blob: bcdd9de80b5e88015cd3ba5ea8be9e89c9a5e635 [file] [log] [blame]
#****************************************************************************
###
#
# @file psu_init.tcl
#
# This file is automatically generated
#
#****************************************************************************
set psu_pll_init_data {
# : RPLL INIT
# Register : RPLL_CFG @ 0XFF5E0034</p>
# PLL loop filter resistor control
# PSU_CRL_APB_RPLL_CFG_RES 0xc
# PLL charge pump control
# PSU_CRL_APB_RPLL_CFG_CP 0x3
# PLL loop filter high frequency capacitor control
# PSU_CRL_APB_RPLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRL_APB_RPLL_CFG_LOCK_CNT 0x339
# Lock circuit configuration settings for lock windowsize
# PSU_CRL_APB_RPLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFF5E0034, 0xFE7FEDEFU ,0x7E672C6CU) */
mask_write 0XFF5E0034 0xFE7FEDEF 0x7E672C6C
# : UPDATE FB_DIV
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
# s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
# ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRL_APB_RPLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRL_APB_RPLL_CTRL_FBDIV 0x2d
# This turns on the divide by 2 that is inside of the PLL. This does not c
# hange the VCO frequency, just the output frequency
# PSU_CRL_APB_RPLL_CTRL_DIV2 0x1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00717F00U ,0x00012D00U) */
mask_write 0XFF5E0030 0x00717F00 0x00012D00
# : BY PASS PLL
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRL_APB_RPLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000008U ,0x00000008U) */
mask_write 0XFF5E0030 0x00000008 0x00000008
# : ASSERT RESET
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRL_APB_RPLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000001U ,0x00000001U) */
mask_write 0XFF5E0030 0x00000001 0x00000001
# : DEASSERT RESET
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRL_APB_RPLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000001U ,0x00000000U) */
mask_write 0XFF5E0030 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFF5E0040</p>
# RPLL is locked
# PSU_CRL_APB_PLL_STATUS_RPLL_LOCK 1
mask_poll 0XFF5E0040 0x00000002
# : REMOVE PLL BY PASS
# Register : RPLL_CTRL @ 0XFF5E0030</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRL_APB_RPLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000008U ,0x00000000U) */
mask_write 0XFF5E0030 0x00000008 0x00000000
# Register : RPLL_TO_FPD_CTRL @ 0XFF5E0048</p>
# Divisor value for this clock.
# PSU_CRL_APB_RPLL_TO_FPD_CTRL_DIVISOR0 0x2
# Control for a clock that will be generated in the LPD, but used in the F
# PD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFF5E0048, 0x00003F00U ,0x00000200U) */
mask_write 0XFF5E0048 0x00003F00 0x00000200
# : RPLL FRAC CFG
# : IOPLL INIT
# Register : IOPLL_CFG @ 0XFF5E0024</p>
# PLL loop filter resistor control
# PSU_CRL_APB_IOPLL_CFG_RES 0x2
# PLL charge pump control
# PSU_CRL_APB_IOPLL_CFG_CP 0x4
# PLL loop filter high frequency capacitor control
# PSU_CRL_APB_IOPLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRL_APB_IOPLL_CFG_LOCK_CNT 0x258
# Lock circuit configuration settings for lock windowsize
# PSU_CRL_APB_IOPLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFF5E0024, 0xFE7FEDEFU ,0x7E4B0C82U) */
mask_write 0XFF5E0024 0xFE7FEDEF 0x7E4B0C82
# : UPDATE FB_DIV
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
# s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
# ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRL_APB_IOPLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRL_APB_IOPLL_CTRL_FBDIV 0x5a
# This turns on the divide by 2 that is inside of the PLL. This does not c
# hange the VCO frequency, just the output frequency
# PSU_CRL_APB_IOPLL_CTRL_DIV2 0x1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00717F00U ,0x00015A00U) */
mask_write 0XFF5E0020 0x00717F00 0x00015A00
# : BY PASS PLL
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRL_APB_IOPLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000008U ,0x00000008U) */
mask_write 0XFF5E0020 0x00000008 0x00000008
# : ASSERT RESET
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRL_APB_IOPLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000001U ,0x00000001U) */
mask_write 0XFF5E0020 0x00000001 0x00000001
# : DEASSERT RESET
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRL_APB_IOPLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000001U ,0x00000000U) */
mask_write 0XFF5E0020 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFF5E0040</p>
# IOPLL is locked
# PSU_CRL_APB_PLL_STATUS_IOPLL_LOCK 1
mask_poll 0XFF5E0040 0x00000001
# : REMOVE PLL BY PASS
# Register : IOPLL_CTRL @ 0XFF5E0020</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRL_APB_IOPLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000008U ,0x00000000U) */
mask_write 0XFF5E0020 0x00000008 0x00000000
# Register : IOPLL_TO_FPD_CTRL @ 0XFF5E0044</p>
# Divisor value for this clock.
# PSU_CRL_APB_IOPLL_TO_FPD_CTRL_DIVISOR0 0x3
# Control for a clock that will be generated in the LPD, but used in the F
# PD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFF5E0044, 0x00003F00U ,0x00000300U) */
mask_write 0XFF5E0044 0x00003F00 0x00000300
# : IOPLL FRAC CFG
# : APU_PLL INIT
# Register : APLL_CFG @ 0XFD1A0024</p>
# PLL loop filter resistor control
# PSU_CRF_APB_APLL_CFG_RES 0x2
# PLL charge pump control
# PSU_CRF_APB_APLL_CFG_CP 0x3
# PLL loop filter high frequency capacitor control
# PSU_CRF_APB_APLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRF_APB_APLL_CFG_LOCK_CNT 0x258
# Lock circuit configuration settings for lock windowsize
# PSU_CRF_APB_APLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFD1A0024, 0xFE7FEDEFU ,0x7E4B0C62U) */
mask_write 0XFD1A0024 0xFE7FEDEF 0x7E4B0C62
# : UPDATE FB_DIV
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
# s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
# ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRF_APB_APLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRF_APB_APLL_CTRL_FBDIV 0x48
# This turns on the divide by 2 that is inside of the PLL. This does not c
# hange the VCO frequency, just the output frequency
# PSU_CRF_APB_APLL_CTRL_DIV2 0x1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00717F00U ,0x00014800U) */
mask_write 0XFD1A0020 0x00717F00 0x00014800
# : BY PASS PLL
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRF_APB_APLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000008U ,0x00000008U) */
mask_write 0XFD1A0020 0x00000008 0x00000008
# : ASSERT RESET
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRF_APB_APLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000001U ,0x00000001U) */
mask_write 0XFD1A0020 0x00000001 0x00000001
# : DEASSERT RESET
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRF_APB_APLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000001U ,0x00000000U) */
mask_write 0XFD1A0020 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFD1A0044</p>
# APLL is locked
# PSU_CRF_APB_PLL_STATUS_APLL_LOCK 1
mask_poll 0XFD1A0044 0x00000001
# : REMOVE PLL BY PASS
# Register : APLL_CTRL @ 0XFD1A0020</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRF_APB_APLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000008U ,0x00000000U) */
mask_write 0XFD1A0020 0x00000008 0x00000000
# Register : APLL_TO_LPD_CTRL @ 0XFD1A0048</p>
# Divisor value for this clock.
# PSU_CRF_APB_APLL_TO_LPD_CTRL_DIVISOR0 0x3
# Control for a clock that will be generated in the FPD, but used in the L
# PD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFD1A0048, 0x00003F00U ,0x00000300U) */
mask_write 0XFD1A0048 0x00003F00 0x00000300
# : APLL FRAC CFG
# : DDR_PLL INIT
# Register : DPLL_CFG @ 0XFD1A0030</p>
# PLL loop filter resistor control
# PSU_CRF_APB_DPLL_CFG_RES 0x2
# PLL charge pump control
# PSU_CRF_APB_DPLL_CFG_CP 0x3
# PLL loop filter high frequency capacitor control
# PSU_CRF_APB_DPLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRF_APB_DPLL_CFG_LOCK_CNT 0x258
# Lock circuit configuration settings for lock windowsize
# PSU_CRF_APB_DPLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFD1A0030, 0xFE7FEDEFU ,0x7E4B0C62U) */
mask_write 0XFD1A0030 0xFE7FEDEF 0x7E4B0C62
# : UPDATE FB_DIV
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
# s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
# ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRF_APB_DPLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRF_APB_DPLL_CTRL_FBDIV 0x40
# This turns on the divide by 2 that is inside of the PLL. This does not c
# hange the VCO frequency, just the output frequency
# PSU_CRF_APB_DPLL_CTRL_DIV2 0x1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00717F00U ,0x00014000U) */
mask_write 0XFD1A002C 0x00717F00 0x00014000
# : BY PASS PLL
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRF_APB_DPLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000008U ,0x00000008U) */
mask_write 0XFD1A002C 0x00000008 0x00000008
# : ASSERT RESET
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRF_APB_DPLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000001U ,0x00000001U) */
mask_write 0XFD1A002C 0x00000001 0x00000001
# : DEASSERT RESET
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRF_APB_DPLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000001U ,0x00000000U) */
mask_write 0XFD1A002C 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFD1A0044</p>
# DPLL is locked
# PSU_CRF_APB_PLL_STATUS_DPLL_LOCK 1
mask_poll 0XFD1A0044 0x00000002
# : REMOVE PLL BY PASS
# Register : DPLL_CTRL @ 0XFD1A002C</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRF_APB_DPLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000008U ,0x00000000U) */
mask_write 0XFD1A002C 0x00000008 0x00000000
# Register : DPLL_TO_LPD_CTRL @ 0XFD1A004C</p>
# Divisor value for this clock.
# PSU_CRF_APB_DPLL_TO_LPD_CTRL_DIVISOR0 0x2
# Control for a clock that will be generated in the FPD, but used in the L
# PD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFD1A004C, 0x00003F00U ,0x00000200U) */
mask_write 0XFD1A004C 0x00003F00 0x00000200
# : DPLL FRAC CFG
# : VIDEO_PLL INIT
# Register : VPLL_CFG @ 0XFD1A003C</p>
# PLL loop filter resistor control
# PSU_CRF_APB_VPLL_CFG_RES 0x2
# PLL charge pump control
# PSU_CRF_APB_VPLL_CFG_CP 0x4
# PLL loop filter high frequency capacitor control
# PSU_CRF_APB_VPLL_CFG_LFHF 0x3
# Lock circuit counter setting
# PSU_CRF_APB_VPLL_CFG_LOCK_CNT 0x258
# Lock circuit configuration settings for lock windowsize
# PSU_CRF_APB_VPLL_CFG_LOCK_DLY 0x3f
# Helper data. Values are to be looked up in a table from Data Sheet
#(OFFSET, MASK, VALUE) (0XFD1A003C, 0xFE7FEDEFU ,0x7E4B0C82U) */
mask_write 0XFD1A003C 0xFE7FEDEF 0x7E4B0C82
# : UPDATE FB_DIV
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
# s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
# ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
# PSU_CRF_APB_VPLL_CTRL_PRE_SRC 0x0
# The integer portion of the feedback divider to the PLL
# PSU_CRF_APB_VPLL_CTRL_FBDIV 0x5a
# This turns on the divide by 2 that is inside of the PLL. This does not c
# hange the VCO frequency, just the output frequency
# PSU_CRF_APB_VPLL_CTRL_DIV2 0x1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00717F00U ,0x00015A00U) */
mask_write 0XFD1A0038 0x00717F00 0x00015A00
# : BY PASS PLL
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRF_APB_VPLL_CTRL_BYPASS 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000008U ,0x00000008U) */
mask_write 0XFD1A0038 0x00000008 0x00000008
# : ASSERT RESET
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRF_APB_VPLL_CTRL_RESET 1
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000001U ,0x00000001U) */
mask_write 0XFD1A0038 0x00000001 0x00000001
# : DEASSERT RESET
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Asserts Reset to the PLL. When asserting reset, the PLL must already be
# in BYPASS.
# PSU_CRF_APB_VPLL_CTRL_RESET 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000001U ,0x00000000U) */
mask_write 0XFD1A0038 0x00000001 0x00000000
# : CHECK PLL STATUS
# Register : PLL_STATUS @ 0XFD1A0044</p>
# VPLL is locked
# PSU_CRF_APB_PLL_STATUS_VPLL_LOCK 1
mask_poll 0XFD1A0044 0x00000004
# : REMOVE PLL BY PASS
# Register : VPLL_CTRL @ 0XFD1A0038</p>
# Bypasses the PLL clock. The usable clock will be determined from the POS
# T_SRC field. (This signal may only be toggled after 4 cycles of the old
# clock and 4 cycles of the new clock. This is not usually an issue, but d
# esigners must be aware.)
# PSU_CRF_APB_VPLL_CTRL_BYPASS 0
# PLL Basic Control
#(OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000008U ,0x00000000U) */
mask_write 0XFD1A0038 0x00000008 0x00000000
# Register : VPLL_TO_LPD_CTRL @ 0XFD1A0050</p>
# Divisor value for this clock.
# PSU_CRF_APB_VPLL_TO_LPD_CTRL_DIVISOR0 0x3
# Control for a clock that will be generated in the FPD, but used in the L
# PD as a clock source for the peripheral clock muxes.
#(OFFSET, MASK, VALUE) (0XFD1A0050, 0x00003F00U ,0x00000300U) */
mask_write 0XFD1A0050 0x00003F00 0x00000300
# : VIDEO FRAC CFG
}
set psu_clock_init_data {
# : CLOCK CONTROL SLCR REGISTER
# Register : GEM3_REF_CTRL @ 0XFF5E005C</p>
# Clock active for the RX channel
# PSU_CRL_APB_GEM3_REF_CTRL_RX_CLKACT 0x1
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_GEM3_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_GEM3_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_GEM3_REF_CTRL_DIVISOR0 0xc
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_GEM3_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E005C, 0x063F3F07U ,0x06010C00U) */
mask_write 0XFF5E005C 0x063F3F07 0x06010C00
# Register : GEM_TSU_REF_CTRL @ 0XFF5E0100</p>
# 6 bit divider
# PSU_CRL_APB_GEM_TSU_REF_CTRL_DIVISOR0 0x6
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_GEM_TSU_REF_CTRL_SRCSEL 0x0
# 6 bit divider
# PSU_CRL_APB_GEM_TSU_REF_CTRL_DIVISOR1 0x1
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_GEM_TSU_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0100, 0x013F3F07U ,0x01010600U) */
mask_write 0XFF5E0100 0x013F3F07 0x01010600
# Register : USB0_BUS_REF_CTRL @ 0XFF5E0060</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_USB0_BUS_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_USB0_BUS_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_USB0_BUS_REF_CTRL_DIVISOR0 0x6
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_USB0_BUS_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0060, 0x023F3F07U ,0x02010600U) */
mask_write 0XFF5E0060 0x023F3F07 0x02010600
# Register : USB3_DUAL_REF_CTRL @ 0XFF5E004C</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_USB3_DUAL_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_USB3_DUAL_REF_CTRL_DIVISOR1 0x3
# 6 bit divider
# PSU_CRL_APB_USB3_DUAL_REF_CTRL_DIVISOR0 0x19
# 000 = IOPLL; 010 = RPLL; 011 = DPLL. (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_USB3_DUAL_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E004C, 0x023F3F07U ,0x02031900U) */
mask_write 0XFF5E004C 0x023F3F07 0x02031900
# Register : QSPI_REF_CTRL @ 0XFF5E0068</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_QSPI_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_QSPI_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_QSPI_REF_CTRL_DIVISOR0 0xc
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_QSPI_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0068, 0x013F3F07U ,0x01010C00U) */
mask_write 0XFF5E0068 0x013F3F07 0x01010C00
# Register : SDIO1_REF_CTRL @ 0XFF5E0070</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_SDIO1_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_SDIO1_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_SDIO1_REF_CTRL_DIVISOR0 0x8
# 000 = IOPLL; 010 = RPLL; 011 = VPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_SDIO1_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0070, 0x013F3F07U ,0x01010800U) */
mask_write 0XFF5E0070 0x013F3F07 0x01010800
# Register : SDIO_CLK_CTRL @ 0XFF18030C</p>
# MIO pad selection for sdio1_rx_clk (feedback clock from the PAD) 0: MIO
# [51] 1: MIO [76]
# PSU_IOU_SLCR_SDIO_CLK_CTRL_SDIO1_RX_SRC_SEL 0
# SoC Debug Clock Control
#(OFFSET, MASK, VALUE) (0XFF18030C, 0x00020000U ,0x00000000U) */
mask_write 0XFF18030C 0x00020000 0x00000000
# Register : UART0_REF_CTRL @ 0XFF5E0074</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_UART0_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_UART0_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_UART0_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_UART0_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0074, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0074 0x013F3F07 0x01010F00
# Register : UART1_REF_CTRL @ 0XFF5E0078</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_UART1_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_UART1_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_UART1_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_UART1_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0078, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0078 0x013F3F07 0x01010F00
# Register : I2C0_REF_CTRL @ 0XFF5E0120</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_I2C0_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_I2C0_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_I2C0_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_I2C0_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0120, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0120 0x013F3F07 0x01010F00
# Register : I2C1_REF_CTRL @ 0XFF5E0124</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_I2C1_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_I2C1_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_I2C1_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_I2C1_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0124, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0124 0x013F3F07 0x01010F00
# Register : CAN1_REF_CTRL @ 0XFF5E0088</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_CAN1_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_CAN1_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_CAN1_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_CAN1_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0088, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E0088 0x013F3F07 0x01010F00
# Register : CPU_R5_CTRL @ 0XFF5E0090</p>
# Turing this off will shut down the OCM, some parts of the APM, and preve
# nt transactions going from the FPD to the LPD and could lead to system h
# ang
# PSU_CRL_APB_CPU_R5_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_CPU_R5_CTRL_DIVISOR0 0x3
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_CPU_R5_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0090, 0x01003F07U ,0x01000302U) */
mask_write 0XFF5E0090 0x01003F07 0x01000302
# Register : IOU_SWITCH_CTRL @ 0XFF5E009C</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_IOU_SWITCH_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_IOU_SWITCH_CTRL_DIVISOR0 0x6
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_IOU_SWITCH_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E009C, 0x01003F07U ,0x01000602U) */
mask_write 0XFF5E009C 0x01003F07 0x01000602
# Register : PCAP_CTRL @ 0XFF5E00A4</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_PCAP_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_PCAP_CTRL_DIVISOR0 0x8
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_PCAP_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00A4, 0x01003F07U ,0x01000800U) */
mask_write 0XFF5E00A4 0x01003F07 0x01000800
# Register : LPD_SWITCH_CTRL @ 0XFF5E00A8</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_LPD_SWITCH_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_LPD_SWITCH_CTRL_DIVISOR0 0x3
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_LPD_SWITCH_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00A8, 0x01003F07U ,0x01000302U) */
mask_write 0XFF5E00A8 0x01003F07 0x01000302
# Register : LPD_LSBUS_CTRL @ 0XFF5E00AC</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_LPD_LSBUS_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_LPD_LSBUS_CTRL_DIVISOR0 0xf
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_LPD_LSBUS_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00AC, 0x01003F07U ,0x01000F02U) */
mask_write 0XFF5E00AC 0x01003F07 0x01000F02
# Register : DBG_LPD_CTRL @ 0XFF5E00B0</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_DBG_LPD_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_DBG_LPD_CTRL_DIVISOR0 0x6
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_DBG_LPD_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00B0, 0x01003F07U ,0x01000602U) */
mask_write 0XFF5E00B0 0x01003F07 0x01000602
# Register : ADMA_REF_CTRL @ 0XFF5E00B8</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_ADMA_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_ADMA_REF_CTRL_DIVISOR0 0x3
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_ADMA_REF_CTRL_SRCSEL 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00B8, 0x01003F07U ,0x01000302U) */
mask_write 0XFF5E00B8 0x01003F07 0x01000302
# Register : PL0_REF_CTRL @ 0XFF5E00C0</p>
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_PL0_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRL_APB_PL0_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_PL0_REF_CTRL_DIVISOR0 0xf
# 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_PL0_REF_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E00C0, 0x013F3F07U ,0x01010F00U) */
mask_write 0XFF5E00C0 0x013F3F07 0x01010F00
# Register : AMS_REF_CTRL @ 0XFF5E0108</p>
# 6 bit divider
# PSU_CRL_APB_AMS_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRL_APB_AMS_REF_CTRL_DIVISOR0 0x1e
# 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
# ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRL_APB_AMS_REF_CTRL_SRCSEL 0x2
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_AMS_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0108, 0x013F3F07U ,0x01011E02U) */
mask_write 0XFF5E0108 0x013F3F07 0x01011E02
# Register : DLL_REF_CTRL @ 0XFF5E0104</p>
# 000 = IOPLL; 001 = RPLL; (This signal may only be toggled after 4 cycles
# of the old clock and 4 cycles of the new clock. This is not usually an
# issue, but designers must be aware.)
# PSU_CRL_APB_DLL_REF_CTRL_SRCSEL 0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0104, 0x00000007U ,0x00000000U) */
mask_write 0XFF5E0104 0x00000007 0x00000000
# Register : TIMESTAMP_REF_CTRL @ 0XFF5E0128</p>
# 6 bit divider
# PSU_CRL_APB_TIMESTAMP_REF_CTRL_DIVISOR0 0xf
# 1XX = pss_ref_clk; 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may
# only be toggled after 4 cycles of the old clock and 4 cycles of the new
# clock. This is not usually an issue, but designers must be aware.)
# PSU_CRL_APB_TIMESTAMP_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRL_APB_TIMESTAMP_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFF5E0128, 0x01003F07U ,0x01000F00U) */
mask_write 0XFF5E0128 0x01003F07 0x01000F00
# Register : SATA_REF_CTRL @ 0XFD1A00A0</p>
# 000 = IOPLL_TO_FPD; 010 = APLL; 011 = DPLL; (This signal may only be tog
# gled after 4 cycles of the old clock and 4 cycles of the new clock. This
# is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_SATA_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_SATA_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRF_APB_SATA_REF_CTRL_DIVISOR0 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00A0, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A00A0 0x01003F07 0x01000200
# Register : PCIE_REF_CTRL @ 0XFD1A00B4</p>
# 000 = IOPLL_TO_FPD; 010 = RPLL_TO_FPD; 011 = DPLL; (This signal may only
# be toggled after 4 cycles of the old clock and 4 cycles of the new cloc
# k. This is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_PCIE_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_PCIE_REF_CTRL_CLKACT 0x1
# 6 bit divider
# PSU_CRF_APB_PCIE_REF_CTRL_DIVISOR0 0x2
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00B4, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A00B4 0x01003F07 0x01000200
