blob: 585f7b8a33dc6c13ee41fcef6369986c0dc6f612 [file] [log] [blame]
/*******************************************************************************
*
* Copyright (C) 2017 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* XILINX BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
*******************************************************************************/
/******************************************************************************/
/**
*
* @file xvidc_edid.c
* @addtogroup video_common_v4_2
* @{
*
* Contains function definitions related to the Extended Display Identification
* Data (EDID) structure which is present in all monitors. All content in this
* file is agnostic of communication interface protocol.
*
* @note None.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- -----------------------------------------------
* 1.0 als 11/09/14 Initial release.
* 2.2 als 02/01/16 Functions with pointer arguments that don't modify
* contents now const.
* 4.0 aad 10/26/16 Added API for colormetry which returns fixed point
* in Q0.10 format instead of float.
* </pre>
*
*******************************************************************************/
/******************************* Include Files ********************************/
#include "xvidc_edid.h"
/**************************** Function Prototypes *****************************/
static u32 XVidC_EdidIsVideoTimingSupportedPreferredTiming(const u8 *EdidRaw,
const XVidC_VideoTimingMode *VtMode);
static u32 XVidC_EdidIsVideoTimingSupportedEstablishedTimings(const u8 *EdidRaw,
const XVidC_VideoTimingMode *VtMode);
static u32 XVidC_EdidIsVideoTimingSupportedStandardTimings(const u8 *EdidRaw,
const XVidC_VideoTimingMode *VtMode);
static int XVidC_CalculatePower(u8 Base, u8 Power);
static int XVidC_CalculateBinaryFraction_QFormat(u16 Val, u8 DecPtIndex);
/**************************** Function Definitions ****************************/
/******************************************************************************/
/**
* Get the manufacturer name as specified in the vendor and product ID field of
* the supplied base Extended Display Identification Data (EDID).
*
* @param EdidRaw is the supplied base EDID to retrieve the manufacturer
* name from.
* @param ManName is the string that will be modified to hold the
* retrieved manufacturer name.
*
* @return None.
*
* @note The ManName argument is modified with the manufacturer name.
*
*******************************************************************************/
void XVidC_EdidGetManName(const u8 *EdidRaw, char ManName[4])
{
ManName[0] = 0x40 + ((EdidRaw[XVIDC_EDID_VPI_ID_MAN_NAME0] &
XVIDC_EDID_VPI_ID_MAN_NAME0_CHAR0_MASK) >>
XVIDC_EDID_VPI_ID_MAN_NAME0_CHAR0_SHIFT);
ManName[1] = 0x40 + (((EdidRaw[XVIDC_EDID_VPI_ID_MAN_NAME0] &
XVIDC_EDID_VPI_ID_MAN_NAME0_CHAR1_MASK) <<
XVIDC_EDID_VPI_ID_MAN_NAME0_CHAR1_POS) |
(EdidRaw[XVIDC_EDID_VPI_ID_MAN_NAME1] >>
XVIDC_EDID_VPI_ID_MAN_NAME1_CHAR1_SHIFT));
ManName[2] = 0x40 + (EdidRaw[XVIDC_EDID_VPI_ID_MAN_NAME1] &
XVIDC_EDID_VPI_ID_MAN_NAME1_CHAR2_MASK);
ManName[3] = '\0';
}
/******************************************************************************/
/**
* Get the color bit depth (bits per primary color) as specified in the basic
* display parameters and features, video input definition field of the supplied
* base Extended Display Identification Data (EDID).
*
* @param EdidRaw is the supplied base EDID to retrieve color depth
* information from.
*
* @return The number of bits per primary color as specified by the
* supplied base EDID.
*
* @note None.
