blob: bca04ddd60b5ba55df8f1b38a071388e67c09937 [file] [log] [blame]
/*
FreeRTOS V8.2.2 - Copyright (C) 2015 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
***************************************************************************
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
***************************************************************************
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available on the following
link: http://www.freertos.org/a00114.html
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that is more than just the market leader, it *
* is the industry's de facto standard. *
* *
* Help yourself get started quickly while simultaneously helping *
* to support the FreeRTOS project by purchasing a FreeRTOS *
* tutorial book, reference manual, or both: *
* http://www.FreeRTOS.org/Documentation *
* *
***************************************************************************
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
the FAQ page "My application does not run, what could be wrong?". Have you
defined configASSERT()?
http://www.FreeRTOS.org/support - In return for receiving this top quality
embedded software for free we request you assist our global community by
participating in the support forum.
http://www.FreeRTOS.org/training - Investing in training allows your team to
be as productive as possible as early as possible. Now you can receive
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
Ltd, and the world's leading authority on the world's leading RTOS.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/* Standard includes. */
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "queue.h"
#include "semphr.h"
/* Application includes. */
#include "i2c.h"
/*-----------------------------------------------------------*/
/* Constants to setup the microcontroller IO. */
#define mainSDA_ENABLE ( ( unsigned long ) 0x0040 )
#define mainSCL_ENABLE ( ( unsigned long ) 0x0010 )
/* Bit definitions within the I2CONCLR register. */
#define i2cSTA_BIT ( ( unsigned char ) 0x20 )
#define i2cSI_BIT ( ( unsigned char ) 0x08 )
#define i2cSTO_BIT ( ( unsigned char ) 0x10 )
/* Constants required to setup the VIC. */
#define i2cI2C_VIC_CHANNEL ( ( unsigned long ) 0x0009 )
#define i2cI2C_VIC_CHANNEL_BIT ( ( unsigned long ) 0x0200 )
#define i2cI2C_VIC_ENABLE ( ( unsigned long ) 0x0020 )
/* Misc constants. */
#define i2cNO_BLOCK ( ( TickType_t ) 0 )
#define i2cQUEUE_LENGTH ( ( unsigned char ) 5 )
#define i2cEXTRA_MESSAGES ( ( unsigned char ) 2 )
#define i2cREAD_TX_LEN ( ( unsigned long ) 2 )
#define i2cACTIVE_MASTER_MODE ( ( unsigned char ) 0x40 )
#define i2cTIMERL ( 200 )
#define i2cTIMERH ( 200 )
/* Array of message definitions. See the header file for more information
on the structure members. There are two more places in the queue than as
defined by i2cQUEUE_LENGTH. This is to ensure that there is always a free
message available - one can be in the process of being transmitted and one
can be left free. */
static xI2CMessage xTxMessages[ i2cQUEUE_LENGTH + i2cEXTRA_MESSAGES ];
/* Function in the ARM part of the code used to create the queues. */
extern void vI2CISRCreateQueues( unsigned portBASE_TYPE uxQueueLength, QueueHandle_t *pxTxMessages, unsigned long **ppulBusFree );
/* Index to the next free message in the xTxMessages array. */
unsigned long ulNextFreeMessage = ( unsigned long ) 0;
/* Queue of messages that are waiting transmission. */
static QueueHandle_t xMessagesForTx;
/* Flag to indicate the state of the I2C ISR state machine. */
static unsigned long *pulBusFree;
/*-----------------------------------------------------------*/
void i2cMessage( const unsigned char * const pucMessage, long lMessageLength, unsigned char ucSlaveAddress, unsigned short usBufferAddress, unsigned long ulDirection, SemaphoreHandle_t xMessageCompleteSemaphore, TickType_t xBlockTime )
