blob: cdaf457b00102392595f73e0c3fd39cfb667d1a7 [file] [log] [blame]
/*
FreeRTOS V8.2.0rc1 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?". Have you defined configASSERT()? *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
***************************************************************************
* *
* Investing in training allows your team to be as productive as *
* possible as early as possible, lowering your overall development *
* cost, and enabling you to bring a more robust product to market *
* earlier than would otherwise be possible. Richard Barry is both *
* the architect and key author of FreeRTOS, and so also the world's *
* leading authority on what is the world's most popular real time *
* kernel for deeply embedded MCU designs. Obtaining your training *
* from Richard ensures your team will gain directly from his in-depth *
* product knowledge and years of usage experience. Contact Real Time *
* Engineers Ltd to enquire about the FreeRTOS Masterclass, presented *
* by Richard Barry: http://www.FreeRTOS.org/contact
* *
***************************************************************************
***************************************************************************
* *
* You are receiving this top quality software for free. Please play *
* fair and reciprocate by reporting any suspected issues and *
* participating in the community forum: *
* http://www.FreeRTOS.org/support *
* *
* Thank you! *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/******************************************************************************
* NOTE 1: This project provides two demo applications. A simple blinky style
* project, and a more comprehensive test and demo application. The
* mainCREATE_SIMPLE_BLINKY_DEMO_ONLY setting in main.c is used to select
* between the two. See the notes on using mainCREATE_SIMPLE_BLINKY_DEMO_ONLY
* in main.c. This file implements the comprehensive test and demo version.
*
* NOTE 2: This file only contains the source code that is specific to the
* full demo. Generic functions, such FreeRTOS hook functions, and functions
* required to configure the hardware, are defined in main.c.
******************************************************************************
*
* main_full() creates a set of standard demo tasks, some application specific
* tasks, and four timers. It then starts the scheduler. The web documentation
* provides more details of the standard demo application tasks, which provide
* no particular functionality, but do provide a good example of how to use the
* FreeRTOS API.
*
* In addition to the standard demo tasks, the following tasks and timer are
* defined and/or created within this file:
*
* "Reg test" tasks - These fill the registers with known values, then check
* that each register maintains its expected value for the lifetime of the
* task. Each task uses a different set of values. The reg test tasks execute
* with a very low priority, so get preempted very frequently. A register
* containing an unexpected value is indicative of an error in the context
* switching mechanism.
*
* "Interrupt semaphore take" task - This task does nothing but block on a
* semaphore that is 'given' from the tick hook function (which is defined in
* main.c). It toggles the fourth LED each time it receives the semaphore. The
* Semahore is given every 50ms, so LED 4 toggles every 50ms.
*
* "Flash timers" - A software timer callback function is defined that does
* nothing but toggle an LED. Three software timers are created that each
* use the same callback function, but each toggles a different LED at a
* different frequency. The timers control the first three LEDs.
*
* "Check" software timer - The check timer period is initially set to three
* seconds. Its callback function checks that all the standard demo tasks, and
* the register check tasks, are not only still executing, but are executing
* without reporting any errors. If the check timer callback discovers that a
* task has either stalled, or reported an error, then it changes the period of
* the check timer from the initial three seconds, to just 200ms. The callback
* function also toggles the fifth LED each time it is called. This provides a
* visual indication of the system status: If the LED toggles every three
* seconds then no issues have been discovered. If the LED toggles every 200ms,
* then an issue has been discovered with at least one task.
*/
/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
#include "timers.h"
/* Common demo includes. */
#include "blocktim.h"
#include "countsem.h"
#include "recmutex.h"
#include "ParTest.h"
#include "dynamic.h"
#include "QueueOverwrite.h"
#include "QueueSet.h"
/* The period after which the check timer will expire provided no errors have
been reported by any of the standard demo tasks. ms are converted to the
equivalent in ticks using the portTICK_PERIOD_MS constant. */
#define mainCHECK_TIMER_PERIOD_MS ( 3000UL / portTICK_PERIOD_MS )
/* The period at which the check timer will expire if an error has been
reported in one of the standard demo tasks. ms are converted to the equivalent
in ticks using the portTICK_PERIOD_MS constant. */
#define mainERROR_CHECK_TIMER_PERIOD_MS ( 200UL / portTICK_PERIOD_MS )
/* A block time of zero simply means "don't block". */
#define mainDONT_BLOCK ( 0UL )
/* The base toggle rate used by the flash timers. Each toggle rate is a
multiple of this. */
#define mainFLASH_TIMER_BASE_RATE ( 200UL / portTICK_PERIOD_MS )
/* The LED toggle by the check timer. */
#define mainCHECK_LED ( 4 )
/* The LED toggled each time the task implemented by the prvSemaphoreTakeTask()
function takes the semaphore that is given by the tick hook function. */
#define mainSEMAPHORE_LED ( 3 )
/*-----------------------------------------------------------*/
/*
* Register check tasks, as described at the top of this file. The nature of
* these files necessitates that they are written in an assembly.