*
*******************************************************************************/
XVidC_ColorDepth XVidC_EdidGetColorDepth(const u8 *EdidRaw)
{
XVidC_ColorDepth Bpc;
switch (((EdidRaw[XVIDC_EDID_BDISP_VID] &
XVIDC_EDID_BDISP_VID_DIG_BPC_MASK) >>
XVIDC_EDID_BDISP_VID_DIG_BPC_SHIFT)) {
case XVIDC_EDID_BDISP_VID_DIG_BPC_6:
Bpc = XVIDC_BPC_6;
break;
case XVIDC_EDID_BDISP_VID_DIG_BPC_8:
Bpc = XVIDC_BPC_8;
break;
case XVIDC_EDID_BDISP_VID_DIG_BPC_10:
Bpc = XVIDC_BPC_10;
break;
case XVIDC_EDID_BDISP_VID_DIG_BPC_12:
Bpc = XVIDC_BPC_12;
break;
case XVIDC_EDID_BDISP_VID_DIG_BPC_14:
Bpc = XVIDC_BPC_14;
break;
case XVIDC_EDID_BDISP_VID_DIG_BPC_16:
Bpc = XVIDC_BPC_16;
break;
default:
Bpc = XVIDC_BPC_UNKNOWN;
break;
}
return Bpc;
}
/******************************************************************************/
/**
* Calculates the x chromaticity coordinate for red by converting a 10 bit
* binary fraction representation from the supplied base Extended Display
* Identification Data (EDID) to a integer in Q0.10 Format. To convert back
* to float divide the fixed point value by 2^10.
*
* @param EdidRaw is the supplied base EDID to retrieve chromaticity
* information from.
*
* @return The x chromatacity coordinate for red.
*
* @note All values will be accurate to +/-0.0005.
*
*******************************************************************************/
int XVidC_EdidGetCcRedX(const u8 *EdidRaw)
{
return XVidC_CalculateBinaryFraction_QFormat(
(EdidRaw[XVIDC_EDID_CC_REDX_HIGH] <<
XVIDC_EDID_CC_HIGH_SHIFT) | (EdidRaw[XVIDC_EDID_CC_RG_LOW] >>
XVIDC_EDID_CC_RBX_LOW_SHIFT), 10);
}
/******************************************************************************/
/**
* Calculates the y chromaticity coordinate for red by converting a 10 bit
* binary fraction representation from the supplied base Extended Display
* Identification Data (EDID) to a integer in Q0.10 Format. To convert back
* to float divide the fixed point value by 2^10.
*
* @param EdidRaw is the supplied base EDID to retrieve chromaticity
* information from.
*
* @return The y chromatacity coordinate for red.
*
* @note All values will be accurate to +/-0.0005.
*
*******************************************************************************/
int XVidC_EdidGetCcRedY(const u8 *EdidRaw)
{
return XVidC_CalculateBinaryFraction_QFormat(
(EdidRaw[XVIDC_EDID_CC_REDY_HIGH] <<
XVIDC_EDID_CC_HIGH_SHIFT) | ((EdidRaw[XVIDC_EDID_CC_RG_LOW] &
XVIDC_EDID_CC_RBY_LOW_MASK) >>
XVIDC_EDID_CC_RBY_LOW_SHIFT), 10);
}
/******************************************************************************/
/**
* Calculates the x chromaticity coordinate for green by converting a 10 bit
* binary fraction representation from the supplied base Extended Display
* Identification Data (EDID) to a integer in Q0.10 Format. To convert back
* to float divide the fixed point value by 2^10.
*
* @param EdidRaw is the supplied base EDID to retrieve chromaticity
* information from.
*
* @return The x chromatacity coordinate for green.
*
* @note All values will be accurate to +/-0.0005.
*
*******************************************************************************/
int XVidC_EdidGetCcGreenX(const u8 *EdidRaw)
{
return XVidC_CalculateBinaryFraction_QFormat(
(EdidRaw[XVIDC_EDID_CC_GREENX_HIGH] <<
XVIDC_EDID_CC_HIGH_SHIFT) | ((EdidRaw[XVIDC_EDID_CC_RG_LOW] &
XVIDC_EDID_CC_GWX_LOW_MASK) >>
XVIDC_EDID_CC_GWX_LOW_SHIFT), 10);
}
/******************************************************************************/
/**
* Calculates the y chromaticity coordinate for green by converting a 10 bit
* binary fraction representation from the supplied base Extended Display
* Identification Data (EDID) to a integer in Q0.10 Format. To convert back
* to float divide the fixed point value by 2^10.
*
* @param EdidRaw is the supplied base EDID to retrieve chromaticity
* information from.