# Register : DP_VIDEO_REF_CTRL @ 0XFD1A0070</p>
# 6 bit divider
# PSU_CRF_APB_DP_VIDEO_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRF_APB_DP_VIDEO_REF_CTRL_DIVISOR0 0x5
# 000 = VPLL; 010 = DPLL; 011 = RPLL_TO_FPD - might be using extra mux; (T
# his signal may only be toggled after 4 cycles of the old clock and 4 cyc
# les of the new clock. This is not usually an issue, but designers must b
# e aware.)
# PSU_CRF_APB_DP_VIDEO_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DP_VIDEO_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0070, 0x013F3F07U ,0x01010500U) */
mask_write 0XFD1A0070 0x013F3F07 0x01010500
# Register : DP_AUDIO_REF_CTRL @ 0XFD1A0074</p>
# 6 bit divider
# PSU_CRF_APB_DP_AUDIO_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRF_APB_DP_AUDIO_REF_CTRL_DIVISOR0 0xf
# 000 = VPLL; 010 = DPLL; 011 = RPLL_TO_FPD - might be using extra mux; (T
# his signal may only be toggled after 4 cycles of the old clock and 4 cyc
# les of the new clock. This is not usually an issue, but designers must b
# e aware.)
# PSU_CRF_APB_DP_AUDIO_REF_CTRL_SRCSEL 0x3
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DP_AUDIO_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0074, 0x013F3F07U ,0x01010F03U) */
mask_write 0XFD1A0074 0x013F3F07 0x01010F03
# Register : DP_STC_REF_CTRL @ 0XFD1A007C</p>
# 6 bit divider
# PSU_CRF_APB_DP_STC_REF_CTRL_DIVISOR1 0x1
# 6 bit divider
# PSU_CRF_APB_DP_STC_REF_CTRL_DIVISOR0 0xe
# 000 = VPLL; 010 = DPLL; 011 = RPLL_TO_FPD; (This signal may only be togg
# led after 4 cycles of the old clock and 4 cycles of the new clock. This
# is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DP_STC_REF_CTRL_SRCSEL 0x3
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DP_STC_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A007C, 0x013F3F07U ,0x01010E03U) */
mask_write 0XFD1A007C 0x013F3F07 0x01010E03
# Register : ACPU_CTRL @ 0XFD1A0060</p>
# 6 bit divider
# PSU_CRF_APB_ACPU_CTRL_DIVISOR0 0x1
# 000 = APLL; 010 = DPLL; 011 = VPLL; (This signal may only be toggled aft
# er 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRF_APB_ACPU_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock. For the half spee
# d APU Clock
# PSU_CRF_APB_ACPU_CTRL_CLKACT_HALF 0x1
# Clock active signal. Switch to 0 to disable the clock. For the full spee
# d ACPUX Clock. This will shut off the high speed clock to the entire APU
# PSU_CRF_APB_ACPU_CTRL_CLKACT_FULL 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0060, 0x03003F07U ,0x03000100U) */
mask_write 0XFD1A0060 0x03003F07 0x03000100
# Register : DBG_FPD_CTRL @ 0XFD1A0068</p>
# 6 bit divider
# PSU_CRF_APB_DBG_FPD_CTRL_DIVISOR0 0x2
# 000 = IOPLL_TO_FPD; 010 = DPLL; 011 = APLL; (This signal may only be tog
# gled after 4 cycles of the old clock and 4 cycles of the new clock. This
# is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DBG_FPD_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DBG_FPD_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0068, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A0068 0x01003F07 0x01000200
# Register : DDR_CTRL @ 0XFD1A0080</p>
# 6 bit divider
# PSU_CRF_APB_DDR_CTRL_DIVISOR0 0x2
# 000 = DPLL; 001 = VPLL; (This signal may only be toggled after 4 cycles
# of the old clock and 4 cycles of the new clock. This is not usually an i
# ssue, but designers must be aware.)
# PSU_CRF_APB_DDR_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0080, 0x00003F07U ,0x00000200U) */
mask_write 0XFD1A0080 0x00003F07 0x00000200
# Register : GPU_REF_CTRL @ 0XFD1A0084</p>
# 6 bit divider
# PSU_CRF_APB_GPU_REF_CTRL_DIVISOR0 0x1
# 000 = IOPLL_TO_FPD; 010 = VPLL; 011 = DPLL; (This signal may only be tog
# gled after 4 cycles of the old clock and 4 cycles of the new clock. This
# is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_GPU_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock, which will stop c
# lock for GPU (and both Pixel Processors).
# PSU_CRF_APB_GPU_REF_CTRL_CLKACT 0x1
# Clock active signal for Pixel Processor. Switch to 0 to disable the cloc
# k only to this Pixel Processor
# PSU_CRF_APB_GPU_REF_CTRL_PP0_CLKACT 0x1
# Clock active signal for Pixel Processor. Switch to 0 to disable the cloc
# k only to this Pixel Processor
# PSU_CRF_APB_GPU_REF_CTRL_PP1_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A0084, 0x07003F07U ,0x07000100U) */
mask_write 0XFD1A0084 0x07003F07 0x07000100
# Register : GDMA_REF_CTRL @ 0XFD1A00B8</p>
# 6 bit divider
# PSU_CRF_APB_GDMA_REF_CTRL_DIVISOR0 0x2
# 000 = APLL; 010 = VPLL; 011 = DPLL; (This signal may only be toggled aft
# er 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRF_APB_GDMA_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_GDMA_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00B8, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A00B8 0x01003F07 0x01000200
# Register : DPDMA_REF_CTRL @ 0XFD1A00BC</p>
# 6 bit divider
# PSU_CRF_APB_DPDMA_REF_CTRL_DIVISOR0 0x2
# 000 = APLL; 010 = VPLL; 011 = DPLL; (This signal may only be toggled aft
# er 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRF_APB_DPDMA_REF_CTRL_SRCSEL 0x0
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_DPDMA_REF_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00BC, 0x01003F07U ,0x01000200U) */
mask_write 0XFD1A00BC 0x01003F07 0x01000200
# Register : TOPSW_MAIN_CTRL @ 0XFD1A00C0</p>
# 6 bit divider
# PSU_CRF_APB_TOPSW_MAIN_CTRL_DIVISOR0 0x2
# 000 = APLL; 010 = VPLL; 011 = DPLL; (This signal may only be toggled aft
# er 4 cycles of the old clock and 4 cycles of the new clock. This is not
# usually an issue, but designers must be aware.)
# PSU_CRF_APB_TOPSW_MAIN_CTRL_SRCSEL 0x3
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_TOPSW_MAIN_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00C0, 0x01003F07U ,0x01000203U) */
mask_write 0XFD1A00C0 0x01003F07 0x01000203
# Register : TOPSW_LSBUS_CTRL @ 0XFD1A00C4</p>
# 6 bit divider
# PSU_CRF_APB_TOPSW_LSBUS_CTRL_DIVISOR0 0x5
# 000 = APLL; 010 = IOPLL_TO_FPD; 011 = DPLL; (This signal may only be tog
# gled after 4 cycles of the old clock and 4 cycles of the new clock. This
# is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_TOPSW_LSBUS_CTRL_SRCSEL 0x2
# Clock active signal. Switch to 0 to disable the clock
# PSU_CRF_APB_TOPSW_LSBUS_CTRL_CLKACT 0x1
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00C4, 0x01003F07U ,0x01000502U) */
