockTime();
}
taskEXIT_CRITICAL();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( pxTCB == pxCurrentTCB )
{
if( xSchedulerRunning != pdFALSE )
{
/* The current task has just been suspended. */
configASSERT( uxSchedulerSuspended == 0 );
portYIELD_WITHIN_API();
}
else
{
/* The scheduler is not running, but the task that was pointed
* to by pxCurrentTCB has just been suspended and pxCurrentTCB
* must be adjusted to point to a different task. */
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
{
/* No other tasks are ready, so set pxCurrentTCB back to
* NULL so when the next task is created pxCurrentTCB will
* be set to point to it no matter what its relative priority
* is. */
pxCurrentTCB = NULL;
}
else
{
vTaskSwitchContext();
}
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
if( xSchedulerRunning != pdFALSE )
{
/* Reset the next expected unblock time in case it referred to the
* task that is now in the Suspended state. */
prvResetNextTaskUnblockTime();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE )
{
if( xSchedulerRunning != pdFALSE )
{
if( xTaskRunningOnCore == ( BaseType_t ) portGET_CORE_ID() )
{
/* The current task has just been suspended. */
configASSERT( uxSchedulerSuspended == 0 );
vTaskYieldWithinAPI();
}
else
{
prvYieldCore( xTaskRunningOnCore );
}
}
else
{
/* This code path is not possible because only Idle tasks are
* assigned a core before the scheduler is started ( i.e.
* taskTASK_IS_RUNNING is only true for idle tasks before
* the scheduler is started ) and idle tasks cannot be
* suspended. */
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
taskEXIT_CRITICAL();
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
traceRETURN_vTaskSuspend();
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
{
BaseType_t xReturn = pdFALSE;
const TCB_t * const pxTCB = xTask;
/* Accesses xPendingReadyList so must be called from a critical
* section. */
/* It does not make sense to check if the calling task is suspended. */
configASSERT( xTask );
/* Is the task being resumed actually in the suspended list? */
if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
{
/* Has the task already been resumed from within an ISR? */
if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
{
/* Is it in the suspended list because it is in the Suspended
* state, or because is is blocked with no timeout? */
if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
{
xReturn = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
return xReturn;
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( INCLUDE_vTaskSuspend == 1 )
void vTaskResume( TaskHandle_t xTaskToResume )
{
TCB_t * const pxTCB = xTaskToResume;
traceENTER_vTaskResume( xTaskToResume );
/* It does not make sense to resume the calling task. */
configASSERT( xTaskToResume );
#if ( configNUMBER_OF_CORES == 1 )
/* The parameter cannot be NULL as it is impossible to resume the
* currently executing task. */
if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )
#else
/* The parameter cannot be NULL as it is impossible to resume the
* currently executing task. It is also impossible to resume a task
* that is actively running on another core but it is not safe
* to check their run state here. Therefore, we get into a critical
* section and check if the task is actually suspended or not. */
if( pxTCB != NULL )
#endif
{
taskENTER_CRITICAL();
{
if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
{
traceTASK_RESUME( pxTCB );
/* The ready list can be accessed even if the scheduler is
* suspended because this is inside a critical section. */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
/* This yield may not cause the task just resumed to run,
* but will leave the lists in the correct state for the
* next yield. */
taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceRETURN_vTaskResume();
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
{
BaseType_t xYieldRequired = pdFALSE;
TCB_t * const pxTCB = xTaskToResume;
UBaseType_t uxSavedInterruptStatus;
traceENTER_xTaskResumeFromISR( xTaskToResume );
configASSERT( xTaskToResume );
/* RTOS ports that support interrupt nesting have the concept of a
* maximum system call (or maximum API call) interrupt priority.
* Interrupts that are above the maximum system call priority are keep
* permanently enabled, even when the RTOS kernel is in a critical section,
* but cannot make any calls to FreeRTOS API functions. If configASSERT()
* is defined in FreeRTOSConfig.h then
* portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has
* been assigned a priority above the configured maximum system call
* priority. Only FreeRTOS functions that end in FromISR can be called
* from interrupts that have been assigned a priority at or (logically)
* below the maximum system call interrupt priority. FreeRTOS maintains a
* separate interrupt safe API to ensure interrupt entry is as fast and as
* simple as possible. More information (albeit Cortex-M specific) is
* provided on the following link:
* https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();
{
if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
{
traceTASK_RESUME_FROM_ISR( pxTCB );
/* Check the ready lists can be accessed. */
if( uxSchedulerSuspended == ( UBaseType_t ) 0U )
{
#if ( configNUMBER_OF_CORES == 1 )
{
/* Ready lists can be accessed so move the task from the
* suspended list to the ready list directly. */
if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
{
xYieldRequired = pdTRUE;
/* Mark that a yield is pending in case the user is not
* using the return value to initiate a context switch
* from the ISR using portYIELD_FROM_ISR. */
xYieldPendings[ 0 ] = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* #if ( configNUMBER_OF_CORES == 1 ) */
( void ) uxListRemove( &( pxTCB->xStateListItem ) );
prvAddTaskToReadyList( pxTCB );
}
else
{
/* The delayed or ready lists cannot be accessed so the task
* is held in the pending ready list until the scheduler is
* unsuspended. */
vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
}
#if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) )
{
prvYieldForTask( pxTCB );
if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
{
xYieldRequired = pdTRUE;
}
}
#endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
traceRETURN_xTaskResumeFromISR( xYieldRequired );
return xYieldRequired;
}
#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
/*-----------------------------------------------------------*/
static BaseType_t prvCreateIdleTasks( void )
{
BaseType_t xReturn = pdPASS;
#if ( configNUMBER_OF_CORES == 1 )
{
/* Add the idle task at the lowest priority. */
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
StaticTask_t * pxIdleTaskTCBBuffer = NULL;
StackType_t * pxIdleTaskStackBuffer = NULL;
uint32_t ulIdleTaskStackSize;
/* The Idle task is created using user provided RAM - obtain the
* address of the RAM then create the idle task. */
vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
xIdleTaskHandles[ 0 ] = xTaskCreateStatic( prvIdleTask,
configIDLE_TASK_NAME,
ulIdleTaskStackSize,
( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
pxIdleTaskStackBuffer,
pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
if( xIdleTaskHandles[ 0 ] != NULL )
{
xReturn = pdPASS;
}
else
{
xReturn = pdFAIL;
}
}
#else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
{
/* The Idle task is being created using dynamically allocated RAM. */
xReturn = xTaskCreate( prvIdleTask,
configIDLE_TASK_NAME,
configMINIMAL_STACK_SIZE,
( void * ) NULL,
portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
&xIdleTaskHandles[ 0 ] ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
}
#else /* #if ( configNUMBER_OF_CORES == 1 ) */
{
BaseType_t xCoreID;
char cIdleName[ configMAX_TASK_NAME_LEN ];
/* Add each idle task at the lowest priority. */
for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ )
{
BaseType_t x;
if( xReturn == pdFAIL )
{
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configMAX_TASK_NAME_LEN; x++ )
{
cIdleName[ x ] = configIDLE_TASK_NAME[ x ];
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
* configMAX_TASK_NAME_LEN characters just in case the memory after the
* string is not accessible (extremely unlikely). */
if( cIdleName[ x ] == ( char ) 0x00 )
{
break;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}