*
* @return The y chromatacity coordinate for green.
*
* @note All values will be accurate to +/-0.0005.
*
*******************************************************************************/
int XVidC_EdidGetCcGreenY(const u8 *EdidRaw)
{
return XVidC_CalculateBinaryFraction_QFormat(
(EdidRaw[XVIDC_EDID_CC_GREENY_HIGH] <<
XVIDC_EDID_CC_HIGH_SHIFT) | (EdidRaw[XVIDC_EDID_CC_RG_LOW] &
XVIDC_EDID_CC_GWY_LOW_MASK), 10);
}
/******************************************************************************/
/**
* Calculates the x chromaticity coordinate for blue by converting a 10 bit
* binary fraction representation from the supplied base Extended Display
* Identification Data (EDID) to a integer in Q0.10 Format. To convert back
* to float divide the fixed point value by 2^10.
*
* @param EdidRaw is the supplied base EDID to retrieve chromaticity
* information from.
*
* @return The x chromatacity coordinate for blue.
*
* @note All values will be accurate to +/-0.0005.
*
*******************************************************************************/
int XVidC_EdidGetCcBlueX(const u8 *EdidRaw)
{
return XVidC_CalculateBinaryFraction_QFormat(
(EdidRaw[XVIDC_EDID_CC_BLUEX_HIGH] <<
XVIDC_EDID_CC_HIGH_SHIFT) | (EdidRaw[XVIDC_EDID_CC_BW_LOW] >>
XVIDC_EDID_CC_RBX_LOW_SHIFT), 10);
}
/******************************************************************************/
/**
* Calculates the y chromaticity coordinate for blue by converting a 10 bit
* binary fraction representation from the supplied base Extended Display
* Identification Data (EDID) to a integer in Q0.10 Format. To convert back
* to float divide the fixed point value by 2^10.
*
* @param EdidRaw is the supplied base EDID to retrieve chromaticity
* information from.
*
* @return The y chromatacity coordinate for blue.
*
* @note All values will be accurate to +/-0.0005.
*
*******************************************************************************/
int XVidC_EdidGetCcBlueY(const u8 *EdidRaw)
{
return XVidC_CalculateBinaryFraction_QFormat(
(EdidRaw[XVIDC_EDID_CC_BLUEY_HIGH] <<
XVIDC_EDID_CC_HIGH_SHIFT) | ((EdidRaw[XVIDC_EDID_CC_BW_LOW] &
XVIDC_EDID_CC_RBY_LOW_MASK) >>
XVIDC_EDID_CC_RBY_LOW_SHIFT), 10);
}
/******************************************************************************/
/**
* Calculates the x chromaticity coordinate for white by converting a 10 bit
* binary fraction representation from the supplied base Extended Display
* Identification Data (EDID) to a integer in Q0.10 Format. To convert back
* to float divide the fixed point value by 2^10.
*
* @param EdidRaw is the supplied base EDID to retrieve chromaticity
* information from.
*
* @return The x chromatacity coordinate for white.
*
* @note All values will be accurate to +/-0.0005.
*
*******************************************************************************/
int XVidC_EdidGetCcWhiteX(const u8 *EdidRaw)
{
return XVidC_CalculateBinaryFraction_QFormat(
(EdidRaw[XVIDC_EDID_CC_WHITEX_HIGH] <<
XVIDC_EDID_CC_HIGH_SHIFT) | ((EdidRaw[XVIDC_EDID_CC_BW_LOW] &
XVIDC_EDID_CC_GWX_LOW_MASK) >> XVIDC_EDID_CC_GWX_LOW_SHIFT), 10);
}
/******************************************************************************/
/**
* Calculates the y chromaticity coordinate for white by converting a 10 bit
* binary fraction representation from the supplied base Extended Display
* Identification Data (EDID) to an integer in Q0.10 Format. To convert back
* to float divide the fixed point value by 2^10.
*
* @param EdidRaw is the supplied base EDID to retrieve chromaticity
* information from.
*
* @return The y chromatacity coordinate for white.
*
* @note All values will be accurate to +/-0.0005.