mask_write 0XFD1A00C4 0x01003F07 0x01000502
# Register : DBG_TSTMP_CTRL @ 0XFD1A00F8</p>
# 6 bit divider
# PSU_CRF_APB_DBG_TSTMP_CTRL_DIVISOR0 0x2
# 000 = IOPLL_TO_FPD; 010 = DPLL; 011 = APLL; (This signal may only be tog
# gled after 4 cycles of the old clock and 4 cycles of the new clock. This
# is not usually an issue, but designers must be aware.)
# PSU_CRF_APB_DBG_TSTMP_CTRL_SRCSEL 0x0
# This register controls this reference clock
#(OFFSET, MASK, VALUE) (0XFD1A00F8, 0x00003F07U ,0x00000200U) */
mask_write 0XFD1A00F8 0x00003F07 0x00000200
# Register : IOU_TTC_APB_CLK @ 0XFF180380</p>
# 00" = Select the APB switch clock for the APB interface of TTC0'01" = Se
# lect the PLL ref clock for the APB interface of TTC0'10" = Select the R5
# clock for the APB interface of TTC0
# PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC0_SEL 0
# 00" = Select the APB switch clock for the APB interface of TTC1'01" = Se
# lect the PLL ref clock for the APB interface of TTC1'10" = Select the R5
# clock for the APB interface of TTC1
# PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC1_SEL 0
# 00" = Select the APB switch clock for the APB interface of TTC2'01" = Se
# lect the PLL ref clock for the APB interface of TTC2'10" = Select the R5
# clock for the APB interface of TTC2
# PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC2_SEL 0
# 00" = Select the APB switch clock for the APB interface of TTC3'01" = Se
# lect the PLL ref clock for the APB interface of TTC3'10" = Select the R5
# clock for the APB interface of TTC3
# PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC3_SEL 0
# TTC APB clock select
#(OFFSET, MASK, VALUE) (0XFF180380, 0x000000FFU ,0x00000000U) */
mask_write 0XFF180380 0x000000FF 0x00000000
# Register : WDT_CLK_SEL @ 0XFD610100</p>
# System watchdog timer clock source selection: 0: Internal APB clock 1: E
# xternal (PL clock via EMIO or Pinout clock via MIO)
# PSU_FPD_SLCR_WDT_CLK_SEL_SELECT 0
# SWDT clock source select
#(OFFSET, MASK, VALUE) (0XFD610100, 0x00000001U ,0x00000000U) */
mask_write 0XFD610100 0x00000001 0x00000000
# Register : WDT_CLK_SEL @ 0XFF180300</p>
# System watchdog timer clock source selection: 0: internal clock APB cloc
# k 1: external clock from PL via EMIO, or from pinout via MIO
# PSU_IOU_SLCR_WDT_CLK_SEL_SELECT 0
# SWDT clock source select
#(OFFSET, MASK, VALUE) (0XFF180300, 0x00000001U ,0x00000000U) */
mask_write 0XFF180300 0x00000001 0x00000000
# Register : CSUPMU_WDT_CLK_SEL @ 0XFF410050</p>
# System watchdog timer clock source selection: 0: internal clock APB cloc
# k 1: external clock pss_ref_clk
# PSU_LPD_SLCR_CSUPMU_WDT_CLK_SEL_SELECT 0
# SWDT clock source select
#(OFFSET, MASK, VALUE) (0XFF410050, 0x00000001U ,0x00000000U) */
mask_write 0XFF410050 0x00000001 0x00000000
}
set psu_ddr_init_data {
# : DDR INITIALIZATION
# : DDR CONTROLLER RESET
# Register : RST_DDR_SS @ 0XFD1A0108</p>
# DDR block level reset inside of the DDR Sub System
# PSU_CRF_APB_RST_DDR_SS_DDR_RESET 0X1
# DDR sub system block level reset
#(OFFSET, MASK, VALUE) (0XFD1A0108, 0x00000008U ,0x00000008U) */
mask_write 0XFD1A0108 0x00000008 0x00000008
# Register : MSTR @ 0XFD070000</p>
# Indicates the configuration of the device used in the system. - 00 - x4
# device - 01 - x8 device - 10 - x16 device - 11 - x32 device
# PSU_DDRC_MSTR_DEVICE_CONFIG 0x1
# Choose which registers are used. - 0 - Original registers - 1 - Shadow r
# egisters
# PSU_DDRC_MSTR_FREQUENCY_MODE 0x0
# Only present for multi-rank configurations. Each bit represents one rank
# . For two-rank configurations, only bits[25:24] are present. - 1 - popul
# ated - 0 - unpopulated LSB is the lowest rank number. For 2 ranks follow
# ing combinations are legal: - 01 - One rank - 11 - Two ranks - Others -
# Reserved. For 4 ranks following combinations are legal: - 0001 - One ran
# k - 0011 - Two ranks - 1111 - Four ranks
# PSU_DDRC_MSTR_ACTIVE_RANKS 0x1
# SDRAM burst length used: - 0001 - Burst length of 2 (only supported for
# mDDR) - 0010 - Burst length of 4 - 0100 - Burst length of 8 - 1000 - Bur
# st length of 16 (only supported for mDDR, LPDDR2, and LPDDR4) All other
# values are reserved. This controls the burst size used to access the SDR
# AM. This must match the burst length mode register setting in the SDRAM.
# (For BC4/8 on-the-fly mode of DDR3 and DDR4, set this field to 0x0100)
# Burst length of 2 is not supported with AXI ports when MEMC_BURST_LENGTH
# is 8. Burst length of 2 is only supported with MEMC_FREQ_RATIO = 1
# PSU_DDRC_MSTR_BURST_RDWR 0x4
# Set to 1 when the uMCTL2 and DRAM has to be put in DLL-off mode for low
# frequency operation. Set to 0 to put uMCTL2 and DRAM in DLL-on mode for
# normal frequency operation. If DDR4 CRC/parity retry is enabled (CRCPARC
# TL1.crc_parity_retry_enable = 1), dll_off_mode is not supported, and thi
# s bit must be set to '0'.
# PSU_DDRC_MSTR_DLL_OFF_MODE 0x0
# Selects proportion of DQ bus width that is used by the SDRAM - 00 - Full
# DQ bus width to SDRAM - 01 - Half DQ bus width to SDRAM - 10 - Quarter
# DQ bus width to SDRAM - 11 - Reserved. Note that half bus width mode is
# only supported when the SDRAM bus width is a multiple of 16, and quarter
# bus width mode is only supported when the SDRAM bus width is a multiple
# of 32 and the configuration parameter MEMC_QBUS_SUPPORT is set. Bus wid
# th refers to DQ bus width (excluding any ECC width).
# PSU_DDRC_MSTR_DATA_BUS_WIDTH 0x0
# 1 indicates put the DRAM in geardown mode (2N) and 0 indicates put the D
# RAM in normal mode (1N). This register can be changed, only when the Con
# troller is in self-refresh mode. This signal must be set the same value
# as MR3 bit A3. Note: Geardown mode is not supported if the configuration
# parameter MEMC_CMD_RTN2IDLE is set
# PSU_DDRC_MSTR_GEARDOWN_MODE 0x0
# If 1, then uMCTL2 uses 2T timing. Otherwise, uses 1T timing. In 2T timin
# g, all command signals (except chip select) are held for 2 clocks on the
# SDRAM bus. Chip select is asserted on the second cycle of the command N
# ote: 2T timing is not supported in LPDDR2/LPDDR3/LPDDR4 mode Note: 2T ti
# ming is not supported if the configuration parameter MEMC_CMD_RTN2IDLE i
# s set Note: 2T timing is not supported in DDR4 geardown mode.
# PSU_DDRC_MSTR_EN_2T_TIMING_MODE 0x0
# When set, enable burst-chop in DDR3/DDR4. Burst Chop for Reads is exerci
# sed only in HIF configurations (UMCTL2_INCL_ARB not set) and if in full
# bus width mode (MSTR.data_bus_width = 00). Burst Chop for Writes is exer
# cised only if Partial Writes enabled (UMCTL2_PARTIAL_WR=1) and if CRC is
# disabled (CRCPARCTL1.crc_enable = 0). If DDR4 CRC/parity retry is enabl
# ed (CRCPARCTL1.crc_parity_retry_enable = 1), burst chop is not supported
# , and this bit must be set to '0'
# PSU_DDRC_MSTR_BURSTCHOP 0x0
# Select LPDDR4 SDRAM - 1 - LPDDR4 SDRAM device in use. - 0 - non-LPDDR4 d
# evice in use Present only in designs configured to support LPDDR4.
# PSU_DDRC_MSTR_LPDDR4 0x0
# Select DDR4 SDRAM - 1 - DDR4 SDRAM device in use. - 0 - non-DDR4 device
# in use Present only in designs configured to support DDR4.
# PSU_DDRC_MSTR_DDR4 0x1
# Select LPDDR3 SDRAM - 1 - LPDDR3 SDRAM device in use. - 0 - non-LPDDR3 d
# evice in use Present only in designs configured to support LPDDR3.
# PSU_DDRC_MSTR_LPDDR3 0x0
# Select LPDDR2 SDRAM - 1 - LPDDR2 SDRAM device in use. - 0 - non-LPDDR2 d
# evice in use Present only in designs configured to support LPDDR2.
# PSU_DDRC_MSTR_LPDDR2 0x0
# Select DDR3 SDRAM - 1 - DDR3 SDRAM device in use - 0 - non-DDR3 SDRAM de
# vice in use Only present in designs that support DDR3.
# PSU_DDRC_MSTR_DDR3 0x0
# Master Register
#(OFFSET, MASK, VALUE) (0XFD070000, 0xE30FBE3DU ,0x41040010U) */
mask_write 0XFD070000 0xE30FBE3D 0x41040010
# Register : MRCTRL0 @ 0XFD070010</p>
# Setting this register bit to 1 triggers a mode register read or write op
# eration. When the MR operation is complete, the uMCTL2 automatically cle
# ars this bit. The other register fields of this register must be written
# in a separate APB transaction, before setting this mr_wr bit. It is rec
# ommended NOT to set this signal if in Init, Deep power-down or MPSM oper
# ating modes.
# PSU_DDRC_MRCTRL0_MR_WR 0x0
# Address of the mode register that is to be written to. - 0000 - MR0 - 00
# 01 - MR1 - 0010 - MR2 - 0011 - MR3 - 0100 - MR4 - 0101 - MR5 - 0110 - MR
# 6 - 0111 - MR7 Don't Care for LPDDR2/LPDDR3/LPDDR4 (see MRCTRL1.mr_data
# for mode register addressing in LPDDR2/LPDDR3/LPDDR4) This signal is als
# o used for writing to control words of RDIMMs. In that case, it correspo
# nds to the bank address bits sent to the RDIMM In case of DDR4, the bit[
# 3:2] corresponds to the bank group bits. Therefore, the bit[3] as well a
# s the bit[2:0] must be set to an appropriate value which is considered b
# oth the Address Mirroring of UDIMMs/RDIMMs and the Output Inversion of R
# DIMMs.
# PSU_DDRC_MRCTRL0_MR_ADDR 0x0
# Controls which rank is accessed by MRCTRL0.mr_wr. Normally, it is desire
# d to access all ranks, so all bits should be set to 1. However, for mult
# i-rank UDIMMs/RDIMMs which implement address mirroring, it may be necess
# ary to access ranks individually. Examples (assume uMCTL2 is configured
# for 4 ranks): - 0x1 - select rank 0 only - 0x2 - select rank 1 only - 0x
# 5 - select ranks 0 and 2 - 0xA - select ranks 1 and 3 - 0xF - select ran
# ks 0, 1, 2 and 3
# PSU_DDRC_MRCTRL0_MR_RANK 0x3
# Indicates whether Software intervention is allowed via MRCTRL0/MRCTRL1 b
# efore automatic SDRAM initialization routine or not. For DDR4, this bit
# can be used to initialize the DDR4 RCD (MR7) before automatic SDRAM init
# ialization. For LPDDR4, this bit can be used to program additional mode
# registers before automatic SDRAM initialization if necessary. Note: This
# must be cleared to 0 after completing Software operation. Otherwise, SD
# RAM initialization routine will not re-start. - 0 - Software interventio
# n is not allowed - 1 - Software intervention is allowed
# PSU_DDRC_MRCTRL0_SW_INIT_INT 0x0
# Indicates whether the mode register operation is MRS in PDA mode or not
# - 0 - MRS - 1 - MRS in Per DRAM Addressability mode
# PSU_DDRC_MRCTRL0_PDA_EN 0x0
# Indicates whether the mode register operation is MRS or WR/RD for MPR (o
# nly supported for DDR4) - 0 - MRS - 1 - WR/RD for MPR
# PSU_DDRC_MRCTRL0_MPR_EN 0x0
# Indicates whether the mode register operation is read or write. Only use
# d for LPDDR2/LPDDR3/LPDDR4/DDR4. - 0 - Write - 1 - Read
# PSU_DDRC_MRCTRL0_MR_TYPE 0x0
# Mode Register Read/Write Control Register 0. Note: Do not enable more th
# an one of the following fields simultaneously: - sw_init_int - pda_en -
# mpr_en
#(OFFSET, MASK, VALUE) (0XFD070010, 0x8000F03FU ,0x00000030U) */
mask_write 0XFD070010 0x8000F03F 0x00000030
# Register : DERATEEN @ 0XFD070020</p>
# Derate value of tRC for LPDDR4 - 0 - Derating uses +1. - 1 - Derating us
# es +2. - 2 - Derating uses +3. - 3 - Derating uses +4. Present only in d
# esigns configured to support LPDDR4. The required number of cycles for d
# erating can be determined by dividing 3.75ns by the core_ddrc_core_clk p
# eriod, and rounding up the next integer.
# PSU_DDRC_DERATEEN_RC_DERATE_VALUE 0x2
# Derate byte Present only in designs configured to support LPDDR2/LPDDR3/
# LPDDR4 Indicates which byte of the MRR data is used for derating. The ma
# ximum valid value depends on MEMC_DRAM_TOTAL_DATA_WIDTH.
# PSU_DDRC_DERATEEN_DERATE_BYTE 0x0
# Derate value - 0 - Derating uses +1. - 1 - Derating uses +2. Present onl
# y in designs configured to support LPDDR2/LPDDR3/LPDDR4 Set to 0 for all
# LPDDR2 speed grades as derating value of +1.875 ns is less than a core_
# ddrc_core_clk period. Can be 0 or 1 for LPDDR3/LPDDR4, depending if +1.8
# 75 ns is less than a core_ddrc_core_clk period or not.
# PSU_DDRC_DERATEEN_DERATE_VALUE 0x0
# Enables derating - 0 - Timing parameter derating is disabled - 1 - Timin
# g parameter derating is enabled using MR4 read value. Present only in de
# signs configured to support LPDDR2/LPDDR3/LPDDR4 This field must be set
# to '0' for non-LPDDR2/LPDDR3/LPDDR4 mode.
# PSU_DDRC_DERATEEN_DERATE_ENABLE 0x0
# Temperature Derate Enable Register
#(OFFSET, MASK, VALUE) (0XFD070020, 0x000003F3U ,0x00000200U) */
mask_write 0XFD070020 0x000003F3 0x00000200
# Register : DERATEINT @ 0XFD070024</p>
# Interval between two MR4 reads, used to derate the timing parameters. Pr
# esent only in designs configured to support LPDDR2/LPDDR3/LPDDR4. This r
# egister must not be set to zero
# PSU_DDRC_DERATEINT_MR4_READ_INTERVAL 0x800000
# Temperature Derate Interval Register
#(OFFSET, MASK, VALUE) (0XFD070024, 0xFFFFFFFFU ,0x00800000U) */
mask_write 0XFD070024 0xFFFFFFFF 0x00800000
# Register : PWRCTL @ 0XFD070030</p>
# Self refresh state is an intermediate state to enter to Self refresh pow
# er down state or exit Self refresh power down state for LPDDR4. This reg
# ister controls transition from the Self refresh state. - 1 - Prohibit tr
# ansition from Self refresh state - 0 - Allow transition from Self refres
# h state
# PSU_DDRC_PWRCTL_STAY_IN_SELFREF 0x0
# A value of 1 to this register causes system to move to Self Refresh stat
# e immediately, as long as it is not in INIT or DPD/MPSM operating_mode.
# This is referred to as Software Entry/Exit to Self Refresh. - 1 - Softwa
# re Entry to Self Refresh - 0 - Software Exit from Self Refresh
# PSU_DDRC_PWRCTL_SELFREF_SW 0x0
# When this is 1, the uMCTL2 puts the SDRAM into maximum power saving mode
# when the transaction store is empty. This register must be reset to '0'
# to bring uMCTL2 out of maximum power saving mode. Present only in desig
# ns configured to support DDR4. For non-DDR4, this register should not be
# set to 1. Note that MPSM is not supported when using a DWC DDR PHY, if
# the PHY parameter DWC_AC_CS_USE is disabled, as the MPSM exit sequence r
# equires the chip-select signal to toggle. FOR PERFORMANCE ONLY.
# PSU_DDRC_PWRCTL_MPSM_EN 0x0
# Enable the assertion of dfi_dram_clk_disable whenever a clock is not req
# uired by the SDRAM. If set to 0, dfi_dram_clk_disable is never asserted.
# Assertion of dfi_dram_clk_disable is as follows: In DDR2/DDR3, can only
# be asserted in Self Refresh. In DDR4, can be asserted in following: - i
# n Self Refresh. - in Maximum Power Saving Mode In mDDR/LPDDR2/LPDDR3, ca
# n be asserted in following: - in Self Refresh - in Power Down - in Deep
# Power Down - during Normal operation (Clock Stop) In LPDDR4, can be asse
# rted in following: - in Self Refresh Power Down - in Power Down - during
# Normal operation (Clock Stop)
# PSU_DDRC_PWRCTL_EN_DFI_DRAM_CLK_DISABLE 0x0
# When this is 1, uMCTL2 puts the SDRAM into deep power-down mode when the
# transaction store is empty. This register must be reset to '0' to bring
# uMCTL2 out of deep power-down mode. Controller performs automatic SDRAM
# initialization on deep power-down exit. Present only in designs configu
# red to support mDDR or LPDDR2 or LPDDR3. For non-mDDR/non-LPDDR2/non-LPD
# DR3, this register should not be set to 1. FOR PERFORMANCE ONLY.
# PSU_DDRC_PWRCTL_DEEPPOWERDOWN_EN 0x0
# If true then the uMCTL2 goes into power-down after a programmable number
# of cycles 'maximum idle clocks before power down' (PWRTMG.powerdown_to_
# x32). This register bit may be re-programmed during the course of normal
# operation.
# PSU_DDRC_PWRCTL_POWERDOWN_EN 0x0
# If true then the uMCTL2 puts the SDRAM into Self Refresh after a program
# mable number of cycles 'maximum idle clocks before Self Refresh (PWRTMG.
# selfref_to_x32)'. This register bit may be re-programmed during the cour
# se of normal operation.
# PSU_DDRC_PWRCTL_SELFREF_EN 0x0
# Low Power Control Register
#(OFFSET, MASK, VALUE) (0XFD070030, 0x0000007FU ,0x00000000U) */
mask_write 0XFD070030 0x0000007F 0x00000000
# Register : PWRTMG @ 0XFD070034</p>
# After this many clocks of NOP or deselect the uMCTL2 automatically puts
# the SDRAM into Self Refresh. This must be enabled in the PWRCTL.selfref_
# en. Unit: Multiples of 32 clocks. FOR PERFORMANCE ONLY.
# PSU_DDRC_PWRTMG_SELFREF_TO_X32 0x40
# Minimum deep power-down time. For mDDR, value from the JEDEC specificati
# on is 0 as mDDR exits from deep power-down mode immediately after PWRCTL
# .deeppowerdown_en is de-asserted. For LPDDR2/LPDDR3, value from the JEDE
# C specification is 500us. Unit: Multiples of 4096 clocks. Present only i
# n designs configured to support mDDR, LPDDR2 or LPDDR3. FOR PERFORMANCE
# ONLY.
# PSU_DDRC_PWRTMG_T_DPD_X4096 0x84
# After this many clocks of NOP or deselect the uMCTL2 automatically puts
# the SDRAM into power-down. This must be enabled in the PWRCTL.powerdown_
# en. Unit: Multiples of 32 clocks FOR PERFORMANCE ONLY.
# PSU_DDRC_PWRTMG_POWERDOWN_TO_X32 0x10
# Low Power Timing Register
#(OFFSET, MASK, VALUE) (0XFD070034, 0x00FFFF1FU ,0x00408410U) */
mask_write 0XFD070034 0x00FFFF1F 0x00408410
# Register : RFSHCTL0 @ 0XFD070050</p>
# Threshold value in number of clock cycles before the critical refresh or
# page timer expires. A critical refresh is to be issued before this thre
# shold is reached. It is recommended that this not be changed from the de
# fault value, currently shown as 0x2. It must always be less than interna
# lly used t_rfc_nom_x32. Note that, in LPDDR2/LPDDR3/LPDDR4, internally u
# sed t_rfc_nom_x32 may be equal to RFSHTMG.t_rfc_nom_x32>>2 if derating i
# s enabled (DERATEEN.derate_enable=1). Otherwise, internally used t_rfc_n
# om_x32 will be equal to RFSHTMG.t_rfc_nom_x32. Unit: Multiples of 32 clo
# cks.
# PSU_DDRC_RFSHCTL0_REFRESH_MARGIN 0x2
# If the refresh timer (tRFCnom, also known as tREFI) has expired at least
# once, but it has not expired (RFSHCTL0.refresh_burst+1) times yet, then
# a speculative refresh may be performed. A speculative refresh is a refr
# esh performed at a time when refresh would be useful, but before it is a
# bsolutely required. When the SDRAM bus is idle for a period of time dete
# rmined by this RFSHCTL0.refresh_to_x32 and the refresh timer has expired
# at least once since the last refresh, then a speculative refresh is per
# formed. Speculative refreshes continues successively until there are no
# refreshes pending or until new reads or writes are issued to the uMCTL2.
# FOR PERFORMANCE ONLY.
# PSU_DDRC_RFSHCTL0_REFRESH_TO_X32 0x10
# The programmed value + 1 is the number of refresh timeouts that is allow
# ed to accumulate before traffic is blocked and the refreshes are forced
# to execute. Closing pages to perform a refresh is a one-time penalty tha
# t must be paid for each group of refreshes. Therefore, performing refres
# hes in a burst reduces the per-refresh penalty of these page closings. H
# igher numbers for RFSHCTL.refresh_burst slightly increases utilization;
# lower numbers decreases the worst-case latency associated with refreshes
# . - 0 - single refresh - 1 - burst-of-2 refresh - 7 - burst-of-8 refresh
# For information on burst refresh feature refer to section 3.9 of DDR2 J
# EDEC specification - JESD79-2F.pdf. For DDR2/3, the refresh is always pe
# r-rank and not per-bank. The rank refresh can be accumulated over 8*tREF
# I cycles using the burst refresh feature. In DDR4 mode, according to Fin
# e Granularity feature, 8 refreshes can be postponed in 1X mode, 16 refre
# shes in 2X mode and 32 refreshes in 4X mode. If using PHY-initiated upda
# tes, care must be taken in the setting of RFSHCTL0.refresh_burst, to ens
# ure that tRFCmax is not violated due to a PHY-initiated update occurring
# shortly before a refresh burst was due. In this situation, the refresh
# burst will be delayed until the PHY-initiated update is complete.
# PSU_DDRC_RFSHCTL0_REFRESH_BURST 0x0
# - 1 - Per bank refresh; - 0 - All bank refresh. Per bank refresh allows
# traffic to flow to other banks. Per bank refresh is not supported by all
# LPDDR2 devices but should be supported by all LPDDR3/LPDDR4 devices. Pr
# esent only in designs configured to support LPDDR2/LPDDR3/LPDDR4
# PSU_DDRC_RFSHCTL0_PER_BANK_REFRESH 0x0
# Refresh Control Register 0
#(OFFSET, MASK, VALUE) (0XFD070050, 0x00F1F1F4U ,0x00210000U) */
mask_write 0XFD070050 0x00F1F1F4 0x00210000
# Register : RFSHCTL1 @ 0XFD070054</p>
# Refresh timer start for rank 1 (only present in multi-rank configuration
# s). This is useful in staggering the refreshes to multiple ranks to help
# traffic to proceed. This is explained in Refresh Controls section of ar
# chitecture chapter. Unit: Multiples of 32 clocks. FOR PERFORMANCE ONLY.
# PSU_DDRC_RFSHCTL1_REFRESH_TIMER1_START_VALUE_X32 0x0
# Refresh timer start for rank 0 (only present in multi-rank configuration
# s). This is useful in staggering the refreshes to multiple ranks to help
# traffic to proceed. This is explained in Refresh Controls section of ar
# chitecture chapter. Unit: Multiples of 32 clocks. FOR PERFORMANCE ONLY.
# PSU_DDRC_RFSHCTL1_REFRESH_TIMER0_START_VALUE_X32 0x0
# Refresh Control Register 1
#(OFFSET, MASK, VALUE) (0XFD070054, 0x0FFF0FFFU ,0x00000000U) */
mask_write 0XFD070054 0x0FFF0FFF 0x00000000
# Register : RFSHCTL3 @ 0XFD070060</p>
# Fine Granularity Refresh Mode - 000 - Fixed 1x (Normal mode) - 001 - Fix
# ed 2x - 010 - Fixed 4x - 101 - Enable on the fly 2x (not supported) - 11
# 0 - Enable on the fly 4x (not supported) - Everything else - reserved No
# te: The on-the-fly modes is not supported in this version of the uMCTL2.
# Note: This must be set up while the Controller is in reset or while the
# Controller is in self-refresh mode. Changing this during normal operati
# on is not allowed. Making this a dynamic register will be supported in f
# uture version of the uMCTL2.
# PSU_DDRC_RFSHCTL3_REFRESH_MODE 0x0
# Toggle this signal (either from 0 to 1 or from 1 to 0) to indicate that
# the refresh register(s) have been updated. The value is automatically up
# dated when exiting reset, so it does not need to be toggled initially.
# PSU_DDRC_RFSHCTL3_REFRESH_UPDATE_LEVEL 0x0
# When '1', disable auto-refresh generated by the uMCTL2. When auto-refres
# h is disabled, the SoC core must generate refreshes using the registers
# reg_ddrc_rank0_refresh, reg_ddrc_rank1_refresh, reg_ddrc_rank2_refresh a
# nd reg_ddrc_rank3_refresh. When dis_auto_refresh transitions from 0 to 1
# , any pending refreshes are immediately scheduled by the uMCTL2. If DDR4
# CRC/parity retry is enabled (CRCPARCTL1.crc_parity_retry_enable = 1), d
# isable auto-refresh is not supported, and this bit must be set to '0'. T
# his register field is changeable on the fly.
# PSU_DDRC_RFSHCTL3_DIS_AUTO_REFRESH 0x1
# Refresh Control Register 3
#(OFFSET, MASK, VALUE) (0XFD070060, 0x00000073U ,0x00000001U) */
