blob: 2123a7f5fe23a1f7646d58101772c7b9a798026e [file] [log] [blame]
/*
* Copyright (c) 2015-2019 Cadence Design Systems, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* RTOS-SPECIFIC INFORMATION FOR XTENSA RTOS ASSEMBLER SOURCES
* (FreeRTOS Port)
*
* This header is the primary glue between generic Xtensa RTOS support
* sources and a specific RTOS port for Xtensa. It contains definitions
* and macros for use primarily by Xtensa assembly coded source files.
*
* Macros in this header map callouts from generic Xtensa files to specific
* RTOS functions. It may also be included in C source files.
*
* Xtensa RTOS ports support all RTOS-compatible configurations of the Xtensa
* architecture, using the Xtensa hardware abstraction layer (HAL) to deal
* with configuration specifics.
*
* Should be included by all Xtensa generic and RTOS port-specific sources.
*/
#ifndef XTENSA_RTOS_H
#define XTENSA_RTOS_H
#ifdef __ASSEMBLER__
#include <xtensa/coreasm.h>
#else
#include <xtensa/config/core.h>
#endif
#include <xtensa/corebits.h>
#include <xtensa/config/system.h>
#include <xtensa/simcall.h>
/*
* Include any RTOS specific definitions that are needed by this header.
*/
#include <FreeRTOSConfig.h>
/*
* Convert FreeRTOSConfig definitions to XTENSA definitions.
* However these can still be overridden from the command line.
*/
#ifndef XT_SIMULATOR
#if configXT_SIMULATOR
#define XT_SIMULATOR 1 /* Simulator mode */
#endif
#endif
#ifndef XT_BOARD
#if configXT_BOARD
#define XT_BOARD 1 /* Board mode */
#endif
#endif
#ifndef XT_TIMER_INDEX
#if defined configXT_TIMER_INDEX
#define XT_TIMER_INDEX configXT_TIMER_INDEX /* Index of hardware timer to be used */
#endif
#endif
#ifndef XT_INTEXC_HOOKS
#if configXT_INTEXC_HOOKS
#define XT_INTEXC_HOOKS 1 /* Enables exception hooks */
#endif
#endif
#if ( !XT_SIMULATOR ) && ( !XT_BOARD )
#error Either XT_SIMULATOR or XT_BOARD must be defined.
#endif
/*
* Name of RTOS (for messages).
*/
#define XT_RTOS_NAME FreeRTOS
/*
* Check some Xtensa configuration requirements and report error if not met.
* Error messages can be customize to the RTOS port.
*/
#if !XCHAL_HAVE_XEA2
#error "FreeRTOS/Xtensa requires XEA2 (exception architecture 2)."
#endif
/*******************************************************************************
*
* RTOS CALLOUT MACROS MAPPED TO RTOS PORT-SPECIFIC FUNCTIONS.
*
* Define callout macros used in generic Xtensa code to interact with the RTOS.
* The macros are simply the function names for use in calls from assembler code.
* Some of these functions may call back to generic functions in xtensa_context.h .
*
*******************************************************************************/
/*
* Inform RTOS of entry into an interrupt handler that will affect it.
* Allows RTOS to manage switch to any system stack and count nesting level.
* Called after minimal context has been saved, with interrupts disabled.
* RTOS port can call0 _xt_context_save to save the rest of the context.
* May only be called from assembly code by the 'call0' instruction.
*/
/* void XT_RTOS_INT_ENTER(void) */
#define XT_RTOS_INT_ENTER _frxt_int_enter
/*
* Inform RTOS of completion of an interrupt handler, and give control to
* RTOS to perform thread/task scheduling, switch back from any system stack
* and restore the context, and return to the exit dispatcher saved in the
* stack frame at XT_STK_EXIT. RTOS port can call0 _xt_context_restore
* to save the context saved in XT_RTOS_INT_ENTER via _xt_context_save,
* leaving only a minimal part of the context to be restored by the exit
* dispatcher. This function does not return to the place it was called from.
* May only be called from assembly code by the 'call0' instruction.