*
*******************************************************************************/
int XVidC_EdidGetCcWhiteY(const u8 *EdidRaw)
{
return XVidC_CalculateBinaryFraction_QFormat(
(EdidRaw[XVIDC_EDID_CC_WHITEY_HIGH] <<
XVIDC_EDID_CC_HIGH_SHIFT) | (EdidRaw[XVIDC_EDID_CC_BW_LOW] &
XVIDC_EDID_CC_GWY_LOW_MASK), 10);
}
/******************************************************************************/
/**
* Retrieves the active vertical resolution from the standard timings field of
* the supplied base Extended Display Identification Data (EDID).
*
* @param EdidRaw is the supplied base EDID to check the timing against.
* @param StdTimingsNum specifies which one of the standard timings to
* retrieve from the standard timings field.
*
* @return The vertical active resolution of the specified standard timing
* from the supplied base EDID.
*
* @note StdTimingsNum is an index 1-8.
*
*******************************************************************************/
u16 XVidC_EdidGetStdTimingsV(const u8 *EdidRaw, u8 StdTimingsNum)
{
u16 V;
switch (XVidC_EdidGetStdTimingsAr(EdidRaw, StdTimingsNum)) {
case XVIDC_EDID_STD_TIMINGS_AR_16_10:
V = (10 * XVidC_EdidGetStdTimingsH(EdidRaw,
StdTimingsNum)) / 16;
break;
case XVIDC_EDID_STD_TIMINGS_AR_4_3:
V = (3 * XVidC_EdidGetStdTimingsH(EdidRaw,
StdTimingsNum)) / 4;
break;
case XVIDC_EDID_STD_TIMINGS_AR_5_4:
V = (4 * XVidC_EdidGetStdTimingsH(EdidRaw,
StdTimingsNum)) / 5;
break;
case XVIDC_EDID_STD_TIMINGS_AR_16_9:
V = (9 * XVidC_EdidGetStdTimingsH(EdidRaw,
StdTimingsNum)) / 16;
break;
default:
V = 0;
break;
}
return V;
}
/******************************************************************************/
/**
* Checks whether or not a specified video timing mode is supported as specified
* in the supplied base Extended Display Identification Data (EDID). The
* preferred timing, established timings (I, II, II), and the standard timings
* fields are checked for support.
*
* @param EdidRaw is the supplied base EDID to check the timing against.
* @param VtMode is the video timing mode to check for support.
*
* @return
* - XST_SUCCESS if the video timing mode is supported as specified
* in the supplied base EDID.
* - XST_FAILURE otherwise.
*
* @note None.
*
*******************************************************************************/
u32 XVidC_EdidIsVideoTimingSupported(const u8 *EdidRaw,
const XVidC_VideoTimingMode *VtMode)
{
u32 Status;
/* Check if the video mode is the preferred timing. */
Status = XVidC_EdidIsVideoTimingSupportedPreferredTiming(EdidRaw,
VtMode);
if (Status == XST_SUCCESS) {
return Status;
}
/* Check established timings I, II, and III. */
Status = XVidC_EdidIsVideoTimingSupportedEstablishedTimings(EdidRaw,
VtMode);
if (Status == XST_SUCCESS) {
return Status;
}
/* Check in standard timings support. */
Status = XVidC_EdidIsVideoTimingSupportedStandardTimings(EdidRaw,
VtMode);
return Status;
}
/******************************************************************************/
/**
* Checks whether or not a specified video timing mode is the preferred timing
* of the supplied base Extended Display Identification Data (EDID).
*
* @param EdidRaw is the supplied base EDID to check the timing against.
* @param VtMode is the video timing mode to check for support.
*
* @return
* - XST_SUCCESS if the video timing mode is the preferred timing
* as specified in the base EDID.
* - XST_FAILURE otherwise.
*
* @note None.