mask_write 0XFD070060 0x00000073 0x00000001
# Register : RFSHTMG @ 0XFD070064</p>
# tREFI: Average time interval between refreshes per rank (Specification:
# 7.8us for DDR2, DDR3 and DDR4. See JEDEC specification for mDDR, LPDDR2,
# LPDDR3 and LPDDR4). For LPDDR2/LPDDR3/LPDDR4: - if using all-bank refre
# shes (RFSHCTL0.per_bank_refresh = 0), this register should be set to tRE
# FIab - if using per-bank refreshes (RFSHCTL0.per_bank_refresh = 1), this
# register should be set to tREFIpb For configurations with MEMC_FREQ_RAT
# IO=2, program this to (tREFI/2), no rounding up. In DDR4 mode, tREFI val
# ue is different depending on the refresh mode. The user should program t
# he appropriate value from the spec based on the value programmed in the
# refresh mode register. Note that RFSHTMG.t_rfc_nom_x32 * 32 must be grea
# ter than RFSHTMG.t_rfc_min, and RFSHTMG.t_rfc_nom_x32 must be greater th
# an 0x1. Unit: Multiples of 32 clocks.
# PSU_DDRC_RFSHTMG_T_RFC_NOM_X32 0x81
# Used only when LPDDR3 memory type is connected. Should only be changed w
# hen uMCTL2 is in reset. Specifies whether to use the tREFBW parameter (r
# equired by some LPDDR3 devices which comply with earlier versions of the
# LPDDR3 JEDEC specification) or not: - 0 - tREFBW parameter not used - 1
# - tREFBW parameter used
# PSU_DDRC_RFSHTMG_LPDDR3_TREFBW_EN 0x1
# tRFC (min): Minimum time from refresh to refresh or activate. For MEMC_F
# REQ_RATIO=1 configurations, t_rfc_min should be set to RoundUp(tRFCmin/t
# CK). For MEMC_FREQ_RATIO=2 configurations, t_rfc_min should be set to Ro
# undUp(RoundUp(tRFCmin/tCK)/2). In LPDDR2/LPDDR3/LPDDR4 mode: - if using
# all-bank refreshes, the tRFCmin value in the above equations is equal to
# tRFCab - if using per-bank refreshes, the tRFCmin value in the above eq
# uations is equal to tRFCpb In DDR4 mode, the tRFCmin value in the above
# equations is different depending on the refresh mode (fixed 1X,2X,4X) an
# d the device density. The user should program the appropriate value from
# the spec based on the 'refresh_mode' and the device density that is use
# d. Unit: Clocks.
# PSU_DDRC_RFSHTMG_T_RFC_MIN 0x8b
# Refresh Timing Register
#(OFFSET, MASK, VALUE) (0XFD070064, 0x0FFF83FFU ,0x0081808BU) */
mask_write 0XFD070064 0x0FFF83FF 0x0081808B
# Register : ECCCFG0 @ 0XFD070070</p>
# Disable ECC scrubs. Valid only when ECCCFG0.ecc_mode = 3'b100 and MEMC_U
# SE_RMW is defined
# PSU_DDRC_ECCCFG0_DIS_SCRUB 0x1
# ECC mode indicator - 000 - ECC disabled - 100 - ECC enabled - SEC/DED ov
# er 1 beat - all other settings are reserved for future use
# PSU_DDRC_ECCCFG0_ECC_MODE 0x0
# ECC Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070070, 0x00000017U ,0x00000010U) */
mask_write 0XFD070070 0x00000017 0x00000010
# Register : ECCCFG1 @ 0XFD070074</p>
# Selects whether to poison 1 or 2 bits - if 0 -> 2-bit (uncorrectable) da
# ta poisoning, if 1 -> 1-bit (correctable) data poisoning, if ECCCFG1.dat
# a_poison_en=1
# PSU_DDRC_ECCCFG1_DATA_POISON_BIT 0x0
# Enable ECC data poisoning - introduces ECC errors on writes to address s
# pecified by the ECCPOISONADDR0/1 registers
# PSU_DDRC_ECCCFG1_DATA_POISON_EN 0x0
# ECC Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070074, 0x00000003U ,0x00000000U) */
mask_write 0XFD070074 0x00000003 0x00000000
# Register : CRCPARCTL1 @ 0XFD0700C4</p>
# The maximum number of DFI PHY clock cycles allowed from the assertion of
# the dfi_rddata_en signal to the assertion of each of the corresponding
# bits of the dfi_rddata_valid signal. This corresponds to the DFI timing
# parameter tphy_rdlat. Refer to PHY specification for correct value. This
# value it only used for detecting read data timeout when DDR4 retry is e
# nabled by CRCPARCTL1.crc_parity_retry_enable=1. Maximum supported value:
# - 1:1 Frequency mode : DFITMG0.dfi_t_rddata_en + CRCPARCTL1.dfi_t_phy_r
# dlat < 'd114 - 1:2 Frequency mode ANDAND DFITMG0.dfi_rddata_use_sdr == 1
# : CRCPARCTL1.dfi_t_phy_rdlat < 64 - 1:2 Frequency mode ANDAND DFITMG0.d
# fi_rddata_use_sdr == 0 : DFITMG0.dfi_t_rddata_en + CRCPARCTL1.dfi_t_phy_
# rdlat < 'd114 Unit: DFI Clocks
# PSU_DDRC_CRCPARCTL1_DFI_T_PHY_RDLAT 0x10
# After a Parity or CRC error is flagged on dfi_alert_n signal, the softwa
# re has an option to read the mode registers in the DRAM before the hardw
# are begins the retry process - 1: Wait for software to read/write the mo
# de registers before hardware begins the retry. After software is done wi
# th its operations, it will clear the alert interrupt register bit - 0: H
# ardware can begin the retry right away after the dfi_alert_n pulse goes
# away. The value on this register is valid only when retry is enabled (PA
# RCTRL.crc_parity_retry_enable = 1) If this register is set to 1 and if t
# he software doesn't clear the interrupt register after handling the pari
# ty/CRC error, then the hardware will not begin the retry process and the
# system will hang. In the case of Parity/CRC error, there are two possib
# ilities when the software doesn't reset MR5[4] to 0. - (i) If 'Persisten
# t parity' mode register bit is NOT set: the commands sent during retry a
# nd normal operation are executed without parity checking. The value in t
# he Parity error log register MPR Page 1 is valid. - (ii) If 'Persistent
# parity' mode register bit is SET: Parity checking is done for commands s
# ent during retry and normal operation. If multiple errors occur before M
# R5[4] is cleared, the error log in MPR Page 1 should be treated as 'Don'
# t care'.
# PSU_DDRC_CRCPARCTL1_ALERT_WAIT_FOR_SW 0x1
# - 1: Enable command retry mechanism in case of C/A Parity or CRC error -
# 0: Disable command retry mechanism when C/A Parity or CRC features are
# enabled. Note that retry functionality is not supported if burst chop is
# enabled (MSTR.burstchop = 1) and/or disable auto-refresh is enabled (RF
# SHCTL3.dis_auto_refresh = 1)
# PSU_DDRC_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE 0x0
# CRC Calculation setting register - 1: CRC includes DM signal - 0: CRC no
# t includes DM signal Present only in designs configured to support DDR4.
# PSU_DDRC_CRCPARCTL1_CRC_INC_DM 0x0
# CRC enable Register - 1: Enable generation of CRC - 0: Disable generatio
# n of CRC The setting of this register should match the CRC mode register
# setting in the DRAM.
# PSU_DDRC_CRCPARCTL1_CRC_ENABLE 0x0
# C/A Parity enable register - 1: Enable generation of C/A parity and dete
# ction of C/A parity error - 0: Disable generation of C/A parity and disa
# ble detection of C/A parity error If RCD's parity error detection or SDR
# AM's parity detection is enabled, this register should be 1.
# PSU_DDRC_CRCPARCTL1_PARITY_ENABLE 0x0
# CRC Parity Control Register1
#(OFFSET, MASK, VALUE) (0XFD0700C4, 0x3F000391U ,0x10000200U) */
mask_write 0XFD0700C4 0x3F000391 0x10000200
# Register : CRCPARCTL2 @ 0XFD0700C8</p>
# Value from the DRAM spec indicating the maximum width of the dfi_alert_n
# pulse when a parity error occurs. Recommended values: - tPAR_ALERT_PW.M
# AX For configurations with MEMC_FREQ_RATIO=2, program this to tPAR_ALERT
# _PW.MAX/2 and round up to next integer value. Values of 0, 1 and 2 are i
# llegal. This value must be greater than CRCPARCTL2.t_crc_alert_pw_max.
# PSU_DDRC_CRCPARCTL2_T_PAR_ALERT_PW_MAX 0x40
# Value from the DRAM spec indicating the maximum width of the dfi_alert_n
# pulse when a CRC error occurs. Recommended values: - tCRC_ALERT_PW.MAX
# For configurations with MEMC_FREQ_RATIO=2, program this to tCRC_ALERT_PW
# .MAX/2 and round up to next integer value. Values of 0, 1 and 2 are ille
# gal. This value must be less than CRCPARCTL2.t_par_alert_pw_max.
# PSU_DDRC_CRCPARCTL2_T_CRC_ALERT_PW_MAX 0x5
# Indicates the maximum duration in number of DRAM clock cycles for which
# a command should be held in the Command Retry FIFO before it is popped o
# ut. Every location in the Command Retry FIFO has an associated down coun
# ting timer that will use this register as the start value. The down coun
# ting starts when a command is loaded into the FIFO. The timer counts dow
# n every 4 DRAM cycles. When the counter reaches zero, the entry is poppe
# d from the FIFO. All the counters are frozen, if a C/A Parity or CRC err
# or occurs before the counter reaches zero. The counter is reset to 0, af
# ter all the commands in the FIFO are retried. Recommended(minimum) value
# s: - Only C/A Parity is enabled. RoundUp((PHY Command Latency(DRAM CLK)
# + CAL + RDIMM delay + tPAR_ALERT_ON.max + tPAR_UNKNOWN + PHY Alert Laten
# cy(DRAM CLK) + board delay) / 4) + 2 - Both C/A Parity and CRC is enable
# d/ Only CRC is enabled. RoundUp((PHY Command Latency(DRAM CLK) + CAL + R
# DIMM delay + WL + 5(BL10)+ tCRC_ALERT.max + PHY Alert Latency(DRAM CLK)
# + board delay) / 4) + 2 Note 1: All value (e.g. tPAR_ALERT_ON) should be
# in terms of DRAM Clock and round up Note 2: Board delay(Command/Alert_n
# ) should be considered. Note 3: Use the worst case(longer) value for PHY
# Latencies/Board delay Note 4: The Recommended values are minimum value
# to be set. For mode detail, See 'Calculation of FIFO Depth' section. Max
# value can be set to this register is defined below: - MEMC_BURST_LENGTH
# == 16 Full bus Mode (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-2
# Full bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-3 Half b
# us Mode (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-4 Half bus Mod
# e (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-6 Quarter bus Mode (C
# RC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-8 Quarter bus Mode (CRC=
# ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-12 - MEMC_BURST_LENGTH != 16
# Full bus Mode (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-1 Full
# bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-2 Half bus Mod
# e (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-2 Half bus Mode (CRC
# =ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-3 Quarter bus Mode (CRC=OFF
# ) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-4 Quarter bus Mode (CRC=ON) Ma
# x value = UMCTL2_RETRY_CMD_FIFO_DEPTH-6 Values of 0, 1 and 2 are illegal
# .
# PSU_DDRC_CRCPARCTL2_RETRY_FIFO_MAX_HOLD_TIMER_X4 0x1f
# CRC Parity Control Register2
#(OFFSET, MASK, VALUE) (0XFD0700C8, 0x01FF1F3FU ,0x0040051FU) */
mask_write 0XFD0700C8 0x01FF1F3F 0x0040051F
# Register : INIT0 @ 0XFD0700D0</p>
# If lower bit is enabled the SDRAM initialization routine is skipped. The
# upper bit decides what state the controller starts up in when reset is
# removed - 00 - SDRAM Intialization routine is run after power-up - 01 -
# SDRAM Intialization routine is skipped after power-up. Controller starts
# up in Normal Mode - 11 - SDRAM Intialization routine is skipped after p
# ower-up. Controller starts up in Self-refresh Mode - 10 - SDRAM Intializ
# ation routine is run after power-up. Note: The only 2'b00 is supported f
# or LPDDR4 in this version of the uMCTL2.
# PSU_DDRC_INIT0_SKIP_DRAM_INIT 0x0
# Cycles to wait after driving CKE high to start the SDRAM initialization
# sequence. Unit: 1024 clocks. DDR2 typically requires a 400 ns delay, req
# uiring this value to be programmed to 2 at all clock speeds. LPDDR2/LPDD
# R3 typically requires this to be programmed for a delay of 200 us. LPDDR
# 4 typically requires this to be programmed for a delay of 2 us. For conf
# igurations with MEMC_FREQ_RATIO=2, program this to JEDEC spec value divi
# ded by 2, and round it up to next integer value.
# PSU_DDRC_INIT0_POST_CKE_X1024 0x2
# Cycles to wait after reset before driving CKE high to start the SDRAM in
# itialization sequence. Unit: 1024 clock cycles. DDR2 specifications typi
# cally require this to be programmed for a delay of >= 200 us. LPDDR2/LPD
# DR3: tINIT1 of 100 ns (min) LPDDR4: tINIT3 of 2 ms (min) For configurati
# ons with MEMC_FREQ_RATIO=2, program this to JEDEC spec value divided by
# 2, and round it up to next integer value.
# PSU_DDRC_INIT0_PRE_CKE_X1024 0x106
# SDRAM Initialization Register 0
#(OFFSET, MASK, VALUE) (0XFD0700D0, 0xC3FF0FFFU ,0x00020106U) */
mask_write 0XFD0700D0 0xC3FF0FFF 0x00020106
# Register : INIT1 @ 0XFD0700D4</p>
# Number of cycles to assert SDRAM reset signal during init sequence. This
# is only present for designs supporting DDR3, DDR4 or LPDDR4 devices. Fo
# r use with a DDR PHY, this should be set to a minimum of 1
# PSU_DDRC_INIT1_DRAM_RSTN_X1024 0x2
# Cycles to wait after completing the SDRAM initialization sequence before
# starting the dynamic scheduler. Unit: Counts of a global timer that pul
# ses every 32 clock cycles. There is no known specific requirement for th
# is; it may be set to zero.
# PSU_DDRC_INIT1_FINAL_WAIT_X32 0x0
# Wait period before driving the OCD complete command to SDRAM. Unit: Coun
# ts of a global timer that pulses every 32 clock cycles. There is no know
# n specific requirement for this; it may be set to zero.
# PSU_DDRC_INIT1_PRE_OCD_X32 0x0
# SDRAM Initialization Register 1
#(OFFSET, MASK, VALUE) (0XFD0700D4, 0x01FF7F0FU ,0x00020000U) */
mask_write 0XFD0700D4 0x01FF7F0F 0x00020000
# Register : INIT2 @ 0XFD0700D8</p>
# Idle time after the reset command, tINIT4. Present only in designs confi
# gured to support LPDDR2. Unit: 32 clock cycles.
# PSU_DDRC_INIT2_IDLE_AFTER_RESET_X32 0x23
# Time to wait after the first CKE high, tINIT2. Present only in designs c
# onfigured to support LPDDR2/LPDDR3. Unit: 1 clock cycle. LPDDR2/LPDDR3 t
# ypically requires 5 x tCK delay.
# PSU_DDRC_INIT2_MIN_STABLE_CLOCK_X1 0x5
# SDRAM Initialization Register 2
#(OFFSET, MASK, VALUE) (0XFD0700D8, 0x0000FF0FU ,0x00002305U) */
mask_write 0XFD0700D8 0x0000FF0F 0x00002305
# Register : INIT3 @ 0XFD0700DC</p>
# DDR2: Value to write to MR register. Bit 8 is for DLL and the setting he
# re is ignored. The uMCTL2 sets this bit appropriately. DDR3/DDR4: Value
# loaded into MR0 register. mDDR: Value to write to MR register. LPDDR2/LP
# DDR3/LPDDR4 - Value to write to MR1 register
# PSU_DDRC_INIT3_MR 0x730
# DDR2: Value to write to EMR register. Bits 9:7 are for OCD and the setti
# ng in this register is ignored. The uMCTL2 sets those bits appropriately
# . DDR3/DDR4: Value to write to MR1 register Set bit 7 to 0. If PHY-evalu
# ation mode training is enabled, this bit is set appropriately by the uMC
# TL2 during write leveling. mDDR: Value to write to EMR register. LPDDR2/
# LPDDR3/LPDDR4 - Value to write to MR2 register
# PSU_DDRC_INIT3_EMR 0x301
# SDRAM Initialization Register 3
#(OFFSET, MASK, VALUE) (0XFD0700DC, 0xFFFFFFFFU ,0x07300301U) */
mask_write 0XFD0700DC 0xFFFFFFFF 0x07300301
# Register : INIT4 @ 0XFD0700E0</p>
# DDR2: Value to write to EMR2 register. DDR3/DDR4: Value to write to MR2
# register LPDDR2/LPDDR3/LPDDR4: Value to write to MR3 register mDDR: Unus
# ed
# PSU_DDRC_INIT4_EMR2 0x20
# DDR2: Value to write to EMR3 register. DDR3/DDR4: Value to write to MR3
# register mDDR/LPDDR2/LPDDR3: Unused LPDDR4: Value to write to MR13 regis
# ter
# PSU_DDRC_INIT4_EMR3 0x200
# SDRAM Initialization Register 4
#(OFFSET, MASK, VALUE) (0XFD0700E0, 0xFFFFFFFFU ,0x00200200U) */
mask_write 0XFD0700E0 0xFFFFFFFF 0x00200200
# Register : INIT5 @ 0XFD0700E4</p>
# ZQ initial calibration, tZQINIT. Present only in designs configured to s
# upport DDR3 or DDR4 or LPDDR2/LPDDR3. Unit: 32 clock cycles. DDR3 typica
# lly requires 512 clocks. DDR4 requires 1024 clocks. LPDDR2/LPDDR3 requir
# es 1 us.
# PSU_DDRC_INIT5_DEV_ZQINIT_X32 0x21
# Maximum duration of the auto initialization, tINIT5. Present only in des
# igns configured to support LPDDR2/LPDDR3. LPDDR2/LPDDR3 typically requir
# es 10 us.
# PSU_DDRC_INIT5_MAX_AUTO_INIT_X1024 0x4
# SDRAM Initialization Register 5
#(OFFSET, MASK, VALUE) (0XFD0700E4, 0x00FF03FFU ,0x00210004U) */
mask_write 0XFD0700E4 0x00FF03FF 0x00210004
# Register : INIT6 @ 0XFD0700E8</p>
# DDR4- Value to be loaded into SDRAM MR4 registers. Used in DDR4 designs
# only.
# PSU_DDRC_INIT6_MR4 0x0
# DDR4- Value to be loaded into SDRAM MR5 registers. Used in DDR4 designs
# only.
# PSU_DDRC_INIT6_MR5 0x6c0
# SDRAM Initialization Register 6
#(OFFSET, MASK, VALUE) (0XFD0700E8, 0xFFFFFFFFU ,0x000006C0U) */
mask_write 0XFD0700E8 0xFFFFFFFF 0x000006C0
# Register : INIT7 @ 0XFD0700EC</p>
# DDR4- Value to be loaded into SDRAM MR6 registers. Used in DDR4 designs
# only.
# PSU_DDRC_INIT7_MR6 0x819
# SDRAM Initialization Register 7
#(OFFSET, MASK, VALUE) (0XFD0700EC, 0xFFFF0000U ,0x08190000U) */
mask_write 0XFD0700EC 0xFFFF0000 0x08190000
# Register : DIMMCTL @ 0XFD0700F0</p>
# Disabling Address Mirroring for BG bits. When this is set to 1, BG0 and
# BG1 are NOT swapped even if Address Mirroring is enabled. This will be r
# equired for DDR4 DIMMs with x16 devices. - 1 - BG0 and BG1 are NOT swapp
# ed. - 0 - BG0 and BG1 are swapped if address mirroring is enabled.
# PSU_DDRC_DIMMCTL_DIMM_DIS_BG_MIRRORING 0x0
# Enable for BG1 bit of MRS command. BG1 bit of the mode register address
# is specified as RFU (Reserved for Future Use) and must be programmed to
# 0 during MRS. In case where DRAMs which do not have BG1 are attached and
# both the CA parity and the Output Inversion are enabled, this must be s
# et to 0, so that the calculation of CA parity will not include BG1 bit.
# Note: This has no effect on the address of any other memory accesses, or
# of software-driven mode register accesses. If address mirroring is enab
# led, this is applied to BG1 of even ranks and BG0 of odd ranks. - 1 - En
# abled - 0 - Disabled
# PSU_DDRC_DIMMCTL_MRS_BG1_EN 0x1
# Enable for A17 bit of MRS command. A17 bit of the mode register address
# is specified as RFU (Reserved for Future Use) and must be programmed to
# 0 during MRS. In case where DRAMs which do not have A17 are attached and
# the Output Inversion are enabled, this must be set to 0, so that the ca
# lculation of CA parity will not include A17 bit. Note: This has no effec
# t on the address of any other memory accesses, or of software-driven mod
# e register accesses. - 1 - Enabled - 0 - Disabled
# PSU_DDRC_DIMMCTL_MRS_A17_EN 0x0
# Output Inversion Enable (for DDR4 RDIMM implementations only). DDR4 RDIM
# M implements the Output Inversion feature by default, which means that t
# he following address, bank address and bank group bits of B-side DRAMs a
# re inverted: A3-A9, A11, A13, A17, BA0-BA1, BG0-BG1. Setting this bit en
# sures that, for mode register accesses generated by the uMCTL2 during th
# e automatic initialization routine and enabling of a particular DDR4 fea
# ture, separate A-side and B-side mode register accesses are generated. F
# or B-side mode register accesses, these bits are inverted within the uMC
# TL2 to compensate for this RDIMM inversion. Note: This has no effect on
# the address of any other memory accesses, or of software-driven mode reg
# ister accesses. - 1 - Implement output inversion for B-side DRAMs. - 0 -
# Do not implement output inversion for B-side DRAMs.
# PSU_DDRC_DIMMCTL_DIMM_OUTPUT_INV_EN 0x0
# Address Mirroring Enable (for multi-rank UDIMM implementations and multi
# -rank DDR4 RDIMM implementations). Some UDIMMs and DDR4 RDIMMs implement
# address mirroring for odd ranks, which means that the following address
# , bank address and bank group bits are swapped: (A3, A4), (A5, A6), (A7,
# A8), (BA0, BA1) and also (A11, A13), (BG0, BG1) for the DDR4. Setting t
# his bit ensures that, for mode register accesses during the automatic in
# itialization routine, these bits are swapped within the uMCTL2 to compen
# sate for this UDIMM/RDIMM swapping. In addition to the automatic initial
# ization routine, in case of DDR4 UDIMM/RDIMM, they are swapped during th
# e automatic MRS access to enable/disable of a particular DDR4 feature. N
# ote: This has no effect on the address of any other memory accesses, or
# of software-driven mode register accesses. This is not supported for mDD
# R, LPDDR2, LPDDR3 or LPDDR4 SDRAMs. Note: In case of x16 DDR4 DIMMs, BG1
# output of MRS for the odd ranks is same as BG0 because BG1 is invalid,
# hence dimm_dis_bg_mirroring register must be set to 1. - 1 - For odd ran
# ks, implement address mirroring for MRS commands to during initializatio
# n and for any automatic DDR4 MRS commands (to be used if UDIMM/RDIMM imp
# lements address mirroring) - 0 - Do not implement address mirroring
# PSU_DDRC_DIMMCTL_DIMM_ADDR_MIRR_EN 0x0
# Staggering enable for multi-rank accesses (for multi-rank UDIMM and RDIM
# M implementations only). This is not supported for mDDR, LPDDR2, LPDDR3
# or LPDDR4 SDRAMs. Note: Even if this bit is set it does not take care of
# software driven MR commands (via MRCTRL0/MRCTRL1), where software is re
# sponsible to send them to seperate ranks as appropriate. - 1 - (DDR4) Se
# nd MRS commands to each ranks seperately - 1 - (non-DDR4) Send all comma
# nds to even and odd ranks seperately - 0 - Do not stagger accesses
# PSU_DDRC_DIMMCTL_DIMM_STAGGER_CS_EN 0x0
# DIMM Control Register
#(OFFSET, MASK, VALUE) (0XFD0700F0, 0x0000003FU ,0x00000010U) */
mask_write 0XFD0700F0 0x0000003F 0x00000010