{
extern volatile xI2CMessage *pxCurrentMessage;
xI2CMessage *pxNextFreeMessage;
signed portBASE_TYPE xReturn;
portENTER_CRITICAL();
{
/* This message is guaranteed to be free as there are two more messages
than spaces in the queue allowing for one message to be in process of
being transmitted and one to be left free. */
pxNextFreeMessage = &( xTxMessages[ ulNextFreeMessage ] );
/* Fill the message with the data to be sent. */
/* Pointer to the actual data. Only a pointer is stored (i.e. the
actual data is not copied, so the data being pointed to must still
be valid when the message eventually gets sent (it may be queued for
a while. */
pxNextFreeMessage->pucBuffer = ( unsigned char * ) pucMessage;
/* This is the address of the I2C device we are going to transmit this
message to. */
pxNextFreeMessage->ucSlaveAddress = ucSlaveAddress | ( unsigned char ) ulDirection;
/* A semaphore can be used to allow the I2C ISR to indicate that the
message has been sent. This can be NULL if you don't want to wait for
the message transmission to complete. */
pxNextFreeMessage->xMessageCompleteSemaphore = xMessageCompleteSemaphore;
/* How many bytes are to be sent? */
pxNextFreeMessage->lMessageLength = lMessageLength;
/* The address within the WIZnet device to which the data will be
written. This could be the address of a register, or alternatively
a location within the WIZnet Tx buffer. */
pxNextFreeMessage->ucBufferAddressLowByte = ( unsigned char ) ( usBufferAddress & 0xff );
/* Second byte of the address. */
usBufferAddress >>= 8;
pxNextFreeMessage->ucBufferAddressHighByte = ( unsigned char ) ( usBufferAddress & 0xff );
/* Increment to the next message in the array - with a wrap around check. */
ulNextFreeMessage++;
if( ulNextFreeMessage >= ( i2cQUEUE_LENGTH + i2cEXTRA_MESSAGES ) )
{
ulNextFreeMessage = ( unsigned long ) 0;
}
/* Is the I2C interrupt in the middle of transmitting a message? */
if( *pulBusFree == ( unsigned long ) pdTRUE )
{
/* No message is currently being sent or queued to be sent. We
can start the ISR sending this message immediately. */
pxCurrentMessage = pxNextFreeMessage;
I2C_I2CONCLR = i2cSI_BIT;
I2C_I2CONSET = i2cSTA_BIT;
*pulBusFree = ( unsigned long ) pdFALSE;
}
else
{
/* The I2C interrupt routine is mid sending a message. Queue
this message ready to be sent. */
xReturn = xQueueSend( xMessagesForTx, &pxNextFreeMessage, xBlockTime );
/* We may have blocked while trying to queue the message. If this
was the case then the interrupt would have been enabled and we may
now find that the I2C interrupt routine is no longer sending a
message. */
if( ( *pulBusFree == ( unsigned long ) pdTRUE ) && ( xReturn == pdPASS ) )
{
/* Get the next message in the queue (this should be the
message we just posted) and start off the transmission
again. */
xQueueReceive( xMessagesForTx, &pxNextFreeMessage, i2cNO_BLOCK );
pxCurrentMessage = pxNextFreeMessage;
I2C_I2CONCLR = i2cSI_BIT;
I2C_I2CONSET = i2cSTA_BIT;
*pulBusFree = ( unsigned long ) pdFALSE;
}
}
}
portEXIT_CRITICAL();
}
/*-----------------------------------------------------------*/
void i2cInit( void )
{
extern void ( vI2C_ISR_Wrapper )( void );
/* Create the queue used to send messages to the ISR. */
vI2CISRCreateQueues( i2cQUEUE_LENGTH, &xMessagesForTx, &pulBusFree );
/* Configure the I2C hardware. */
I2C_I2CONCLR = 0xff;
PCB_PINSEL0 |= mainSDA_ENABLE;
PCB_PINSEL0 |= mainSCL_ENABLE;
I2C_I2SCLL = i2cTIMERL;
I2C_I2SCLH = i2cTIMERH;
I2C_I2CONSET = i2cACTIVE_MASTER_MODE;
portENTER_CRITICAL();
{
/* Setup the VIC for the i2c interrupt. */
VICIntSelect &= ~( i2cI2C_VIC_CHANNEL_BIT );
VICIntEnable |= i2cI2C_VIC_CHANNEL_BIT;
VICVectAddr2 = ( long ) vI2C_ISR_Wrapper;
VICVectCntl2 = i2cI2C_VIC_CHANNEL | i2cI2C_VIC_ENABLE;
}
portEXIT_CRITICAL();
}