*/
extern void vRegTest1Task( void *pvParameters );
extern void vRegTest2Task( void *pvParameters );
/*
* The hardware only has a single LED. Simply toggle it.
*/
extern void vMainToggleLED( void );
/*
* The check timer callback function, as described at the top of this file.
*/
static void prvCheckTimerCallback( TimerHandle_t xTimer );
/*
* The flash timer callback function, as described at the top of this file.
* This callback function is assigned to three separate software timers.
*/
static void prvFlashTimerCallback( TimerHandle_t xTimer );
/*
* The task that toggles an LED each time the semaphore 'given' by the tick
* hook function (which is defined in main.c) is 'taken' in the task.
*/
static void prvSemaphoreTakeTask( void *pvParameters );
/*
* Called by main() to create the comprehensive test/demo application if
* mainCREATE_SIMPLE_BLINKY_DEMO_ONLY is not set to 1.
*/
void main_full( void );
/*-----------------------------------------------------------*/
/* The following two variables are used to communicate the status of the
register check tasks to the check software timer. If the variables keep
incrementing, then the register check tasks has not discovered any errors. If
a variable stops incrementing, then an error has been found. */
volatile unsigned long ulRegTest1LoopCounter = 0UL, ulRegTest2LoopCounter = 0UL;
/* The semaphore that is given by the tick hook function (defined in main.c)
and taken by the task implemented by the prvSemaphoreTakeTask() function. The
task toggles LED mainSEMAPHORE_LED each time the semaphore is taken. */
SemaphoreHandle_t xLEDSemaphore = NULL;
/*-----------------------------------------------------------*/
void main_full( void )
{
TimerHandle_t xTimer = NULL;
unsigned long ulTimer;
const unsigned long ulTimersToCreate = 3L;
/* The register test tasks are asm functions that don't use a stack. The
stack allocated just has to be large enough to hold the task context, and
for the additional required for the stack overflow checking to work (if
configured). */
const size_t xRegTestStackSize = 25U;
/* Create the standard demo tasks */
vCreateBlockTimeTasks();
vStartDynamicPriorityTasks();
vStartCountingSemaphoreTasks();
vStartRecursiveMutexTasks();
vStartQueueOverwriteTask( tskIDLE_PRIORITY );
vStartQueueSetTasks();
/* Create that is given from the tick hook function, and the task that
toggles an LED each time the semaphore is given. */
vSemaphoreCreateBinary( xLEDSemaphore );
xTaskCreate( prvSemaphoreTakeTask, /* Function that implements the task. */
"Sem", /* Text name of the task. */
configMINIMAL_STACK_SIZE, /* Stack allocated to the task (in words). */
NULL, /* The task parameter is not used. */
configMAX_PRIORITIES - 2, /* The priority of the task. */
NULL ); /* Don't receive a handle back, it is not needed. */
/* Create the register test tasks as described at the top of this file.
These are naked functions that don't use any stack. A stack still has
to be allocated to hold the task context. */
xTaskCreate( vRegTest1Task, /* Function that implements the task. */
"Reg1", /* Text name of the task. */
xRegTestStackSize, /* Stack allocated to the task. */
NULL, /* The task parameter is not used. */
tskIDLE_PRIORITY, /* The priority to assign to the task. */
NULL ); /* Don't receive a handle back, it is not needed. */
xTaskCreate( vRegTest2Task, /* Function that implements the task. */
"Reg2", /* Text name of the task. */
xRegTestStackSize, /* Stack allocated to the task. */
NULL, /* The task parameter is not used. */
tskIDLE_PRIORITY, /* The priority to assign to the task. */
NULL ); /* Don't receive a handle back, it is not needed. */
/* Create the three flash timers. */
for( ulTimer = 0UL; ulTimer < ulTimersToCreate; ulTimer++ )
{
xTimer = xTimerCreate( "FlashTimer", /* A text name, purely to help debugging. */
( mainFLASH_TIMER_BASE_RATE * ( ulTimer + 1UL ) ), /* The timer period, in this case 3000ms (3s). */
pdTRUE, /* This is an auto-reload timer, so xAutoReload is set to pdTRUE. */
( void * ) ulTimer, /* The ID is used to hold the number of the LED that will be flashed. */
prvFlashTimerCallback /* The callback function that inspects the status of all the other tasks. */
);
if( xTimer != NULL )
{
xTimerStart( xTimer, mainDONT_BLOCK );
}
}