# Register : RANKCTL @ 0XFD0700F4</p>
# Only present for multi-rank configurations. Indicates the number of cloc
# ks of gap in data responses when performing consecutive writes to differ
# ent ranks. This is used to switch the delays in the PHY to match the ran
# k requirements. This value should consider both PHY requirement and ODT
# requirement. - PHY requirement: tphy_wrcsgap + 1 (see PHY databook for v
# alue of tphy_wrcsgap) If CRC feature is enabled, should be increased by
# 1. If write preamble is set to 2tCK(DDR4/LPDDR4 only), should be increas
# ed by 1. If write postamble is set to 1.5tCK(LPDDR4 only), should be inc
# reased by 1. - ODT requirement: The value programmed in this register ta
# kes care of the ODT switch off timing requirement when switching ranks d
# uring writes. For LPDDR4, the requirement is ODTLoff - ODTLon - BL/2 + 1
# For configurations with MEMC_FREQ_RATIO=1, program this to the larger o
# f PHY requirement or ODT requirement. For configurations with MEMC_FREQ_
# RATIO=2, program this to the larger value divided by two and round it up
# to the next integer.
# PSU_DDRC_RANKCTL_DIFF_RANK_WR_GAP 0x6
# Only present for multi-rank configurations. Indicates the number of cloc
# ks of gap in data responses when performing consecutive reads to differe
# nt ranks. This is used to switch the delays in the PHY to match the rank
# requirements. This value should consider both PHY requirement and ODT r
# equirement. - PHY requirement: tphy_rdcsgap + 1 (see PHY databook for va
# lue of tphy_rdcsgap) If read preamble is set to 2tCK(DDR4/LPDDR4 only),
# should be increased by 1. If read postamble is set to 1.5tCK(LPDDR4 only
# ), should be increased by 1. - ODT requirement: The value programmed in
# this register takes care of the ODT switch off timing requirement when s
# witching ranks during reads. For configurations with MEMC_FREQ_RATIO=1,
# program this to the larger of PHY requirement or ODT requirement. For co
# nfigurations with MEMC_FREQ_RATIO=2, program this to the larger value di
# vided by two and round it up to the next integer.
# PSU_DDRC_RANKCTL_DIFF_RANK_RD_GAP 0x6
# Only present for multi-rank configurations. Background: Reads to the sam
# e rank can be performed back-to-back. Reads to different ranks require a
# dditional gap dictated by the register RANKCTL.diff_rank_rd_gap. This is
# to avoid possible data bus contention as well as to give PHY enough tim
# e to switch the delay when changing ranks. The uMCTL2 arbitrates for bus
# access on a cycle-by-cycle basis; therefore after a read is scheduled,
# there are few clock cycles (determined by the value on RANKCTL.diff_rank
# _rd_gap register) in which only reads from the same rank are eligible to
# be scheduled. This prevents reads from other ranks from having fair acc
# ess to the data bus. This parameter represents the maximum number of rea
# ds that can be scheduled consecutively to the same rank. After this numb
# er is reached, a delay equal to RANKCTL.diff_rank_rd_gap is inserted by
# the scheduler to allow all ranks a fair opportunity to be scheduled. Hig
# her numbers increase bandwidth utilization, lower numbers increase fairn
# ess. This feature can be DISABLED by setting this register to 0. When se
# t to 0, the Controller will stay on the same rank as long as commands ar
# e available for it. Minimum programmable value is 0 (feature disabled) a
# nd maximum programmable value is 0xF. FOR PERFORMANCE ONLY.
# PSU_DDRC_RANKCTL_MAX_RANK_RD 0xf
# Rank Control Register
#(OFFSET, MASK, VALUE) (0XFD0700F4, 0x00000FFFU ,0x0000066FU) */
mask_write 0XFD0700F4 0x00000FFF 0x0000066F
# Register : DRAMTMG0 @ 0XFD070100</p>
# Minimum time between write and precharge to same bank. Unit: Clocks Spec
# ifications: WL + BL/2 + tWR = approximately 8 cycles + 15 ns = 14 clocks
# @400MHz and less for lower frequencies where: - WL = write latency - BL
# = burst length. This must match the value programmed in the BL bit of t
# he mode register to the SDRAM. BST (burst terminate) is not supported at
# present. - tWR = Write recovery time. This comes directly from the SDRA
# M specification. Add one extra cycle for LPDDR2/LPDDR3/LPDDR4 for this p
# arameter. For configurations with MEMC_FREQ_RATIO=2, 1T mode, divide the
# above value by 2. No rounding up. For configurations with MEMC_FREQ_RAT
# IO=2, 2T mode or LPDDR4 mode, divide the above value by 2 and round it u
# p to the next integer value.
# PSU_DDRC_DRAMTMG0_WR2PRE 0x11
# tFAW Valid only when 8 or more banks(or banks x bank groups) are present
# . In 8-bank design, at most 4 banks must be activated in a rolling windo
# w of tFAW cycles. For configurations with MEMC_FREQ_RATIO=2, program thi
# s to (tFAW/2) and round up to next integer value. In a 4-bank design, se
# t this register to 0x1 independent of the MEMC_FREQ_RATIO configuration.
# Unit: Clocks
# PSU_DDRC_DRAMTMG0_T_FAW 0x10
# tRAS(max): Maximum time between activate and precharge to same bank. Thi
# s is the maximum time that a page can be kept open Minimum value of this
# register is 1. Zero is invalid. For configurations with MEMC_FREQ_RATIO
# =2, program this to (tRAS(max)-1)/2. No rounding up. Unit: Multiples of
# 1024 clocks.
# PSU_DDRC_DRAMTMG0_T_RAS_MAX 0x24
# tRAS(min): Minimum time between activate and precharge to the same bank.
# For configurations with MEMC_FREQ_RATIO=2, 1T mode, program this to tRA
# S(min)/2. No rounding up. For configurations with MEMC_FREQ_RATIO=2, 2T
# mode or LPDDR4 mode, program this to (tRAS(min)/2) and round it up to th
# e next integer value. Unit: Clocks
# PSU_DDRC_DRAMTMG0_T_RAS_MIN 0x12
# SDRAM Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD070100, 0x7F3F7F3FU ,0x11102412U) */
mask_write 0XFD070100 0x7F3F7F3F 0x11102412
# Register : DRAMTMG1 @ 0XFD070104</p>
# tXP: Minimum time after power-down exit to any operation. For DDR3, this
# should be programmed to tXPDLL if slow powerdown exit is selected in MR
# 0[12]. If C/A parity for DDR4 is used, set to (tXP+PL) instead. For conf
# igurations with MEMC_FREQ_RATIO=2, program this to (tXP/2) and round it
# up to the next integer value. Units: Clocks
# PSU_DDRC_DRAMTMG1_T_XP 0x4
# tRTP: Minimum time from read to precharge of same bank. - DDR2: tAL + BL
# /2 + max(tRTP, 2) - 2 - DDR3: tAL + max (tRTP, 4) - DDR4: Max of followi
# ng two equations: tAL + max (tRTP, 4) or, RL + BL/2 - tRP. - mDDR: BL/2
# - LPDDR2: Depends on if it's LPDDR2-S2 or LPDDR2-S4: LPDDR2-S2: BL/2 + t
# RTP - 1. LPDDR2-S4: BL/2 + max(tRTP,2) - 2. - LPDDR3: BL/2 + max(tRTP,4)
# - 4 - LPDDR4: BL/2 + max(tRTP,8) - 8 For configurations with MEMC_FREQ_
# RATIO=2, 1T mode, divide the above value by 2. No rounding up. For confi
# gurations with MEMC_FREQ_RATIO=2, 2T mode or LPDDR4 mode, divide the abo
# ve value by 2 and round it up to the next integer value. Unit: Clocks.
# PSU_DDRC_DRAMTMG1_RD2PRE 0x4
# tRC: Minimum time between activates to same bank. For configurations wit
# h MEMC_FREQ_RATIO=2, program this to (tRC/2) and round up to next intege
# r value. Unit: Clocks.
# PSU_DDRC_DRAMTMG1_T_RC 0x1a
# SDRAM Timing Register 1
#(OFFSET, MASK, VALUE) (0XFD070104, 0x001F1F7FU ,0x0004041AU) */
mask_write 0XFD070104 0x001F1F7F 0x0004041A
# Register : DRAMTMG2 @ 0XFD070108</p>
# Set to WL Time from write command to write data on SDRAM interface. This
# must be set to WL. For mDDR, it should normally be set to 1. Note that,
# depending on the PHY, if using RDIMM, it may be necessary to use a valu
# e of WL + 1 to compensate for the extra cycle of latency through the RDI
# MM For configurations with MEMC_FREQ_RATIO=2, divide the value calculate
# d using the above equation by 2, and round it up to next integer. This r
# egister field is not required for DDR2 and DDR3 (except if MEMC_TRAINING
# is set), as the DFI read and write latencies defined in DFITMG0 and DFI
# TMG1 are sufficient for those protocols Unit: clocks
# PSU_DDRC_DRAMTMG2_WRITE_LATENCY 0x7
# Set to RL Time from read command to read data on SDRAM interface. This m
# ust be set to RL. Note that, depending on the PHY, if using RDIMM, it ma
# t be necessary to use a value of RL + 1 to compensate for the extra cycl
# e of latency through the RDIMM For configurations with MEMC_FREQ_RATIO=2
# , divide the value calculated using the above equation by 2, and round i
# t up to next integer. This register field is not required for DDR2 and D
# DR3 (except if MEMC_TRAINING is set), as the DFI read and write latencie
# s defined in DFITMG0 and DFITMG1 are sufficient for those protocols Unit
# : clocks
# PSU_DDRC_DRAMTMG2_READ_LATENCY 0x8
# DDR2/3/mDDR: RL + BL/2 + 2 - WL DDR4: RL + BL/2 + 1 + WR_PREAMBLE - WL L
# PDDR2/LPDDR3: RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL LPDDR4(DQ ODT is Di
# sabled): RL + BL/2 + RU(tDQSCKmax/tCK) + WR_PREAMBLE + RD_POSTAMBLE - WL
# LPDDR4(DQ ODT is Enabled) : RL + BL/2 + RU(tDQSCKmax/tCK) + RD_POSTAMBL
# E - ODTLon - RU(tODTon(min)/tCK) Minimum time from read command to write
# command. Include time for bus turnaround and all per-bank, per-rank, an
# d global constraints. Unit: Clocks. Where: - WL = write latency - BL = b
# urst length. This must match the value programmed in the BL bit of the m
# ode register to the SDRAM - RL = read latency = CAS latency - WR_PREAMBL
# E = write preamble. This is unique to DDR4 and LPDDR4. - RD_POSTAMBLE =
# read postamble. This is unique to LPDDR4. For LPDDR2/LPDDR3/LPDDR4, if d
# erating is enabled (DERATEEN.derate_enable=1), derated tDQSCKmax should
# be used. For configurations with MEMC_FREQ_RATIO=2, divide the value cal
# culated using the above equation by 2, and round it up to next integer.
# PSU_DDRC_DRAMTMG2_RD2WR 0x6
# DDR4: CWL + PL + BL/2 + tWTR_L Others: CWL + BL/2 + tWTR In DDR4, minimu
# m time from write command to read command for same bank group. In others
# , minimum time from write command to read command. Includes time for bus
# turnaround, recovery times, and all per-bank, per-rank, and global cons
# traints. Unit: Clocks. Where: - CWL = CAS write latency - PL = Parity la
# tency - BL = burst length. This must match the value programmed in the B
# L bit of the mode register to the SDRAM - tWTR_L = internal write to rea
# d command delay for same bank group. This comes directly from the SDRAM
# specification. - tWTR = internal write to read command delay. This comes
# directly from the SDRAM specification. Add one extra cycle for LPDDR2/L
# PDDR3/LPDDR4 operation. For configurations with MEMC_FREQ_RATIO=2, divid
# e the value calculated using the above equation by 2, and round it up to
# next integer.
# PSU_DDRC_DRAMTMG2_WR2RD 0xd
# SDRAM Timing Register 2
#(OFFSET, MASK, VALUE) (0XFD070108, 0x3F3F3F3FU ,0x0708060DU) */
mask_write 0XFD070108 0x3F3F3F3F 0x0708060D
# Register : DRAMTMG3 @ 0XFD07010C</p>
# Time to wait after a mode register write or read (MRW or MRR). Present o
# nly in designs configured to support LPDDR2, LPDDR3 or LPDDR4. LPDDR2 ty
# pically requires value of 5. LPDDR3 typically requires value of 10. LPDD
# R4: Set this to the larger of tMRW and tMRWCKEL. For LPDDR2, this regist
# er is used for the time from a MRW/MRR to all other commands. For LDPDR3
# , this register is used for the time from a MRW/MRR to a MRW/MRR.
# PSU_DDRC_DRAMTMG3_T_MRW 0x5
# tMRD: Cycles to wait after a mode register write or read. Depending on t
# he connected SDRAM, tMRD represents: DDR2/mDDR: Time from MRS to any com
# mand DDR3/4: Time from MRS to MRS command LPDDR2: not used LPDDR3/4: Tim
# e from MRS to non-MRS command For configurations with MEMC_FREQ_RATIO=2,
# program this to (tMRD/2) and round it up to the next integer value. If
# C/A parity for DDR4 is used, set to tMRD_PAR(tMOD+PL) instead.
# PSU_DDRC_DRAMTMG3_T_MRD 0x4
# tMOD: Parameter used only in DDR3 and DDR4. Cycles between load mode com
# mand and following non-load mode command. If C/A parity for DDR4 is used
# , set to tMOD_PAR(tMOD+PL) instead. Set to tMOD if MEMC_FREQ_RATIO=1, or
# tMOD/2 (rounded up to next integer) if MEMC_FREQ_RATIO=2. Note that if
# using RDIMM, depending on the PHY, it may be necessary to use a value of
# tMOD + 1 or (tMOD + 1)/2 to compensate for the extra cycle of latency a
# pplied to mode register writes by the RDIMM chip.
# PSU_DDRC_DRAMTMG3_T_MOD 0xc
# SDRAM Timing Register 3
#(OFFSET, MASK, VALUE) (0XFD07010C, 0x3FF3F3FFU ,0x0050400CU) */
mask_write 0XFD07010C 0x3FF3F3FF 0x0050400C
# Register : DRAMTMG4 @ 0XFD070110</p>
# tRCD - tAL: Minimum time from activate to read or write command to same
# bank. For configurations with MEMC_FREQ_RATIO=2, program this to ((tRCD
# - tAL)/2) and round it up to the next integer value. Minimum value allow
# ed for this register is 1, which implies minimum (tRCD - tAL) value to b
# e 2 in configurations with MEMC_FREQ_RATIO=2. Unit: Clocks.
# PSU_DDRC_DRAMTMG4_T_RCD 0x8
# DDR4: tCCD_L: This is the minimum time between two reads or two writes f
# or same bank group. Others: tCCD: This is the minimum time between two r
# eads or two writes. For configurations with MEMC_FREQ_RATIO=2, program t
# his to (tCCD_L/2 or tCCD/2) and round it up to the next integer value. U
# nit: clocks.
# PSU_DDRC_DRAMTMG4_T_CCD 0x3
# DDR4: tRRD_L: Minimum time between activates from bank 'a' to bank 'b' f
# or same bank group. Others: tRRD: Minimum time between activates from ba
# nk 'a' to bank 'b'For configurations with MEMC_FREQ_RATIO=2, program thi
# s to (tRRD_L/2 or tRRD/2) and round it up to the next integer value. Uni
# t: Clocks.
# PSU_DDRC_DRAMTMG4_T_RRD 0x3
# tRP: Minimum time from precharge to activate of same bank. For MEMC_FREQ
# _RATIO=1 configurations, t_rp should be set to RoundUp(tRP/tCK). For MEM
# C_FREQ_RATIO=2 configurations, t_rp should be set to RoundDown(RoundUp(t
# RP/tCK)/2) + 1. For MEMC_FREQ_RATIO=2 configurations in LPDDR4, t_rp sho
# uld be set to RoundUp(RoundUp(tRP/tCK)/2). Unit: Clocks.
# PSU_DDRC_DRAMTMG4_T_RP 0x9
# SDRAM Timing Register 4
#(OFFSET, MASK, VALUE) (0XFD070110, 0x1F0F0F1FU ,0x08030309U) */
mask_write 0XFD070110 0x1F0F0F1F 0x08030309
# Register : DRAMTMG5 @ 0XFD070114</p>
# This is the time before Self Refresh Exit that CK is maintained as a val
# id clock before issuing SRX. Specifies the clock stable time before SRX.
# Recommended settings: - mDDR: 1 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: tCKCK
# EH - DDR2: 1 - DDR3: tCKSRX - DDR4: tCKSRX For configurations with MEMC_
# FREQ_RATIO=2, program this to recommended value divided by two and round
# it up to next integer.
# PSU_DDRC_DRAMTMG5_T_CKSRX 0x6
# This is the time after Self Refresh Down Entry that CK is maintained as
# a valid clock. Specifies the clock disable delay after SRE. Recommended
# settings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: tCKCKEL - DDR2: 1
# - DDR3: max (10 ns, 5 tCK) - DDR4: max (10 ns, 5 tCK) For configurations
# with MEMC_FREQ_RATIO=2, program this to recommended value divided by tw
# o and round it up to next integer.
# PSU_DDRC_DRAMTMG5_T_CKSRE 0x6
# Minimum CKE low width for Self refresh or Self refresh power down entry
# to exit timing in memory clock cycles. Recommended settings: - mDDR: tRF
# C - LPDDR2: tCKESR - LPDDR3: tCKESR - LPDDR4: max(tCKELPD, tSR) - DDR2:
# tCKE - DDR3: tCKE + 1 - DDR4: tCKE + 1 For configurations with MEMC_FREQ
# _RATIO=2, program this to recommended value divided by two and round it
# up to next integer.
# PSU_DDRC_DRAMTMG5_T_CKESR 0x4
# Minimum number of cycles of CKE HIGH/LOW during power-down and self refr
# esh. - LPDDR2/LPDDR3 mode: Set this to the larger of tCKE or tCKESR - LP
# DDR4 mode: Set this to the larger of tCKE, tCKELPD or tSR. - Non-LPDDR2/
# non-LPDDR3/non-LPDDR4 designs: Set this to tCKE value. For configuration
# s with MEMC_FREQ_RATIO=2, program this to (value described above)/2 and
# round it up to the next integer value. Unit: Clocks.
# PSU_DDRC_DRAMTMG5_T_CKE 0x3
# SDRAM Timing Register 5
#(OFFSET, MASK, VALUE) (0XFD070114, 0x0F0F3F1FU ,0x06060403U) */
mask_write 0XFD070114 0x0F0F3F1F 0x06060403
# Register : DRAMTMG6 @ 0XFD070118</p>
# This is the time after Deep Power Down Entry that CK is maintained as a
# valid clock. Specifies the clock disable delay after DPDE. Recommended s
# ettings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 For configurations with MEMC_
# FREQ_RATIO=2, program this to recommended value divided by two and round
# it up to next integer. This is only present for designs supporting mDDR
# or LPDDR2/LPDDR3 devices.
# PSU_DDRC_DRAMTMG6_T_CKDPDE 0x1
# This is the time before Deep Power Down Exit that CK is maintained as a
# valid clock before issuing DPDX. Specifies the clock stable time before
# DPDX. Recommended settings: - mDDR: 1 - LPDDR2: 2 - LPDDR3: 2 For config
# urations with MEMC_FREQ_RATIO=2, program this to recommended value divid
# ed by two and round it up to next integer. This is only present for desi
# gns supporting mDDR or LPDDR2 devices.
# PSU_DDRC_DRAMTMG6_T_CKDPDX 0x1
# This is the time before Clock Stop Exit that CK is maintained as a valid
# clock before issuing Clock Stop Exit. Specifies the clock stable time b
# efore next command after Clock Stop Exit. Recommended settings: - mDDR:
# 1 - LPDDR2: tXP + 2 - LPDDR3: tXP + 2 - LPDDR4: tXP + 2 For configuratio
# ns with MEMC_FREQ_RATIO=2, program this to recommended value divided by
# two and round it up to next integer. This is only present for designs su
# pporting mDDR or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_DRAMTMG6_T_CKCSX 0x4
# SDRAM Timing Register 6
#(OFFSET, MASK, VALUE) (0XFD070118, 0x0F0F000FU ,0x01010004U) */
mask_write 0XFD070118 0x0F0F000F 0x01010004
# Register : DRAMTMG7 @ 0XFD07011C</p>
# This is the time after Power Down Entry that CK is maintained as a valid
# clock. Specifies the clock disable delay after PDE. Recommended setting
# s: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: tCKCKEL For configuration
# s with MEMC_FREQ_RATIO=2, program this to recommended value divided by t
# wo and round it up to next integer. This is only present for designs sup
# porting mDDR or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_DRAMTMG7_T_CKPDE 0x6
# This is the time before Power Down Exit that CK is maintained as a valid
# clock before issuing PDX. Specifies the clock stable time before PDX. R
# ecommended settings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: 2 For c
# onfigurations with MEMC_FREQ_RATIO=2, program this to recommended value
# divided by two and round it up to next integer. This is only present for
# designs supporting mDDR or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_DRAMTMG7_T_CKPDX 0x6
# SDRAM Timing Register 7
#(OFFSET, MASK, VALUE) (0XFD07011C, 0x00000F0FU ,0x00000606U) */
mask_write 0XFD07011C 0x00000F0F 0x00000606
# Register : DRAMTMG8 @ 0XFD070120</p>
# tXS_FAST: Exit Self Refresh to ZQCL, ZQCS and MRS (only CL, WR, RTP and
# Geardown mode). For configurations with MEMC_FREQ_RATIO=2, program this
# to the above value divided by 2 and round up to next integer value. Unit
# : Multiples of 32 clocks. Note: This is applicable to only ZQCL/ZQCS com
# mands. Note: Ensure this is less than or equal to t_xs_x32.
# PSU_DDRC_DRAMTMG8_T_XS_FAST_X32 0x3
# tXS_ABORT: Exit Self Refresh to commands not requiring a locked DLL in S
# elf Refresh Abort. For configurations with MEMC_FREQ_RATIO=2, program th
# is to the above value divided by 2 and round up to next integer value. U
# nit: Multiples of 32 clocks. Note: Ensure this is less than or equal to
# t_xs_x32.
# PSU_DDRC_DRAMTMG8_T_XS_ABORT_X32 0x3
# tXSDLL: Exit Self Refresh to commands requiring a locked DLL. For config
# urations with MEMC_FREQ_RATIO=2, program this to the above value divided
# by 2 and round up to next integer value. Unit: Multiples of 32 clocks.
# Note: Used only for DDR2, DDR3 and DDR4 SDRAMs.
# PSU_DDRC_DRAMTMG8_T_XS_DLL_X32 0xd
# tXS: Exit Self Refresh to commands not requiring a locked DLL. For confi
# gurations with MEMC_FREQ_RATIO=2, program this to the above value divide
# d by 2 and round up to next integer value. Unit: Multiples of 32 clocks.
# Note: Used only for DDR2, DDR3 and DDR4 SDRAMs.
# PSU_DDRC_DRAMTMG8_T_XS_X32 0x6
# SDRAM Timing Register 8
#(OFFSET, MASK, VALUE) (0XFD070120, 0x7F7F7F7FU ,0x03030D06U) */
mask_write 0XFD070120 0x7F7F7F7F 0x03030D06
# Register : DRAMTMG9 @ 0XFD070124</p>
# DDR4 Write preamble mode - 0: 1tCK preamble - 1: 2tCK preamble Present o
# nly with MEMC_FREQ_RATIO=2
# PSU_DDRC_DRAMTMG9_DDR4_WR_PREAMBLE 0x0
# tCCD_S: This is the minimum time between two reads or two writes for dif
# ferent bank group. For bank switching (from bank 'a' to bank 'b'), the m
# inimum time is this value + 1. For configurations with MEMC_FREQ_RATIO=2
# , program this to (tCCD_S/2) and round it up to the next integer value.
# Present only in designs configured to support DDR4. Unit: clocks.
# PSU_DDRC_DRAMTMG9_T_CCD_S 0x2
# tRRD_S: Minimum time between activates from bank 'a' to bank 'b' for dif
# ferent bank group. For configurations with MEMC_FREQ_RATIO=2, program th
# is to (tRRD_S/2) and round it up to the next integer value. Present only
# in designs configured to support DDR4. Unit: Clocks.
# PSU_DDRC_DRAMTMG9_T_RRD_S 0x2
# CWL + PL + BL/2 + tWTR_S Minimum time from write command to read command
# for different bank group. Includes time for bus turnaround, recovery ti
# mes, and all per-bank, per-rank, and global constraints. Present only in
# designs configured to support DDR4. Unit: Clocks. Where: - CWL = CAS wr
# ite latency - PL = Parity latency - BL = burst length. This must match t
# he value programmed in the BL bit of the mode register to the SDRAM - tW
# TR_S = internal write to read command delay for different bank group. Th
# is comes directly from the SDRAM specification. For configurations with
# MEMC_FREQ_RATIO=2, divide the value calculated using the above equation
# by 2, and round it up to next integer.
# PSU_DDRC_DRAMTMG9_WR2RD_S 0xb
# SDRAM Timing Register 9
#(OFFSET, MASK, VALUE) (0XFD070124, 0x40070F3FU ,0x0002020BU) */