*
*******************************************************************************/
static u32 XVidC_EdidIsVideoTimingSupportedPreferredTiming(const u8 *EdidRaw,
const XVidC_VideoTimingMode *VtMode)
{
const u8 *Ptm;
Ptm = &EdidRaw[XVIDC_EDID_PTM];
u32 HActive = (((Ptm[XVIDC_EDID_DTD_PTM_HRES_HBLANK_U4] &
XVIDC_EDID_DTD_PTM_XRES_XBLANK_U4_XRES_MASK) >>
XVIDC_EDID_DTD_PTM_XRES_XBLANK_U4_XRES_SHIFT) << 8) |
Ptm[XVIDC_EDID_DTD_PTM_HRES_LSB];
u32 VActive = (((Ptm[XVIDC_EDID_DTD_PTM_VRES_VBLANK_U4] &
XVIDC_EDID_DTD_PTM_XRES_XBLANK_U4_XRES_MASK) >>
XVIDC_EDID_DTD_PTM_XRES_XBLANK_U4_XRES_SHIFT) << 8) |
Ptm[XVIDC_EDID_DTD_PTM_VRES_LSB];
if (VtMode->Timing.F1VTotal != XVidC_EdidIsDtdPtmInterlaced(EdidRaw)) {
return (XST_FAILURE);
}
else if ((VtMode->Timing.HActive == HActive) &&
(VtMode->Timing.VActive == VActive)) {
return (XST_SUCCESS);
}
return XST_FAILURE;
}
/******************************************************************************/
/**
* Checks whether or not a specified video timing mode is supported in the
* established timings field of the supplied base Extended Display
* Identification Data (EDID).
*
* @param EdidRaw is the supplied base EDID to check the timing against.
* @param VtMode is the video timing mode to check for support.
*
* @return
* - XST_SUCCESS if the video timing mode is supported in the
* base EDID's established timings field.
* - XST_FAILURE otherwise.
*
* @note None.
*
*******************************************************************************/
static u32 XVidC_EdidIsVideoTimingSupportedEstablishedTimings(const u8 *EdidRaw,
const XVidC_VideoTimingMode *VtMode)
{
u32 Status = XST_FAILURE;
/* Check established timings I, II, and III. */
if ((VtMode->Timing.HActive == 800) &&
(VtMode->Timing.VActive == 640) &&
(VtMode->FrameRate == XVIDC_FR_56HZ) &&
XVidC_EdidSuppEstTimings800x600_56(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 640) &&
(VtMode->Timing.VActive == 480) &&
(VtMode->FrameRate == XVIDC_FR_60HZ) &&
XVidC_EdidSuppEstTimings640x480_60(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 800) &&
(VtMode->Timing.VActive == 600) &&
(VtMode->FrameRate == XVIDC_FR_60HZ) &&
XVidC_EdidSuppEstTimings800x600_60(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 1024) &&
(VtMode->Timing.VActive == 768) &&
(VtMode->FrameRate == XVIDC_FR_60HZ) &&
XVidC_EdidSuppEstTimings1024x768_60(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 640) &&
(VtMode->Timing.VActive == 480) &&
(VtMode->FrameRate == XVIDC_FR_67HZ) &&
XVidC_EdidSuppEstTimings640x480_67(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 720) &&
(VtMode->Timing.VActive == 400) &&
(VtMode->FrameRate == XVIDC_FR_70HZ) &&
XVidC_EdidSuppEstTimings720x400_70(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 1024) &&
(VtMode->Timing.VActive == 768) &&
(VtMode->FrameRate == XVIDC_FR_70HZ) &&
XVidC_EdidSuppEstTimings1024x768_70(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 640) &&
(VtMode->Timing.VActive == 480) &&
(VtMode->FrameRate == XVIDC_FR_72HZ) &&
XVidC_EdidSuppEstTimings640x480_72(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 800) &&
(VtMode->Timing.VActive == 600) &&
(VtMode->FrameRate == XVIDC_FR_72HZ) &&
XVidC_EdidSuppEstTimings800x600_72(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 640) &&
(VtMode->Timing.VActive == 480) &&
(VtMode->FrameRate == XVIDC_FR_75HZ) &&
XVidC_EdidSuppEstTimings640x480_75(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 800) &&
(VtMode->Timing.VActive == 600) &&
(VtMode->FrameRate == XVIDC_FR_75HZ) &&
XVidC_EdidSuppEstTimings800x600_75(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 832) &&
(VtMode->Timing.VActive == 624) &&
(VtMode->FrameRate == XVIDC_FR_75HZ) &&