/* Create the software timer that performs the 'check' functionality,
as described at the top of this file. */
xTimer = xTimerCreate( "CheckTimer", /* A text name, purely to help debugging. */
( mainCHECK_TIMER_PERIOD_MS ), /* The timer period, in this case 3000ms (3s). */
pdTRUE, /* This is an auto-reload timer, so xAutoReload is set to pdTRUE. */
( void * ) 0, /* The ID is not used, so can be set to anything. */
prvCheckTimerCallback /* The callback function that inspects the status of all the other tasks. */
);
/* If the software timer was created successfully, start it. It won't
actually start running until the scheduler starts. A block time of
zero is used in this call, although any value could be used as the block
time will be ignored because the scheduler has not started yet. */
if( xTimer != NULL )
{
xTimerStart( xTimer, mainDONT_BLOCK );
}
/* Start the kernel. From here on, only tasks and interrupts will run. */
vTaskStartScheduler();
/* If all is well, the scheduler will now be running, and the following
line will never be reached. If the following line does execute, then there
was insufficient FreeRTOS heap memory available for the idle and/or timer
tasks to be created. See the memory management section on the FreeRTOS web
site, or the FreeRTOS tutorial books for more details. */
for( ;; );
}
/*-----------------------------------------------------------*/
/* See the description at the top of this file. */
static void prvCheckTimerCallback( TimerHandle_t xTimer )
{
static long lChangedTimerPeriodAlready = pdFALSE;
static unsigned long ulLastRegTest1Value = 0, ulLastRegTest2Value = 0;
unsigned long ulErrorFound = pdFALSE;
/* Check all the demo and test tasks to ensure that they are all still
running, and that none have detected an error. */
if( xAreDynamicPriorityTasksStillRunning() != pdPASS )
{
ulErrorFound |= ( 0x01UL << 0UL );
}
if( xAreBlockTimeTestTasksStillRunning() != pdPASS )
{
ulErrorFound |= ( 0x01UL << 1UL );
}
if( xAreCountingSemaphoreTasksStillRunning() != pdPASS )
{
ulErrorFound |= ( 0x01UL << 2UL );
}
if( xAreRecursiveMutexTasksStillRunning() != pdPASS )
{
ulErrorFound |= ( 0x01UL << 3UL );
}
/* Check that the register test 1 task is still running. */
if( ulLastRegTest1Value == ulRegTest1LoopCounter )
{
ulErrorFound |= ( 0x01UL << 4UL );
}
ulLastRegTest1Value = ulRegTest1LoopCounter;
/* Check that the register test 2 task is still running. */
if( ulLastRegTest2Value == ulRegTest2LoopCounter )
{
ulErrorFound |= ( 0x01UL << 5UL );
}
ulLastRegTest2Value = ulRegTest2LoopCounter;
if( xAreQueueSetTasksStillRunning() != pdPASS )
{
ulErrorFound |= ( 0x01UL << 6UL );
}
if( xIsQueueOverwriteTaskStillRunning() != pdPASS )
{
ulErrorFound |= ( 0x01UL << 7UL );
}
/* Toggle the check LED to give an indication of the system status. If
the LED toggles every mainCHECK_TIMER_PERIOD_MS milliseconds then
everything is ok. A faster toggle indicates an error. */
vParTestToggleLED( mainCHECK_LED );
/* Have any errors been latched in ulErrorFound? If so, shorten the
period of the check timer to mainERROR_CHECK_TIMER_PERIOD_MS milliseconds.
This will result in an increase in the rate at which mainCHECK_LED
toggles. */
if( ulErrorFound != pdFALSE )
{
if( lChangedTimerPeriodAlready == pdFALSE )
{
lChangedTimerPeriodAlready = pdTRUE;
/* This call to xTimerChangePeriod() uses a zero block time.
Functions called from inside of a timer callback function must
*never* attempt to block. */
xTimerChangePeriod( xTimer, ( mainERROR_CHECK_TIMER_PERIOD_MS ), mainDONT_BLOCK );
}
}
}
/*-----------------------------------------------------------*/
static void prvSemaphoreTakeTask( void *pvParameters )
{
configASSERT( xLEDSemaphore );
for( ;; )
{
/* Wait to obtain the semaphore - which is given by the tick hook
function every 50ms. */
xSemaphoreTake( xLEDSemaphore, portMAX_DELAY );
vParTestToggleLED( mainSEMAPHORE_LED );
}
}
/*-----------------------------------------------------------*/
static void prvFlashTimerCallback( TimerHandle_t xTimer )
{
unsigned long ulLED;
/* This callback function is assigned to three separate software timers.
Each timer toggles a different LED. Obtain the number of the LED that
this timer is toggling. */
ulLED = ( unsigned long ) pvTimerGetTimerID( xTimer );
/* Toggle the LED. */
vParTestToggleLED( ulLED );
}