mask_write 0XFD070124 0x40070F3F 0x0002020B
# Register : DRAMTMG11 @ 0XFD07012C</p>
# tXMPDLL: This is the minimum Exit MPSM to commands requiring a locked DL
# L. For configurations with MEMC_FREQ_RATIO=2, program this to (tXMPDLL/2
# ) and round it up to the next integer value. Present only in designs con
# figured to support DDR4. Unit: Multiples of 32 clocks.
# PSU_DDRC_DRAMTMG11_POST_MPSM_GAP_X32 0x70
# tMPX_LH: This is the minimum CS_n Low hold time to CKE rising edge. For
# configurations with MEMC_FREQ_RATIO=2, program this to RoundUp(tMPX_LH/2
# )+1. Present only in designs configured to support DDR4. Unit: clocks.
# PSU_DDRC_DRAMTMG11_T_MPX_LH 0x7
# tMPX_S: Minimum time CS setup time to CKE. For configurations with MEMC_
# FREQ_RATIO=2, program this to (tMPX_S/2) and round it up to the next int
# eger value. Present only in designs configured to support DDR4. Unit: Cl
# ocks.
# PSU_DDRC_DRAMTMG11_T_MPX_S 0x1
# tCKMPE: Minimum valid clock requirement after MPSM entry. Present only i
# n designs configured to support DDR4. Unit: Clocks. For configurations w
# ith MEMC_FREQ_RATIO=2, divide the value calculated using the above equat
# ion by 2, and round it up to next integer.
# PSU_DDRC_DRAMTMG11_T_CKMPE 0xe
# SDRAM Timing Register 11
#(OFFSET, MASK, VALUE) (0XFD07012C, 0x7F1F031FU ,0x7007010EU) */
mask_write 0XFD07012C 0x7F1F031F 0x7007010E
# Register : DRAMTMG12 @ 0XFD070130</p>
# tCMDCKE: Delay from valid command to CKE input LOW. Set this to the larg
# er of tESCKE or tCMDCKE For configurations with MEMC_FREQ_RATIO=2, progr
# am this to (max(tESCKE, tCMDCKE)/2) and round it up to next integer valu
# e.
# PSU_DDRC_DRAMTMG12_T_CMDCKE 0x2
# tCKEHCMD: Valid command requirement after CKE input HIGH. For configurat
# ions with MEMC_FREQ_RATIO=2, program this to (tCKEHCMD/2) and round it u
# p to next integer value.
# PSU_DDRC_DRAMTMG12_T_CKEHCMD 0x6
# tMRD_PDA: This is the Mode Register Set command cycle time in PDA mode.
# For configurations with MEMC_FREQ_RATIO=2, program this to (tMRD_PDA/2)
# and round it up to next integer value.
# PSU_DDRC_DRAMTMG12_T_MRD_PDA 0x8
# SDRAM Timing Register 12
#(OFFSET, MASK, VALUE) (0XFD070130, 0x00030F1FU ,0x00020608U) */
mask_write 0XFD070130 0x00030F1F 0x00020608
# Register : ZQCTL0 @ 0XFD070180</p>
# - 1 - Disable uMCTL2 generation of ZQCS/MPC(ZQ calibration) command. Reg
# ister DBGCMD.zq_calib_short can be used instead to issue ZQ calibration
# request from APB module. - 0 - Internally generate ZQCS/MPC(ZQ calibrati
# on) commands based on ZQCTL1.t_zq_short_interval_x1024. This is only pre
# sent for designs supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL0_DIS_AUTO_ZQ 0x1
# - 1 - Disable issuing of ZQCL/MPC(ZQ calibration) command at Self-Refres
# h/SR-Powerdown exit. Only applicable when run in DDR3 or DDR4 or LPDDR2
# or LPDDR3 or LPDDR4 mode. - 0 - Enable issuing of ZQCL/MPC(ZQ calibratio
# n) command at Self-Refresh/SR-Powerdown exit. Only applicable when run i
# n DDR3 or DDR4 or LPDDR2 or LPDDR3 or LPDDR4 mode. This is only present
# for designs supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL0_DIS_SRX_ZQCL 0x0
# - 1 - Denotes that ZQ resistor is shared between ranks. Means ZQinit/ZQC
# L/ZQCS/MPC(ZQ calibration) commands are sent to one rank at a time with
# tZQinit/tZQCL/tZQCS/tZQCAL/tZQLAT timing met between commands so that co
# mmands to different ranks do not overlap. - 0 - ZQ resistor is not share
# d. This is only present for designs supporting DDR3/DDR4 or LPDDR2/LPDDR
# 3/LPDDR4 devices.
# PSU_DDRC_ZQCTL0_ZQ_RESISTOR_SHARED 0x0
# - 1 - Disable issuing of ZQCL command at Maximum Power Saving Mode exit.
# Only applicable when run in DDR4 mode. - 0 - Enable issuing of ZQCL com
# mand at Maximum Power Saving Mode exit. Only applicable when run in DDR4
# mode. This is only present for designs supporting DDR4 devices.
# PSU_DDRC_ZQCTL0_DIS_MPSMX_ZQCL 0x0
# tZQoper for DDR3/DDR4, tZQCL for LPDDR2/LPDDR3, tZQCAL for LPDDR4: Numbe
# r of cycles of NOP required after a ZQCL (ZQ calibration long)/MPC(ZQ St
# art) command is issued to SDRAM. For configurations with MEMC_FREQ_RATIO
# =2: DDR3/DDR4: program this to tZQoper/2 and round it up to the next int
# eger value. LPDDR2/LPDDR3: program this to tZQCL/2 and round it up to th
# e next integer value. LPDDR4: program this to tZQCAL/2 and round it up t
# o the next integer value. Unit: Clock cycles. This is only present for d
# esigns supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL0_T_ZQ_LONG_NOP 0x100
# tZQCS for DDR3/DD4/LPDDR2/LPDDR3, tZQLAT for LPDDR4: Number of cycles of
# NOP required after a ZQCS (ZQ calibration short)/MPC(ZQ Latch) command
# is issued to SDRAM. For configurations with MEMC_FREQ_RATIO=2, program t
# his to tZQCS/2 and round it up to the next integer value. Unit: Clock cy
# cles. This is only present for designs supporting DDR3/DDR4 or LPDDR2/LP
# DDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL0_T_ZQ_SHORT_NOP 0x40
# ZQ Control Register 0
#(OFFSET, MASK, VALUE) (0XFD070180, 0xF7FF03FFU ,0x81000040U) */
mask_write 0XFD070180 0xF7FF03FF 0x81000040
# Register : ZQCTL1 @ 0XFD070184</p>
# tZQReset: Number of cycles of NOP required after a ZQReset (ZQ calibrati
# on Reset) command is issued to SDRAM. For configurations with MEMC_FREQ_
# RATIO=2, program this to tZQReset/2 and round it up to the next integer
# value. Unit: Clock cycles. This is only present for designs supporting L
# PDDR2/LPDDR3/LPDDR4 devices.
# PSU_DDRC_ZQCTL1_T_ZQ_RESET_NOP 0x20
# Average interval to wait between automatically issuing ZQCS (ZQ calibrat
# ion short)/MPC(ZQ calibration) commands to DDR3/DDR4/LPDDR2/LPDDR3/LPDDR
# 4 devices. Meaningless, if ZQCTL0.dis_auto_zq=1. Unit: 1024 clock cycles
# . This is only present for designs supporting DDR3/DDR4 or LPDDR2/LPDDR3
# /LPDDR4 devices.
# PSU_DDRC_ZQCTL1_T_ZQ_SHORT_INTERVAL_X1024 0x196dc
# ZQ Control Register 1
#(OFFSET, MASK, VALUE) (0XFD070184, 0x3FFFFFFFU ,0x020196DCU) */
mask_write 0XFD070184 0x3FFFFFFF 0x020196DC
# Register : DFITMG0 @ 0XFD070190</p>
# Specifies the number of DFI clock cycles after an assertion or de-assert
# ion of the DFI control signals that the control signals at the PHY-DRAM
# interface reflect the assertion or de-assertion. If the DFI clock and th
# e memory clock are not phase-aligned, this timing parameter should be ro
# unded up to the next integer value. Note that if using RDIMM, it is nece
# ssary to increment this parameter by RDIMM's extra cycle of latency in t
# erms of DFI clock.
# PSU_DDRC_DFITMG0_DFI_T_CTRL_DELAY 0x4
# Defines whether dfi_rddata_en/dfi_rddata/dfi_rddata_valid is generated u
# sing HDR or SDR values Selects whether value in DFITMG0.dfi_t_rddata_en
# is in terms of SDR or HDR clock cycles: - 0 in terms of HDR clock cycles
# - 1 in terms of SDR clock cycles Refer to PHY specification for correct
# value.
# PSU_DDRC_DFITMG0_DFI_RDDATA_USE_SDR 0x1
# Time from the assertion of a read command on the DFI interface to the as
# sertion of the dfi_rddata_en signal. Refer to PHY specification for corr
# ect value. This corresponds to the DFI parameter trddata_en. Note that,
# depending on the PHY, if using RDIMM, it may be necessary to use the val
# ue (CL + 1) in the calculation of trddata_en. This is to compensate for
# the extra cycle of latency through the RDIMM. Unit: Clocks
# PSU_DDRC_DFITMG0_DFI_T_RDDATA_EN 0xb
# Defines whether dfi_wrdata_en/dfi_wrdata/dfi_wrdata_mask is generated us
# ing HDR or SDR values Selects whether value in DFITMG0.dfi_tphy_wrlat is
# in terms of SDR or HDR clock cycles Selects whether value in DFITMG0.df
# i_tphy_wrdata is in terms of SDR or HDR clock cycles - 0 in terms of HDR
# clock cycles - 1 in terms of SDR clock cycles Refer to PHY specificatio
# n for correct value.
# PSU_DDRC_DFITMG0_DFI_WRDATA_USE_SDR 0x1
# Specifies the number of clock cycles between when dfi_wrdata_en is asser
# ted to when the associated write data is driven on the dfi_wrdata signal
# . This corresponds to the DFI timing parameter tphy_wrdata. Refer to PHY
# specification for correct value. Note, max supported value is 8. Unit:
# Clocks
# PSU_DDRC_DFITMG0_DFI_TPHY_WRDATA 0x2
# Write latency Number of clocks from the write command to write data enab
# le (dfi_wrdata_en). This corresponds to the DFI timing parameter tphy_wr
# lat. Refer to PHY specification for correct value.Note that, depending o
# n the PHY, if using RDIMM, it may be necessary to use the value (CL + 1)
# in the calculation of tphy_wrlat. This is to compensate for the extra c
# ycle of latency through the RDIMM.
# PSU_DDRC_DFITMG0_DFI_TPHY_WRLAT 0xb
# DFI Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD070190, 0x1FBFBF3FU ,0x048B820BU) */
mask_write 0XFD070190 0x1FBFBF3F 0x048B820B
# Register : DFITMG1 @ 0XFD070194</p>
# Specifies the number of DFI PHY clocks between when the dfi_cs signal is
# asserted and when the associated command is driven. This field is used
# for CAL mode, should be set to '0' or the value which matches the CAL mo
# de register setting in the DRAM. If the PHY can add the latency for CAL
# mode, this should be set to '0'. Valid Range: 0, 3, 4, 5, 6, and 8
# PSU_DDRC_DFITMG1_DFI_T_CMD_LAT 0x0
# Specifies the number of DFI PHY clocks between when the dfi_cs signal is
# asserted and when the associated dfi_parity_in signal is driven.
# PSU_DDRC_DFITMG1_DFI_T_PARIN_LAT 0x0
# Specifies the number of DFI clocks between when the dfi_wrdata_en signal
# is asserted and when the corresponding write data transfer is completed
# on the DRAM bus. This corresponds to the DFI timing parameter twrdata_d
# elay. Refer to PHY specification for correct value. For DFI 3.0 PHY, set
# to twrdata_delay, a new timing parameter introduced in DFI 3.0. For DFI
# 2.1 PHY, set to tphy_wrdata + (delay of DFI write data to the DRAM). Va
# lue to be programmed is in terms of DFI clocks, not PHY clocks. In FREQ_
# RATIO=2, divide PHY's value by 2 and round up to next integer. If using
# DFITMG0.dfi_wrdata_use_sdr=1, add 1 to the value. Unit: Clocks
# PSU_DDRC_DFITMG1_DFI_T_WRDATA_DELAY 0x3
# Specifies the number of DFI clock cycles from the assertion of the dfi_d
# ram_clk_disable signal on the DFI until the clock to the DRAM memory dev
# ices, at the PHY-DRAM boundary, maintains a low value. If the DFI clock
# and the memory clock are not phase aligned, this timing parameter should
# be rounded up to the next integer value.
# PSU_DDRC_DFITMG1_DFI_T_DRAM_CLK_DISABLE 0x3
# Specifies the number of DFI clock cycles from the de-assertion of the df
# i_dram_clk_disable signal on the DFI until the first valid rising edge o
# f the clock to the DRAM memory devices, at the PHY-DRAM boundary. If the
# DFI clock and the memory clock are not phase aligned, this timing param
# eter should be rounded up to the next integer value.
# PSU_DDRC_DFITMG1_DFI_T_DRAM_CLK_ENABLE 0x4
# DFI Timing Register 1
#(OFFSET, MASK, VALUE) (0XFD070194, 0xF31F0F0FU ,0x00030304U) */
mask_write 0XFD070194 0xF31F0F0F 0x00030304
# Register : DFILPCFG0 @ 0XFD070198</p>
# Setting for DFI's tlp_resp time. Same value is used for both Power Down,
# Self Refresh, Deep Power Down and Maximum Power Saving modes. DFI 2.1 s
# pecification onwards, recommends using a fixed value of 7 always.
# PSU_DDRC_DFILPCFG0_DFI_TLP_RESP 0x7
# Value to drive on dfi_lp_wakeup signal when Deep Power Down mode is ente
# red. Determines the DFI's tlp_wakeup time: - 0x0 - 16 cycles - 0x1 - 32
# cycles - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 5
# 12 cycles - 0x6 - 1024 cycles - 0x7 - 2048 cycles - 0x8 - 4096 cycles -
# 0x9 - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 6553
# 6 cycles - 0xD - 131072 cycles - 0xE - 262144 cycles - 0xF - Unlimited T
# his is only present for designs supporting mDDR or LPDDR2/LPDDR3 devices
# .
# PSU_DDRC_DFILPCFG0_DFI_LP_WAKEUP_DPD 0x0
# Enables DFI Low Power interface handshaking during Deep Power Down Entry
# /Exit. - 0 - Disabled - 1 - Enabled This is only present for designs sup
# porting mDDR or LPDDR2/LPDDR3 devices.
# PSU_DDRC_DFILPCFG0_DFI_LP_EN_DPD 0x0
# Value to drive on dfi_lp_wakeup signal when Self Refresh mode is entered
# . Determines the DFI's tlp_wakeup time: - 0x0 - 16 cycles - 0x1 - 32 cyc
# les - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 512
# cycles - 0x6 - 1024 cycles - 0x7 - 2048 cycles - 0x8 - 4096 cycles - 0x9
# - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 65536 c
# ycles - 0xD - 131072 cycles - 0xE - 262144 cycles - 0xF - Unlimited
# PSU_DDRC_DFILPCFG0_DFI_LP_WAKEUP_SR 0x0
# Enables DFI Low Power interface handshaking during Self Refresh Entry/Ex
# it. - 0 - Disabled - 1 - Enabled
# PSU_DDRC_DFILPCFG0_DFI_LP_EN_SR 0x1
# Value to drive on dfi_lp_wakeup signal when Power Down mode is entered.
# Determines the DFI's tlp_wakeup time: - 0x0 - 16 cycles - 0x1 - 32 cycle
# s - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 512 cy
# cles - 0x6 - 1024 cycles - 0x7 - 2048 cycles - 0x8 - 4096 cycles - 0x9 -
# 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 65536 cyc
# les - 0xD - 131072 cycles - 0xE - 262144 cycles - 0xF - Unlimited
# PSU_DDRC_DFILPCFG0_DFI_LP_WAKEUP_PD 0x0
# Enables DFI Low Power interface handshaking during Power Down Entry/Exit
# . - 0 - Disabled - 1 - Enabled
# PSU_DDRC_DFILPCFG0_DFI_LP_EN_PD 0x1
# DFI Low Power Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070198, 0x0FF1F1F1U ,0x07000101U) */
mask_write 0XFD070198 0x0FF1F1F1 0x07000101
# Register : DFILPCFG1 @ 0XFD07019C</p>
# Value to drive on dfi_lp_wakeup signal when Maximum Power Saving Mode is
# entered. Determines the DFI's tlp_wakeup time: - 0x0 - 16 cycles - 0x1
# - 32 cycles - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x
# 5 - 512 cycles - 0x6 - 1024 cycles - 0x7 - 2048 cycles - 0x8 - 4096 cycl
# es - 0x9 - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC -
# 65536 cycles - 0xD - 131072 cycles - 0xE - 262144 cycles - 0xF - Unlimi
# ted This is only present for designs supporting DDR4 devices.
# PSU_DDRC_DFILPCFG1_DFI_LP_WAKEUP_MPSM 0x2
# Enables DFI Low Power interface handshaking during Maximum Power Saving
# Mode Entry/Exit. - 0 - Disabled - 1 - Enabled This is only present for d
# esigns supporting DDR4 devices.
# PSU_DDRC_DFILPCFG1_DFI_LP_EN_MPSM 0x1
# DFI Low Power Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD07019C, 0x000000F1U ,0x00000021U) */
mask_write 0XFD07019C 0x000000F1 0x00000021
# Register : DFIUPD0 @ 0XFD0701A0</p>
# When '1', disable the automatic dfi_ctrlupd_req generation by the uMCTL2
# . The core must issue the dfi_ctrlupd_req signal using register reg_ddrc
# _ctrlupd. When '0', uMCTL2 issues dfi_ctrlupd_req periodically.
# PSU_DDRC_DFIUPD0_DIS_AUTO_CTRLUPD 0x0
# When '1', disable the automatic dfi_ctrlupd_req generation by the uMCTL2
# following a self-refresh exit. The core must issue the dfi_ctrlupd_req
# signal using register reg_ddrc_ctrlupd. When '0', uMCTL2 issues a dfi_ct
# rlupd_req after exiting self-refresh.
# PSU_DDRC_DFIUPD0_DIS_AUTO_CTRLUPD_SRX 0x0
# Specifies the maximum number of clock cycles that the dfi_ctrlupd_req si
# gnal can assert. Lowest value to assign to this variable is 0x40. Unit:
# Clocks
# PSU_DDRC_DFIUPD0_DFI_T_CTRLUP_MAX 0x40
# Specifies the minimum number of clock cycles that the dfi_ctrlupd_req si
# gnal must be asserted. The uMCTL2 expects the PHY to respond within this
# time. If the PHY does not respond, the uMCTL2 will de-assert dfi_ctrlup
# d_req after dfi_t_ctrlup_min + 2 cycles. Lowest value to assign to this
# variable is 0x3. Unit: Clocks
# PSU_DDRC_DFIUPD0_DFI_T_CTRLUP_MIN 0x3
# DFI Update Register 0
#(OFFSET, MASK, VALUE) (0XFD0701A0, 0xC3FF03FFU ,0x00400003U) */
mask_write 0XFD0701A0 0xC3FF03FF 0x00400003
# Register : DFIUPD1 @ 0XFD0701A4</p>
# This is the minimum amount of time between uMCTL2 initiated DFI update r
# equests (which is executed whenever the uMCTL2 is idle). Set this number
# higher to reduce the frequency of update requests, which can have a sma
# ll impact on the latency of the first read request when the uMCTL2 is id
# le. Unit: 1024 clocks
# PSU_DDRC_DFIUPD1_DFI_T_CTRLUPD_INTERVAL_MIN_X1024 0x41
# This is the maximum amount of time between uMCTL2 initiated DFI update r
# equests. This timer resets with each update request; when the timer expi
# res dfi_ctrlupd_req is sent and traffic is blocked until the dfi_ctrlupd
# _ackx is received. PHY can use this idle time to recalibrate the delay l
# ines to the DLLs. The DFI controller update is also used to reset PHY FI
# FO pointers in case of data capture errors. Updates are required to main
# tain calibration over PVT, but frequent updates may impact performance.
# Note: Value programmed for DFIUPD1.dfi_t_ctrlupd_interval_max_x1024 must
# be greater than DFIUPD1.dfi_t_ctrlupd_interval_min_x1024. Unit: 1024 cl
# ocks
# PSU_DDRC_DFIUPD1_DFI_T_CTRLUPD_INTERVAL_MAX_X1024 0xe1
# DFI Update Register 1
#(OFFSET, MASK, VALUE) (0XFD0701A4, 0x00FF00FFU ,0x004100E1U) */
mask_write 0XFD0701A4 0x00FF00FF 0x004100E1
# Register : DFIMISC @ 0XFD0701B0</p>
# Defines polarity of dfi_wrdata_cs and dfi_rddata_cs signals. - 0: Signal
# s are active low - 1: Signals are active high
# PSU_DDRC_DFIMISC_DFI_DATA_CS_POLARITY 0x0
# DBI implemented in DDRC or PHY. - 0 - DDRC implements DBI functionality.
# - 1 - PHY implements DBI functionality. Present only in designs configu
# red to support DDR4 and LPDDR4.
# PSU_DDRC_DFIMISC_PHY_DBI_MODE 0x0
# PHY initialization complete enable signal. When asserted the dfi_init_co
# mplete signal can be used to trigger SDRAM initialisation
# PSU_DDRC_DFIMISC_DFI_INIT_COMPLETE_EN 0x0
# DFI Miscellaneous Control Register
#(OFFSET, MASK, VALUE) (0XFD0701B0, 0x00000007U ,0x00000000U) */
mask_write 0XFD0701B0 0x00000007 0x00000000
# Register : DFITMG2 @ 0XFD0701B4</p>
# >Number of clocks between when a read command is sent on the DFI control
# interface and when the associated dfi_rddata_cs signal is asserted. Thi
# s corresponds to the DFI timing parameter tphy_rdcslat. Refer to PHY spe
# cification for correct value.
# PSU_DDRC_DFITMG2_DFI_TPHY_RDCSLAT 0x9
# Number of clocks between when a write command is sent on the DFI control
# interface and when the associated dfi_wrdata_cs signal is asserted. Thi
# s corresponds to the DFI timing parameter tphy_wrcslat. Refer to PHY spe
# cification for correct value.
# PSU_DDRC_DFITMG2_DFI_TPHY_WRCSLAT 0x6
# DFI Timing Register 2
#(OFFSET, MASK, VALUE) (0XFD0701B4, 0x00003F3FU ,0x00000906U) */
mask_write 0XFD0701B4 0x00003F3F 0x00000906
# Register : DBICTL @ 0XFD0701C0</p>
# Read DBI enable signal in DDRC. - 0 - Read DBI is disabled. - 1 - Read D
# BI is enabled. This signal must be set the same value as DRAM's mode reg
# ister. - DDR4: MR5 bit A12. When x4 devices are used, this signal must b
# e set to 0. - LPDDR4: MR3[6]
# PSU_DDRC_DBICTL_RD_DBI_EN 0x0
# Write DBI enable signal in DDRC. - 0 - Write DBI is disabled. - 1 - Writ
# e DBI is enabled. This signal must be set the same value as DRAM's mode
# register. - DDR4: MR5 bit A11. When x4 devices are used, this signal mus
# t be set to 0. - LPDDR4: MR3[7]
# PSU_DDRC_DBICTL_WR_DBI_EN 0x0
# DM enable signal in DDRC. - 0 - DM is disabled. - 1 - DM is enabled. Thi
# s signal must be set the same logical value as DRAM's mode register. - D
# DR4: Set this to same value as MR5 bit A10. When x4 devices are used, th
# is signal must be set to 0. - LPDDR4: Set this to inverted value of MR13
# [5] which is opposite polarity from this signal
# PSU_DDRC_DBICTL_DM_EN 0x1
# DM/DBI Control Register
#(OFFSET, MASK, VALUE) (0XFD0701C0, 0x00000007U ,0x00000001U) */
mask_write 0XFD0701C0 0x00000007 0x00000001
# Register : ADDRMAP0 @ 0XFD070200</p>
# Selects the HIF address bit used as rank address bit 0. Valid Range: 0 t
# o 27, and 31 Internal Base: 6 The selected HIF address bit is determined
# by adding the internal base to the value of this field. If set to 31, r
# ank address bit 0 is set to 0.
# PSU_DDRC_ADDRMAP0_ADDRMAP_CS_BIT0 0x1f
# Address Map Register 0
#(OFFSET, MASK, VALUE) (0XFD070200, 0x0000001FU ,0x0000001FU) */
mask_write 0XFD070200 0x0000001F 0x0000001F
# Register : ADDRMAP1 @ 0XFD070204</p>
# Selects the HIF address bit used as bank address bit 2. Valid Range: 0 t
# o 29 and 31 Internal Base: 4 The selected HIF address bit is determined
# by adding the internal base to the value of this field. If set to 31, ba
# nk address bit 2 is set to 0.
# PSU_DDRC_ADDRMAP1_ADDRMAP_BANK_B2 0x1f
# Selects the HIF address bits used as bank address bit 1. Valid Range: 0
# to 30 Internal Base: 3 The selected HIF address bit for each of the bank
# address bits is determined by adding the internal base to the value of
# this field.
# PSU_DDRC_ADDRMAP1_ADDRMAP_BANK_B1 0xa
# Selects the HIF address bits used as bank address bit 0. Valid Range: 0
# to 30 Internal Base: 2 The selected HIF address bit for each of the bank
# address bits is determined by adding the internal base to the value of
# this field.
# PSU_DDRC_ADDRMAP1_ADDRMAP_BANK_B0 0xa
# Address Map Register 1
#(OFFSET, MASK, VALUE) (0XFD070204, 0x001F1F1FU ,0x001F0A0AU) */
mask_write 0XFD070204 0x001F1F1F 0x001F0A0A
# Register : ADDRMAP2 @ 0XFD070208</p>
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 5. - Half bus width mode: Selects the HIF address bit used as colu
# mn address bit 6. - Quarter bus width mode: Selects the HIF address bit
# used as column address bit 7 . Valid Range: 0 to 7, and 15 Internal Base
# : 5 The selected HIF address bit is determined by adding the internal ba
# se to the value of this field. If set to 15, this column address bit is
# set to 0.
# PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B5 0x0
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 4. - Half bus width mode: Selects the HIF address bit used as colu