XVidC_EdidSuppEstTimings832x624_75(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 1024) &&
(VtMode->Timing.VActive == 768) &&
(VtMode->FrameRate == XVIDC_FR_75HZ) &&
XVidC_EdidSuppEstTimings1024x768_75(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 1152) &&
(VtMode->Timing.VActive == 870) &&
(VtMode->FrameRate == XVIDC_FR_75HZ) &&
XVidC_EdidSuppEstTimings1152x870_75(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 1280) &&
(VtMode->Timing.VActive == 1024) &&
(VtMode->FrameRate == XVIDC_FR_75HZ) &&
XVidC_EdidSuppEstTimings1280x1024_75(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 1024) &&
(VtMode->Timing.VActive == 768) &&
(VtMode->FrameRate == XVIDC_FR_87HZ) &&
XVidC_EdidSuppEstTimings1024x768_87(EdidRaw)) {
Status = XST_SUCCESS;
}
else if ((VtMode->Timing.HActive == 720) &&
(VtMode->Timing.VActive == 400) &&
(VtMode->FrameRate == XVIDC_FR_88HZ) &&
XVidC_EdidSuppEstTimings720x400_88(EdidRaw)) {
Status = XST_SUCCESS;
}
return Status;
}
/******************************************************************************/
/**
* Checks whether or not a specified video timing mode is supported in the
* standard timings field of the supplied base Extended Display Identification
* Data (EDID).
*
* @param EdidRaw is the supplied base EDID to check the timing against.
* @param VtMode is the video timing mode to check for support.
*
* @return
* - XST_SUCCESS if the video timing mode is supported in the
* base EDID's standard timings fields.
* - XST_FAILURE otherwise.
*
* @note None.
*
*******************************************************************************/
static u32 XVidC_EdidIsVideoTimingSupportedStandardTimings(const u8 *EdidRaw,
const XVidC_VideoTimingMode *VtMode)
{
u8 Index;
for (Index = 0; Index < 8; Index++) {
if ((VtMode->Timing.HActive ==
XVidC_EdidGetStdTimingsH(EdidRaw, Index + 1)) &&
(VtMode->Timing.VActive ==
XVidC_EdidGetStdTimingsV(EdidRaw, Index + 1)) &&
(VtMode->FrameRate == (u8)XVidC_EdidGetStdTimingsFrr(
EdidRaw, Index + 1))) {
return XST_SUCCESS;
}
}
return XST_FAILURE;
}
/******************************************************************************/
/**
* Perform a power operation.
*
* @param Base is b in the power operation, b^n.
* @param Power is n in the power operation, b^n.
*
* @return Base^Power (Base to the power of Power).
*
* @note None.
*
*******************************************************************************/
static int XVidC_CalculatePower(u8 Base, u8 Power)
{
u8 Index;
u32 Res = 1;
for (Index = 0; Index < Power; Index++) {
Res *= Base;
}
return Res;
}
/******************************************************************************/
/**
* Convert a fractional binary number into a fixed point Q0.DecPtIndex number
* Binary digits to the right of the decimal point represent 2^-1 to
* 2^-(DecPtIndex+1). Binary digits to the left of the decimal point represent
* 2^0, 2^1, etc. For a given Q format, using an unsigned integer container with
* n fractional bits:
* its range is [0, 2^-n]
* its resolution is 2^n
*
* @param Val is the binary representation of the fraction.
* @param DecPtIndex is the index of the decimal point in the binary
* number. The decimal point is between the binary digits at Val's
* indices (DecPtIndex -1) and (DecPtIndex). DecPtIndex will
* determine the Q format resolution.
*
* @return Fixed point representation of the fractional part of the binary
* number in Q format.
*
* @note None.
*
*******************************************************************************/
static int XVidC_CalculateBinaryFraction_QFormat(u16 Val, u8 DecPtIndex)
{
int Index;
u32 Res;
for (Index = DecPtIndex - 1, Res = 0; Index >= 0; Index--) {
if (((Val >> Index) & 0x1) == 1) {
Res += XVidC_CalculatePower(2 , Index);
}
}
return Res;
}
/** @} */