*/
/* void XT_RTOS_INT_EXIT(void) */
#define XT_RTOS_INT_EXIT _frxt_int_exit
/*
* Inform RTOS of the occurrence of a tick timer interrupt.
* If RTOS has no tick timer, leave XT_RTOS_TIMER_INT undefined.
* May be coded in or called from C or assembly, per ABI conventions.
* RTOS may optionally define XT_TICK_PER_SEC in its own way (eg. macro).
*/
/* void XT_RTOS_TIMER_INT(void) */
#define XT_RTOS_TIMER_INT _frxt_timer_int
#define XT_TICK_PER_SEC configTICK_RATE_HZ
/*
* Return in a15 the base address of the co-processor state save area for the
* thread that triggered a co-processor exception, or 0 if no thread was running.
* The state save area is structured as defined in xtensa_context.h and has size
* XT_CP_SIZE. Co-processor instructions should only be used in thread code, never
* in interrupt handlers or the RTOS kernel. May only be called from assembly code
* and by the 'call0' instruction. A result of 0 indicates an unrecoverable error.
* The implementation may use only a2-4, a15 (all other regs must be preserved).
*/
/* void* XT_RTOS_CP_STATE(void) */
#define XT_RTOS_CP_STATE _frxt_task_coproc_state
/*******************************************************************************
*
* HOOKS TO DYNAMICALLY INSTALL INTERRUPT AND EXCEPTION HANDLERS PER LEVEL.
*
* This Xtensa RTOS port provides hooks for dynamically installing exception
* and interrupt handlers to facilitate automated testing where each test
* case can install its own handler for user exceptions and each interrupt
* priority (level). This consists of an array of function pointers indexed
* by interrupt priority, with index 0 being the user exception handler hook.
* Each entry in the array is initially 0, and may be replaced by a function
* pointer of type XT_INTEXC_HOOK. A handler may be uninstalled by installing 0.
*
* The handler for low and medium priority obeys ABI conventions so may be coded
* in C. For the exception handler, the cause is the contents of the EXCCAUSE
* reg, and the result is -1 if handled, else the cause (still needs handling).
* For interrupt handlers, the cause is a mask of pending enabled interrupts at
* that level, and the result is the same mask with the bits for the handled
* interrupts cleared (those not cleared still need handling). This allows a test
* case to either pre-handle or override the default handling for the exception
* or interrupt level (see xtensa_vectors.S).
*
* High priority handlers (including NMI) must be coded in assembly, are always
* called by 'call0' regardless of ABI, must preserve all registers except a0,
* and must not use or modify the interrupted stack. The hook argument 'cause'
* is not passed and the result is ignored, so as not to burden the caller with
* saving and restoring a2 (it assumes only one interrupt per level - see the
* discussion in high priority interrupts in xtensa_vectors.S). The handler
* therefore should be coded to prototype 'void h(void)' even though it plugs
* into an array of handlers of prototype 'unsigned h(unsigned)'.
*
* To enable interrupt/exception hooks, compile the RTOS with '-DXT_INTEXC_HOOKS'.
*
*******************************************************************************/
#define XT_INTEXC_HOOK_NUM ( 1 + XCHAL_NUM_INTLEVELS + XCHAL_HAVE_NMI )
#ifndef __ASSEMBLER__
typedef unsigned (* XT_INTEXC_HOOK)( unsigned cause );
extern volatile XT_INTEXC_HOOK _xt_intexc_hooks[ XT_INTEXC_HOOK_NUM ];
#endif
/*******************************************************************************
*
* CONVENIENCE INCLUSIONS.
*
* Ensures RTOS specific files need only include this one Xtensa-generic header.
* These headers are included last so they can use the RTOS definitions above.
*
*******************************************************************************/
#include "xtensa_context.h"
#ifdef XT_RTOS_TIMER_INT
#include "xtensa_timer.h"
#endif
/*******************************************************************************
*
* Xtensa Port Version.
*
*******************************************************************************/
#define XTENSA_PORT_VERSION 1.7
#define XTENSA_PORT_VERSION_STRING "1.7"
#endif /* XTENSA_RTOS_H */