# mn address bit 5. - Quarter bus width mode: Selects the HIF address bit
# used as column address bit 6. Valid Range: 0 to 7, and 15 Internal Base:
# 4 The selected HIF address bit is determined by adding the internal bas
# e to the value of this field. If set to 15, this column address bit is s
# et to 0.
# PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B4 0x0
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 3. - Half bus width mode: Selects the HIF address bit used as colu
# mn address bit 4. - Quarter bus width mode: Selects the HIF address bit
# used as column address bit 5. Valid Range: 0 to 7 Internal Base: 3 The s
# elected HIF address bit is determined by adding the internal base to the
# value of this field. Note, if UMCTL2_INCL_ARB=1 and MEMC_BURST_LENGTH=1
# 6, it is required to program this to 0, hence register does not exist in
# this case.
# PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B3 0x0
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 2. - Half bus width mode: Selects the HIF address bit used as colu
# mn address bit 3. - Quarter bus width mode: Selects the HIF address bit
# used as column address bit 4. Valid Range: 0 to 7 Internal Base: 2 The s
# elected HIF address bit is determined by adding the internal base to the
# value of this field. Note, if UMCTL2_INCL_ARB=1 and MEMC_BURST_LENGTH=8
# or 16, it is required to program this to 0.
# PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B2 0x0
# Address Map Register 2
#(OFFSET, MASK, VALUE) (0XFD070208, 0x0F0F0F0FU ,0x00000000U) */
mask_write 0XFD070208 0x0F0F0F0F 0x00000000
# Register : ADDRMAP3 @ 0XFD07020C</p>
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 9. - Half bus width mode: Selects the HIF address bit used as colu
# mn address bit 11 (10 in LPDDR2/LPDDR3 mode). - Quarter bus width mode:
# Selects the HIF address bit used as column address bit 13 (11 in LPDDR2/
# LPDDR3 mode). Valid Range: 0 to 7, and 15 Internal Base: 9 The selected
# HIF address bit is determined by adding the internal base to the value o
# f this field. If set to 15, this column address bit is set to 0. Note: P
# er JEDEC DDR2/3/mDDR specification, column address bit 10 is reserved fo
# r indicating auto-precharge, and hence no source address bit can be mapp
# ed to column address bit 10. In LPDDR2/LPDDR3, there is a dedicated bit
# for auto-precharge in the CA bus and hence column bit 10 is used.
# PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B9 0x0
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 8. - Half bus width mode: Selects the HIF address bit used as colu
# mn address bit 9. - Quarter bus width mode: Selects the HIF address bit
# used as column address bit 11 (10 in LPDDR2/LPDDR3 mode). Valid Range: 0
# to 7, and 15 Internal Base: 8 The selected HIF address bit is determine
# d by adding the internal base to the value of this field. If set to 15,
# this column address bit is set to 0. Note: Per JEDEC DDR2/3/mDDR specifi
# cation, column address bit 10 is reserved for indicating auto-precharge,
# and hence no source address bit can be mapped to column address bit 10.
# In LPDDR2/LPDDR3, there is a dedicated bit for auto-precharge in the CA
# bus and hence column bit 10 is used.
# PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B8 0x0
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 7. - Half bus width mode: Selects the HIF address bit used as colu
# mn address bit 8. - Quarter bus width mode: Selects the HIF address bit
# used as column address bit 9. Valid Range: 0 to 7, and 15 Internal Base:
# 7 The selected HIF address bit is determined by adding the internal bas
# e to the value of this field. If set to 15, this column address bit is s
# et to 0.
# PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B7 0x0
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 6. - Half bus width mode: Selects the HIF address bit used as colu
# mn address bit 7. - Quarter bus width mode: Selects the HIF address bit
# used as column address bit 8. Valid Range: 0 to 7, and 15 Internal Base:
# 6 The selected HIF address bit is determined by adding the internal bas
# e to the value of this field. If set to 15, this column address bit is s
# et to 0.
# PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B6 0x0
# Address Map Register 3
#(OFFSET, MASK, VALUE) (0XFD07020C, 0x0F0F0F0FU ,0x00000000U) */
mask_write 0XFD07020C 0x0F0F0F0F 0x00000000
# Register : ADDRMAP4 @ 0XFD070210</p>
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 13 (11 in LPDDR2/LPDDR3 mode). - Half bus width mode: Unused. To m
# ake it unused, this should be tied to 4'hF. - Quarter bus width mode: Un
# used. To make it unused, this must be tied to 4'hF. Valid Range: 0 to 7,
# and 15 Internal Base: 11 The selected HIF address bit is determined by
# adding the internal base to the value of this field. If set to 15, this
# column address bit is set to 0. Note: Per JEDEC DDR2/3/mDDR specificatio
# n, column address bit 10 is reserved for indicating auto-precharge, and
# hence no source address bit can be mapped to column address bit 10. In L
# PDDR2/LPDDR3, there is a dedicated bit for auto-precharge in the CA bus
# and hence column bit 10 is used.
# PSU_DDRC_ADDRMAP4_ADDRMAP_COL_B11 0xf
# - Full bus width mode: Selects the HIF address bit used as column addres
# s bit 11 (10 in LPDDR2/LPDDR3 mode). - Half bus width mode: Selects the
# HIF address bit used as column address bit 13 (11 in LPDDR2/LPDDR3 mode)
# . - Quarter bus width mode: UNUSED. To make it unused, this must be tied
# to 4'hF. Valid Range: 0 to 7, and 15 Internal Base: 10 The selected HIF
# address bit is determined by adding the internal base to the value of t
# his field. If set to 15, this column address bit is set to 0. Note: Per
# JEDEC DDR2/3/mDDR specification, column address bit 10 is reserved for i
# ndicating auto-precharge, and hence no source address bit can be mapped
# to column address bit 10. In LPDDR2/LPDDR3, there is a dedicated bit for
# auto-precharge in the CA bus and hence column bit 10 is used.
# PSU_DDRC_ADDRMAP4_ADDRMAP_COL_B10 0xf
# Address Map Register 4
#(OFFSET, MASK, VALUE) (0XFD070210, 0x00000F0FU ,0x00000F0FU) */
mask_write 0XFD070210 0x00000F0F 0x00000F0F
# Register : ADDRMAP5 @ 0XFD070214</p>
# Selects the HIF address bit used as row address bit 11. Valid Range: 0 t
# o 11, and 15 Internal Base: 17 The selected HIF address bit is determine
# d by adding the internal base to the value of this field. If set to 15,
# row address bit 11 is set to 0.
# PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B11 0x8
# Selects the HIF address bits used as row address bits 2 to 10. Valid Ran
# ge: 0 to 11, and 15 Internal Base: 8 (for row address bit 2), 9 (for row
# address bit 3), 10 (for row address bit 4) etc increasing to 16 (for ro
# w address bit 10) The selected HIF address bit for each of the row addre
# ss bits is determined by adding the internal base to the value of this f
# ield. When value 15 is used the values of row address bits 2 to 10 are d
# efined by registers ADDRMAP9, ADDRMAP10, ADDRMAP11.
# PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B2_10 0xf
# Selects the HIF address bits used as row address bit 1. Valid Range: 0 t
# o 11 Internal Base: 7 The selected HIF address bit for each of the row a
# ddress bits is determined by adding the internal base to the value of th
# is field.
# PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B1 0x8
# Selects the HIF address bits used as row address bit 0. Valid Range: 0 t
# o 11 Internal Base: 6 The selected HIF address bit for each of the row a
# ddress bits is determined by adding the internal base to the value of th
# is field.
# PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B0 0x8
# Address Map Register 5
#(OFFSET, MASK, VALUE) (0XFD070214, 0x0F0F0F0FU ,0x080F0808U) */
mask_write 0XFD070214 0x0F0F0F0F 0x080F0808
# Register : ADDRMAP6 @ 0XFD070218</p>
# Set this to 1 if there is an LPDDR3 SDRAM 6Gb or 12Gb device in use. - 1
# - LPDDR3 SDRAM 6Gb/12Gb device in use. Every address having row[14:13]=
# =2'b11 is considered as invalid - 0 - non-LPDDR3 6Gb/12Gb device in use.
# All addresses are valid Present only in designs configured to support L
# PDDR3.
# PSU_DDRC_ADDRMAP6_LPDDR3_6GB_12GB 0x0
# Selects the HIF address bit used as row address bit 15. Valid Range: 0 t
# o 11, and 15 Internal Base: 21 The selected HIF address bit is determine
# d by adding the internal base to the value of this field. If set to 15,
# row address bit 15 is set to 0.
# PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B15 0xf
# Selects the HIF address bit used as row address bit 14. Valid Range: 0 t
# o 11, and 15 Internal Base: 20 The selected HIF address bit is determine
# d by adding the internal base to the value of this field. If set to 15,
# row address bit 14 is set to 0.
# PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B14 0x8
# Selects the HIF address bit used as row address bit 13. Valid Range: 0 t
# o 11, and 15 Internal Base: 19 The selected HIF address bit is determine
# d by adding the internal base to the value of this field. If set to 15,
# row address bit 13 is set to 0.
# PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B13 0x8
# Selects the HIF address bit used as row address bit 12. Valid Range: 0 t
# o 11, and 15 Internal Base: 18 The selected HIF address bit is determine
# d by adding the internal base to the value of this field. If set to 15,
# row address bit 12 is set to 0.
# PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B12 0x8
# Address Map Register 6
#(OFFSET, MASK, VALUE) (0XFD070218, 0x8F0F0F0FU ,0x0F080808U) */
mask_write 0XFD070218 0x8F0F0F0F 0x0F080808
# Register : ADDRMAP7 @ 0XFD07021C</p>
# Selects the HIF address bit used as row address bit 17. Valid Range: 0 t
# o 10, and 15 Internal Base: 23 The selected HIF address bit is determine
# d by adding the internal base to the value of this field. If set to 15,
# row address bit 17 is set to 0.
# PSU_DDRC_ADDRMAP7_ADDRMAP_ROW_B17 0xf
# Selects the HIF address bit used as row address bit 16. Valid Range: 0 t
# o 11, and 15 Internal Base: 22 The selected HIF address bit is determine
# d by adding the internal base to the value of this field. If set to 15,
# row address bit 16 is set to 0.
# PSU_DDRC_ADDRMAP7_ADDRMAP_ROW_B16 0xf
# Address Map Register 7
#(OFFSET, MASK, VALUE) (0XFD07021C, 0x00000F0FU ,0x00000F0FU) */
mask_write 0XFD07021C 0x00000F0F 0x00000F0F
# Register : ADDRMAP8 @ 0XFD070220</p>
# Selects the HIF address bits used as bank group address bit 1. Valid Ran
# ge: 0 to 30, and 31 Internal Base: 3 The selected HIF address bit for ea
# ch of the bank group address bits is determined by adding the internal b
# ase to the value of this field. If set to 31, bank group address bit 1 i
# s set to 0.
# PSU_DDRC_ADDRMAP8_ADDRMAP_BG_B1 0x8
# Selects the HIF address bits used as bank group address bit 0. Valid Ran
# ge: 0 to 30 Internal Base: 2 The selected HIF address bit for each of th
# e bank group address bits is determined by adding the internal base to t
# he value of this field.
# PSU_DDRC_ADDRMAP8_ADDRMAP_BG_B0 0x8
# Address Map Register 8
#(OFFSET, MASK, VALUE) (0XFD070220, 0x00001F1FU ,0x00000808U) */
mask_write 0XFD070220 0x00001F1F 0x00000808
# Register : ADDRMAP9 @ 0XFD070224</p>
# Selects the HIF address bits used as row address bit 5. Valid Range: 0 t
# o 11 Internal Base: 11 The selected HIF address bit for each of the row
# address bits is determined by adding the internal base to the value of t
# his field. This register field is used only when ADDRMAP5.addrmap_row_b2
# _10 is set to value 15.
# PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B5 0x8
# Selects the HIF address bits used as row address bit 4. Valid Range: 0 t
# o 11 Internal Base: 10 The selected HIF address bit for each of the row
# address bits is determined by adding the internal base to the value of t
# his field. This register field is used only when ADDRMAP5.addrmap_row_b2
# _10 is set to value 15.
# PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B4 0x8
# Selects the HIF address bits used as row address bit 3. Valid Range: 0 t
# o 11 Internal Base: 9 The selected HIF address bit for each of the row a
# ddress bits is determined by adding the internal base to the value of th
# is field. This register field is used only when ADDRMAP5.addrmap_row_b2_
# 10 is set to value 15.
# PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B3 0x8
# Selects the HIF address bits used as row address bit 2. Valid Range: 0 t
# o 11 Internal Base: 8 The selected HIF address bit for each of the row a
# ddress bits is determined by adding the internal base to the value of th
# is field. This register field is used only when ADDRMAP5.addrmap_row_b2_
# 10 is set to value 15.
# PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B2 0x8
# Address Map Register 9
#(OFFSET, MASK, VALUE) (0XFD070224, 0x0F0F0F0FU ,0x08080808U) */
mask_write 0XFD070224 0x0F0F0F0F 0x08080808
# Register : ADDRMAP10 @ 0XFD070228</p>
# Selects the HIF address bits used as row address bit 9. Valid Range: 0 t
# o 11 Internal Base: 15 The selected HIF address bit for each of the row
# address bits is determined by adding the internal base to the value of t
# his field. This register field is used only when ADDRMAP5.addrmap_row_b2
# _10 is set to value 15.
# PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B9 0x8
# Selects the HIF address bits used as row address bit 8. Valid Range: 0 t
# o 11 Internal Base: 14 The selected HIF address bit for each of the row
# address bits is determined by adding the internal base to the value of t
# his field. This register field is used only when ADDRMAP5.addrmap_row_b2
# _10 is set to value 15.
# PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B8 0x8
# Selects the HIF address bits used as row address bit 7. Valid Range: 0 t
# o 11 Internal Base: 13 The selected HIF address bit for each of the row
# address bits is determined by adding the internal base to the value of t
# his field. This register field is used only when ADDRMAP5.addrmap_row_b2
# _10 is set to value 15.
# PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B7 0x8
# Selects the HIF address bits used as row address bit 6. Valid Range: 0 t
# o 11 Internal Base: 12 The selected HIF address bit for each of the row
# address bits is determined by adding the internal base to the value of t
# his field. This register field is used only when ADDRMAP5.addrmap_row_b2
# _10 is set to value 15.
# PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B6 0x8
# Address Map Register 10
#(OFFSET, MASK, VALUE) (0XFD070228, 0x0F0F0F0FU ,0x08080808U) */
mask_write 0XFD070228 0x0F0F0F0F 0x08080808
# Register : ADDRMAP11 @ 0XFD07022C</p>
# Selects the HIF address bits used as row address bit 10. Valid Range: 0
# to 11 Internal Base: 16 The selected HIF address bit for each of the row
# address bits is determined by adding the internal base to the value of
# this field. This register field is used only when ADDRMAP5.addrmap_row_b
# 2_10 is set to value 15.
# PSU_DDRC_ADDRMAP11_ADDRMAP_ROW_B10 0x8
# Address Map Register 11
#(OFFSET, MASK, VALUE) (0XFD07022C, 0x0000000FU ,0x00000008U) */
mask_write 0XFD07022C 0x0000000F 0x00000008
# Register : ODTCFG @ 0XFD070240</p>
# Cycles to hold ODT for a write command. The minimum supported value is 2
# . Recommended values: DDR2: - BL8: 0x5 (DDR2-400/533/667), 0x6 (DDR2-800
# ), 0x7 (DDR2-1066) - BL4: 0x3 (DDR2-400/533/667), 0x4 (DDR2-800), 0x5 (D
# DR2-1066) DDR3: - BL8: 0x6 DDR4: - BL8: 5 + WR_PREAMBLE + CRC_MODE WR_PR
# EAMBLE = 1 (1tCK write preamble), 2 (2tCK write preamble) CRC_MODE = 0 (
# not CRC mode), 1 (CRC mode) LPDDR3: - BL8: 7 + RU(tODTon(max)/tCK)
# PSU_DDRC_ODTCFG_WR_ODT_HOLD 0x6
# The delay, in clock cycles, from issuing a write command to setting ODT
# values associated with that command. ODT setting must remain constant fo
# r the entire time that DQS is driven by the uMCTL2. Recommended values:
# DDR2: - CWL + AL - 3 (DDR2-400/533/667), CWL + AL - 4 (DDR2-800), CWL +
# AL - 5 (DDR2-1066) If (CWL + AL - 3 < 0), uMCTL2 does not support ODT fo
# r write operation. DDR3: - 0x0 DDR4: - DFITMG1.dfi_t_cmd_lat (to adjust
# for CAL mode) LPDDR3: - WL - 1 - RU(tODTon(max)/tCK))
# PSU_DDRC_ODTCFG_WR_ODT_DELAY 0x0
# Cycles to hold ODT for a read command. The minimum supported value is 2.
# Recommended values: DDR2: - BL8: 0x6 (not DDR2-1066), 0x7 (DDR2-1066) -
# BL4: 0x4 (not DDR2-1066), 0x5 (DDR2-1066) DDR3: - BL8 - 0x6 DDR4: - BL8
# : 5 + RD_PREAMBLE RD_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK write p
# reamble) LPDDR3: - BL8: 5 + RU(tDQSCK(max)/tCK) - RD(tDQSCK(min)/tCK) +
# RU(tODTon(max)/tCK)
# PSU_DDRC_ODTCFG_RD_ODT_HOLD 0x6
# The delay, in clock cycles, from issuing a read command to setting ODT v
# alues associated with that command. ODT setting must remain constant for
# the entire time that DQS is driven by the uMCTL2. Recommended values: D
# DR2: - CL + AL - 4 (not DDR2-1066), CL + AL - 5 (DDR2-1066) If (CL + AL
# - 4 < 0), uMCTL2 does not support ODT for read operation. DDR3: - CL - C
# WL DDR4: - CL - CWL - RD_PREAMBLE + WR_PREAMBLE + DFITMG1.dfi_t_cmd_lat
# (to adjust for CAL mode) WR_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK
# write preamble) RD_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK write pre
# amble) If (CL - CWL - RD_PREAMBLE + WR_PREAMBLE) < 0, uMCTL2 does not su
# pport ODT for read operation. LPDDR3: - RL + RD(tDQSCK(min)/tCK) - 1 - R
# U(tODTon(max)/tCK)
# PSU_DDRC_ODTCFG_RD_ODT_DELAY 0x0
# ODT Configuration Register
#(OFFSET, MASK, VALUE) (0XFD070240, 0x0F1F0F7CU ,0x06000600U) */
mask_write 0XFD070240 0x0F1F0F7C 0x06000600
# Register : ODTMAP @ 0XFD070244</p>
# Indicates which remote ODTs must be turned on during a read from rank 1.
# Each rank has a remote ODT (in the SDRAM) which can be turned on by set
# ting the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 i
# s controlled by bit next to the LSB, etc. For each rank, set its bit to
# 1 to enable its ODT. Present only in configurations that have 2 or more
# ranks
# PSU_DDRC_ODTMAP_RANK1_RD_ODT 0x0
# Indicates which remote ODTs must be turned on during a write to rank 1.
# Each rank has a remote ODT (in the SDRAM) which can be turned on by sett
# ing the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 is
# controlled by bit next to the LSB, etc. For each rank, set its bit to 1
# to enable its ODT. Present only in configurations that have 2 or more r
# anks
# PSU_DDRC_ODTMAP_RANK1_WR_ODT 0x0
# Indicates which remote ODTs must be turned on during a read from rank 0.
# Each rank has a remote ODT (in the SDRAM) which can be turned on by set
# ting the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 i
# s controlled by bit next to the LSB, etc. For each rank, set its bit to
# 1 to enable its ODT.
# PSU_DDRC_ODTMAP_RANK0_RD_ODT 0x0
# Indicates which remote ODTs must be turned on during a write to rank 0.
# Each rank has a remote ODT (in the SDRAM) which can be turned on by sett
# ing the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 is
# controlled by bit next to the LSB, etc. For each rank, set its bit to 1
# to enable its ODT.
# PSU_DDRC_ODTMAP_RANK0_WR_ODT 0x1
# ODT/Rank Map Register
#(OFFSET, MASK, VALUE) (0XFD070244, 0x00003333U ,0x00000001U) */
mask_write 0XFD070244 0x00003333 0x00000001
# Register : SCHED @ 0XFD070250</p>
# When the preferred transaction store is empty for these many clock cycle
# s, switch to the alternate transaction store if it is non-empty. The rea
# d transaction store (both high and low priority) is the default preferre
# d transaction store and the write transaction store is the alternative s
# tore. When prefer write over read is set this is reversed. 0x0 is a lega
# l value for this register. When set to 0x0, the transaction store switch
# ing will happen immediately when the switching conditions become true. F
# OR PERFORMANCE ONLY
# PSU_DDRC_SCHED_RDWR_IDLE_GAP 0x1
# UNUSED
# PSU_DDRC_SCHED_GO2CRITICAL_HYSTERESIS 0x0
# Number of entries in the low priority transaction store is this value +
# 1. (MEMC_NO_OF_ENTRY - (SCHED.lpr_num_entries + 1)) is the number of ent
# ries available for the high priority transaction store. Setting this to
# maximum value allocates all entries to low priority transaction store. S
# etting this to 0 allocates 1 entry to low priority transaction store and
# the rest to high priority transaction store. Note: In ECC configuration
# s, the numbers of write and low priority read credits issued is one less
# than in the non-ECC case. One entry each is reserved in the write and l
# ow-priority read CAMs for storing the RMW requests arising out of single
# bit error correction RMW operation.
# PSU_DDRC_SCHED_LPR_NUM_ENTRIES 0x20
# If true, bank is kept open only while there are page hit transactions av
# ailable in the CAM to that bank. The last read or write command in the C
# AM with a bank and page hit will be executed with auto-precharge if SCHE
# D1.pageclose_timer=0. Even if this register set to 1 and SCHED1.pageclos
# e_timer is set to 0, explicit precharge (and not auto-precharge) may be
# issued in some cases where there is a mode switch between Write and Read
# or between LPR and HPR. The Read and Write commands that are executed a
# s part of the ECC scrub requests are also executed without auto-precharg
# e. If false, the bank remains open until there is a need to close it (to
# open a different page, or for page timeout or refresh timeout) - also k
# nown as open page policy. The open page policy can be overridden by sett
# ing the per-command-autopre bit on the HIF interface (hif_cmd_autopre).
# The pageclose feature provids a midway between Open and Close page polic
# ies. FOR PERFORMANCE ONLY.
# PSU_DDRC_SCHED_PAGECLOSE 0x0
# If set then the bank selector prefers writes over reads. FOR DEBUG ONLY.
# PSU_DDRC_SCHED_PREFER_WRITE 0x0
# Active low signal. When asserted ('0'), all incoming transactions are fo
# rced to low priority. This implies that all High Priority Read (HPR) and
# Variable Priority Read commands (VPR) will be treated as Low Priority R
# ead (LPR) commands. On the write side, all Variable Priority Write (VPW)
# commands will be treated as Normal Priority Write (NPW) commands. Forci
# ng the incoming transactions to low priority implicitly turns off Bypass
# path for read commands. FOR PERFORMANCE ONLY.
# PSU_DDRC_SCHED_FORCE_LOW_PRI_N 0x1
# Scheduler Control Register
#(OFFSET, MASK, VALUE) (0XFD070250, 0x7FFF3F07U ,0x01002001U) */
mask_write 0XFD070250 0x7FFF3F07 0x01002001
# Register : PERFLPR1 @ 0XFD070264</p>
# Number of transactions that are serviced once the LPR queue goes critica
# l is the smaller of: - (a) This number - (b) Number of transactions avai
# lable. Unit: Transaction. FOR PERFORMANCE ONLY.
# PSU_DDRC_PERFLPR1_LPR_XACT_RUN_LENGTH 0x8
# Number of clocks that the LPR queue can be starved before it goes critic
# al. The minimum valid functional value for this register is 0x1. Program
# ming it to 0x0 will disable the starvation functionality; during normal
# operation, this function should not be disabled as it will cause excessi
# ve latencies. Unit: Clock cycles. FOR PERFORMANCE ONLY.
# PSU_DDRC_PERFLPR1_LPR_MAX_STARVE 0x40
# Low Priority Read CAM Register 1
#(OFFSET, MASK, VALUE) (0XFD070264, 0xFF00FFFFU ,0x08000040U) */
mask_write 0XFD070264 0xFF00FFFF 0x08000040
# Register : PERFWR1 @ 0XFD07026C</p>
# Number of transactions that are serviced once the WR queue goes critical
# is the smaller of: - (a) This number - (b) Number of transactions avail
# able. Unit: Transaction. FOR PERFORMANCE ONLY.
# PSU_DDRC_PERFWR1_W_XACT_RUN_LENGTH 0x8
# Number of clocks that the WR queue can be starved before it goes critica
# l. The minimum valid functional value for this register is 0x1. Programm
# ing it to 0x0 will disable the starvation functionality; during normal o
# peration, this function should not be disabled as it will cause excessiv
# e latencies. Unit: Clock cycles. FOR PERFORMANCE ONLY.
# PSU_DDRC_PERFWR1_W_MAX_STARVE 0x40
# Write CAM Register 1
#(OFFSET, MASK, VALUE) (0XFD07026C, 0xFF00FFFFU ,0x08000040U) */
mask_write 0XFD07026C 0xFF00FFFF 0x08000040
# Register : DQMAP0 @ 0XFD070280</p>
# DQ nibble map for DQ bits [12-15] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP0_DQ_NIBBLE_MAP_12_15 0x0
# DQ nibble map for DQ bits [8-11] Present only in designs configured to s
# upport DDR4.
# PSU_DDRC_DQMAP0_DQ_NIBBLE_MAP_8_11 0x0
# DQ nibble map for DQ bits [4-7] Present only in designs configured to su
# pport DDR4.
# PSU_DDRC_DQMAP0_DQ_NIBBLE_MAP_4_7 0x0
# DQ nibble map for DQ bits [0-3] Present only in designs configured to su
# pport DDR4.
# PSU_DDRC_DQMAP0_DQ_NIBBLE_MAP_0_3 0x0
# DQ Map Register 0
#(OFFSET, MASK, VALUE) (0XFD070280, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD070280 0xFFFFFFFF 0x00000000
# Register : DQMAP1 @ 0XFD070284</p>
# DQ nibble map for DQ bits [28-31] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP1_DQ_NIBBLE_MAP_28_31 0x0
# DQ nibble map for DQ bits [24-27] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP1_DQ_NIBBLE_MAP_24_27 0x0
# DQ nibble map for DQ bits [20-23] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP1_DQ_NIBBLE_MAP_20_23 0x0
# DQ nibble map for DQ bits [16-19] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP1_DQ_NIBBLE_MAP_16_19 0x0
# DQ Map Register 1
#(OFFSET, MASK, VALUE) (0XFD070284, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD070284 0xFFFFFFFF 0x00000000
# Register : DQMAP2 @ 0XFD070288</p>
# DQ nibble map for DQ bits [44-47] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP2_DQ_NIBBLE_MAP_44_47 0x0
# DQ nibble map for DQ bits [40-43] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP2_DQ_NIBBLE_MAP_40_43 0x0
# DQ nibble map for DQ bits [36-39] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP2_DQ_NIBBLE_MAP_36_39 0x0
# DQ nibble map for DQ bits [32-35] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP2_DQ_NIBBLE_MAP_32_35 0x0
# DQ Map Register 2
#(OFFSET, MASK, VALUE) (0XFD070288, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD070288 0xFFFFFFFF 0x00000000
# Register : DQMAP3 @ 0XFD07028C</p>
# DQ nibble map for DQ bits [60-63] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP3_DQ_NIBBLE_MAP_60_63 0x0
# DQ nibble map for DQ bits [56-59] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP3_DQ_NIBBLE_MAP_56_59 0x0
# DQ nibble map for DQ bits [52-55] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP3_DQ_NIBBLE_MAP_52_55 0x0
# DQ nibble map for DQ bits [48-51] Present only in designs configured to
# support DDR4.
# PSU_DDRC_DQMAP3_DQ_NIBBLE_MAP_48_51 0x0
# DQ Map Register 3
#(OFFSET, MASK, VALUE) (0XFD07028C, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD07028C 0xFFFFFFFF 0x00000000
# Register : DQMAP4 @ 0XFD070290</p>
# DQ nibble map for DIMM ECC check bits [4-7] Present only in designs conf
# igured to support DDR4.
# PSU_DDRC_DQMAP4_DQ_NIBBLE_MAP_CB_4_7 0x0
# DQ nibble map for DIMM ECC check bits [0-3] Present only in designs conf
# igured to support DDR4.
# PSU_DDRC_DQMAP4_DQ_NIBBLE_MAP_CB_0_3 0x0
# DQ Map Register 4
#(OFFSET, MASK, VALUE) (0XFD070290, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD070290 0x0000FFFF 0x00000000
# Register : DQMAP5 @ 0XFD070294</p>
# All even ranks have the same DQ mapping controled by DQMAP0-4 register a
# s rank 0. This register provides DQ swap function for all odd ranks to s
# upport CRC feature. rank based DQ swapping is: swap bit 0 with 1, swap b
# it 2 with 3, swap bit 4 with 5 and swap bit 6 with 7. 1: Disable rank ba
# sed DQ swapping 0: Enable rank based DQ swapping Present only in designs
# configured to support DDR4.
# PSU_DDRC_DQMAP5_DIS_DQ_RANK_SWAP 0x1
# DQ Map Register 5
#(OFFSET, MASK, VALUE) (0XFD070294, 0x00000001U ,0x00000001U) */
mask_write 0XFD070294 0x00000001 0x00000001
# Register : DBG0 @ 0XFD070300</p>
# When this is set to '0', auto-precharge is disabled for the flushed comm
# and in a collision case. Collision cases are write followed by read to s
# ame address, read followed by write to same address, or write followed b
# y write to same address with DBG0.dis_wc bit = 1 (where same address com
# parisons exclude the two address bits representing critical word). FOR D
# EBUG ONLY.
# PSU_DDRC_DBG0_DIS_COLLISION_PAGE_OPT 0x0
# When 1, disable write combine. FOR DEBUG ONLY
# PSU_DDRC_DBG0_DIS_WC 0x0
# Debug Register 0
#(OFFSET, MASK, VALUE) (0XFD070300, 0x00000011U ,0x00000000U) */
mask_write 0XFD070300 0x00000011 0x00000000
# Register : DBGCMD @ 0XFD07030C</p>
# Setting this register bit to 1 allows refresh and ZQCS commands to be tr
# iggered from hardware via the IOs ext_*. If set to 1, the fields DBGCMD.
# zq_calib_short and DBGCMD.rank*_refresh have no function, and are ignore
# d by the uMCTL2 logic. Setting this register bit to 0 allows refresh and
# ZQCS to be triggered from software, via the fields DBGCMD.zq_calib_shor
# t and DBGCMD.rank*_refresh. If set to 0, the hardware pins ext_* have no
# function, and are ignored by the uMCTL2 logic. This register is static,
# and may only be changed when the DDRC reset signal, core_ddrc_rstn, is
# asserted (0).
# PSU_DDRC_DBGCMD_HW_REF_ZQ_EN 0x0
# Setting this register bit to 1 indicates to the uMCTL2 to issue a dfi_ct
# rlupd_req to the PHY. When this request is stored in the uMCTL2, the bit
# is automatically cleared. This operation must only be performed when DF
# IUPD0.dis_auto_ctrlupd=1.
# PSU_DDRC_DBGCMD_CTRLUPD 0x0
# Setting this register bit to 1 indicates to the uMCTL2 to issue a ZQCS (
# ZQ calibration short)/MPC(ZQ calibration) command to the SDRAM. When thi
# s request is stored in the uMCTL2, the bit is automatically cleared. Thi
# s operation can be performed only when ZQCTL0.dis_auto_zq=1. It is recom
# mended NOT to set this register bit if in Init operating mode. This regi
# ster bit is ignored when in Self-Refresh(except LPDDR4) and SR-Powerdown
# (LPDDR4) and Deep power-down operating modes and Maximum Power Saving Mo
# de.
# PSU_DDRC_DBGCMD_ZQ_CALIB_SHORT 0x0
# Setting this register bit to 1 indicates to the uMCTL2 to issue a refres
# h to rank 1. Writing to this bit causes DBGSTAT.rank1_refresh_busy to be
# set. When DBGSTAT.rank1_refresh_busy is cleared, the command has been s
# tored in uMCTL2. This operation can be performed only when RFSHCTL3.dis_
# auto_refresh=1. It is recommended NOT to set this register bit if in Ini
# t or Deep power-down operating modes or Maximum Power Saving Mode.
# PSU_DDRC_DBGCMD_RANK1_REFRESH 0x0
# Setting this register bit to 1 indicates to the uMCTL2 to issue a refres
# h to rank 0. Writing to this bit causes DBGSTAT.rank0_refresh_busy to be
# set. When DBGSTAT.rank0_refresh_busy is cleared, the command has been s
# tored in uMCTL2. This operation can be performed only when RFSHCTL3.dis_
# auto_refresh=1. It is recommended NOT to set this register bit if in Ini
# t or Deep power-down operating modes or Maximum Power Saving Mode.
# PSU_DDRC_DBGCMD_RANK0_REFRESH 0x0
# Command Debug Register
#(OFFSET, MASK, VALUE) (0XFD07030C, 0x80000033U ,0x00000000U) */
mask_write 0XFD07030C 0x80000033 0x00000000
# Register : SWCTL @ 0XFD070320</p>
# Enable quasi-dynamic register programming outside reset. Program registe
# r to 0 to enable quasi-dynamic programming. Set back register to 1 once
# programming is done.
# PSU_DDRC_SWCTL_SW_DONE 0x0
# Software register programming control enable
#(OFFSET, MASK, VALUE) (0XFD070320, 0x00000001U ,0x00000000U) */
mask_write 0XFD070320 0x00000001 0x00000000
# Register : PCCFG @ 0XFD070400</p>
# Burst length expansion mode. By default (i.e. bl_exp_mode==0) XPI expand
# s every AXI burst into multiple HIF commands, using the memory burst len
# gth as a unit. If set to 1, then XPI will use half of the memory burst l
# ength as a unit. This applies to both reads and writes. When MSTR.data_b
# us_width==00, setting bl_exp_mode to 1 has no effect. This can be used i
# n cases where Partial Writes is enabled (UMCTL2_PARTIAL_WR=1) and DBG0.d
# is_wc=1, in order to avoid or minimize t_ccd_l penalty in DDR4 and t_ccd
# _mw penalty in LPDDR4. Note that if DBICTL.reg_ddrc_dm_en=0, functionali
# ty is not supported in the following cases: - UMCTL2_PARTIAL_WR=0 - UMCT
# L2_PARTIAL_WR=1, MSTR.reg_ddrc_data_bus_width=01, MEMC_BURST_LENGTH=8 an
# d MSTR.reg_ddrc_burst_rdwr=1000 (LPDDR4 only) - UMCTL2_PARTIAL_WR=1, MST
# R.reg_ddrc_data_bus_width=01, MEMC_BURST_LENGTH=4 and MSTR.reg_ddrc_burs
# t_rdwr=0100 (DDR4 only), with either MSTR.reg_ddrc_burstchop=0 or CRCPAR
# CTL1.reg_ddrc_crc_enable=1 Functionality is also not supported if Shared
# -AC is enabled
# PSU_DDRC_PCCFG_BL_EXP_MODE 0x0
# Page match four limit. If set to 1, limits the number of consecutive sam
# e page DDRC transactions that can be granted by the Port Arbiter to four
# when Page Match feature is enabled. If set to 0, there is no limit impo
# sed on number of consecutive same page DDRC transactions.
# PSU_DDRC_PCCFG_PAGEMATCH_LIMIT 0x0
# If set to 1 (enabled), sets co_gs_go2critical_wr and co_gs_go2critical_l
# pr/co_gs_go2critical_hpr signals going to DDRC based on urgent input (aw
# urgent, arurgent) coming from AXI master. If set to 0 (disabled), co_gs_
# go2critical_wr and co_gs_go2critical_lpr/co_gs_go2critical_hpr signals a
# t DDRC are driven to 1b'0.
# PSU_DDRC_PCCFG_GO2CRITICAL_EN 0x1
# Port Common Configuration Register
#(OFFSET, MASK, VALUE) (0XFD070400, 0x00000111U ,0x00000001U) */
mask_write 0XFD070400 0x00000111 0x00000001
# Register : PCFGR_0 @ 0XFD070404</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGR_0_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
# bled and arurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
# RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
# urgent signal can be asserted anytime and as long as required which is i
# ndependent of address handshaking (it is not associated with any particu
# lar command).
# PSU_DDRC_PCFGR_0_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_0_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters
# will be parallel loaded after reset, or after each grant to the corresp
# onding port. The aging counters down-count every clock cycle where the p
# ort is requesting but not granted. The higher significant 5-bits of the
# read aging counter sets the priority of the read channel of a given port
# . Port's priority will increase as the higher significant 5-bits of the
# counter starts to decrease. When the aging counter becomes 0, the corres
# ponding port channel will have the highest priority level (timeout condi
# tion - Priority0). For multi-port configurations, the aging counters can
# not be used to set port priorities when external dynamic priority inputs
# (arqos) are enabled (timeout is still applicable). For single port conf
# igurations, the aging counters are only used when they timeout (become 0
# ) to force read-write direction switching. In this case, external dynami
# c priority input, arqos (for reads only) can still be used to set the DD
# RC read priority (2 priority levels: low priority read - LPR, high prior
# ity read - HPR) on a command by command basis. Note: The two LSBs of thi
# s register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_0_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD070404, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070404 0x000073FF 0x0000200F
# Register : PCFGW_0 @ 0XFD070408</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGW_0_WR_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
# bled and awurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
# ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
# serted anytime and as long as required which is independent of address h
# andshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGW_0_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_0_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counter
# s will be parallel loaded after reset, or after each grant to the corres
# ponding port. The aging counters down-count every clock cycle where the
# port is requesting but not granted. The higher significant 5-bits of the
# write aging counter sets the initial priority of the write channel of a
# given port. Port's priority will increase as the higher significant 5-b
# its of the counter starts to decrease. When the aging counter becomes 0,
# the corresponding port channel will have the highest priority level. Fo
# r multi-port configurations, the aging counters cannot be used to set po
# rt priorities when external dynamic priority inputs (awqos) are enabled
# (timeout is still applicable). For single port configurations, the aging
# counters are only used when they timeout (become 0) to force read-write
# direction switching. Note: The two LSBs of this register field are tied
# internally to 2'b00.
# PSU_DDRC_PCFGW_0_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD070408, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070408 0x000073FF 0x0000200F
# Register : PCTRL_0 @ 0XFD070490</p>
# Enables port n.
# PSU_DDRC_PCTRL_0_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD070490, 0x00000001U ,0x00000001U) */
mask_write 0XFD070490 0x00000001 0x00000001
# Register : PCFGQOS0_0 @ 0XFD070494</p>
# This bitfield indicates the traffic class of region 1. Valid values are:
# 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
# maps to the blue address queue. In this case, valid values are 0: LPR a
# nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
# ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_0_RQOS_MAP_REGION1 0x2
# This bitfield indicates the traffic class of region 0. Valid values are:
# 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
# maps to the blue address queue. In this case, valid values are: 0: LPR
# and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
# affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_0_RQOS_MAP_REGION0 0x0
# Separation level1 indicating the end of region0 mapping; start of region
# 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
# (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
# lues are used directly as port priorities, where the higher the value co
# rresponds to higher port priority. All of the map_level* registers must
# be set to distinct values.
# PSU_DDRC_PCFGQOS0_0_RQOS_MAP_LEVEL1 0xb
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070494, 0x0033000FU ,0x0020000BU) */
mask_write 0XFD070494 0x0033000F 0x0020000B
# Register : PCFGQOS1_0 @ 0XFD070498</p>
# Specifies the timeout value for transactions mapped to the red address q
# ueue.
# PSU_DDRC_PCFGQOS1_0_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address
# queue.
# PSU_DDRC_PCFGQOS1_0_RQOS_MAP_TIMEOUTB 0x0
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070498, 0x07FF07FFU ,0x00000000U) */
mask_write 0XFD070498 0x07FF07FF 0x00000000
# Register : PCFGR_1 @ 0XFD0704B4</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGR_1_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
# bled and arurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
# RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
# urgent signal can be asserted anytime and as long as required which is i
# ndependent of address handshaking (it is not associated with any particu
# lar command).
# PSU_DDRC_PCFGR_1_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_1_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters
# will be parallel loaded after reset, or after each grant to the corresp
# onding port. The aging counters down-count every clock cycle where the p
# ort is requesting but not granted. The higher significant 5-bits of the
# read aging counter sets the priority of the read channel of a given port
# . Port's priority will increase as the higher significant 5-bits of the
# counter starts to decrease. When the aging counter becomes 0, the corres
# ponding port channel will have the highest priority level (timeout condi
# tion - Priority0). For multi-port configurations, the aging counters can
# not be used to set port priorities when external dynamic priority inputs
# (arqos) are enabled (timeout is still applicable). For single port conf
# igurations, the aging counters are only used when they timeout (become 0
# ) to force read-write direction switching. In this case, external dynami
# c priority input, arqos (for reads only) can still be used to set the DD
# RC read priority (2 priority levels: low priority read - LPR, high prior
# ity read - HPR) on a command by command basis. Note: The two LSBs of thi
# s register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_1_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD0704B4, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD0704B4 0x000073FF 0x0000200F
# Register : PCFGW_1 @ 0XFD0704B8</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGW_1_WR_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
# bled and awurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
# ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
# serted anytime and as long as required which is independent of address h
# andshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGW_1_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_1_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counter
# s will be parallel loaded after reset, or after each grant to the corres
# ponding port. The aging counters down-count every clock cycle where the
# port is requesting but not granted. The higher significant 5-bits of the
# write aging counter sets the initial priority of the write channel of a
# given port. Port's priority will increase as the higher significant 5-b
# its of the counter starts to decrease. When the aging counter becomes 0,
# the corresponding port channel will have the highest priority level. Fo
# r multi-port configurations, the aging counters cannot be used to set po
# rt priorities when external dynamic priority inputs (awqos) are enabled
# (timeout is still applicable). For single port configurations, the aging
# counters are only used when they timeout (become 0) to force read-write
# direction switching. Note: The two LSBs of this register field are tied
# internally to 2'b00.
# PSU_DDRC_PCFGW_1_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD0704B8, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD0704B8 0x000073FF 0x0000200F
# Register : PCTRL_1 @ 0XFD070540</p>
# Enables port n.
# PSU_DDRC_PCTRL_1_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD070540, 0x00000001U ,0x00000001U) */
mask_write 0XFD070540 0x00000001 0x00000001
# Register : PCFGQOS0_1 @ 0XFD070544</p>
# This bitfield indicates the traffic class of region2. For dual address q
# ueue configurations, region2 maps to the red address queue. Valid values
# are 1: VPR and 2: HPR only. When VPR support is disabled (UMCTL2_VPR_EN
# = 0) and traffic class of region2 is set to 1 (VPR), VPR traffic is ali
# ased to LPR traffic.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_REGION2 0x2
# This bitfield indicates the traffic class of region 1. Valid values are:
# 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
# maps to the blue address queue. In this case, valid values are 0: LPR a
# nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
# ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_REGION1 0x0
# This bitfield indicates the traffic class of region 0. Valid values are:
# 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
# maps to the blue address queue. In this case, valid values are: 0: LPR
# and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
# affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_REGION0 0x0
# Separation level2 indicating the end of region1 mapping; start of region
# 1 is (level1 + 1). Possible values for level2 are (level1 + 1) to 14 whi
# ch corresponds to arqos. Region2 starts from (level2 + 1) up to 15. Note
# that for PA, arqos values are used directly as port priorities, where t
# he higher the value corresponds to higher port priority. All of the map_
# level* registers must be set to distinct values.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_LEVEL2 0xb
# Separation level1 indicating the end of region0 mapping; start of region
# 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
# (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
# lues are used directly as port priorities, where the higher the value co
# rresponds to higher port priority. All of the map_level* registers must
# be set to distinct values.
# PSU_DDRC_PCFGQOS0_1_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070544, 0x03330F0FU ,0x02000B03U) */
mask_write 0XFD070544 0x03330F0F 0x02000B03
# Register : PCFGQOS1_1 @ 0XFD070548</p>
# Specifies the timeout value for transactions mapped to the red address q
# ueue.
# PSU_DDRC_PCFGQOS1_1_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address
# queue.
# PSU_DDRC_PCFGQOS1_1_RQOS_MAP_TIMEOUTB 0x0
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070548, 0x07FF07FFU ,0x00000000U) */
mask_write 0XFD070548 0x07FF07FF 0x00000000
# Register : PCFGR_2 @ 0XFD070564</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGR_2_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
# bled and arurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
# RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
# urgent signal can be asserted anytime and as long as required which is i
# ndependent of address handshaking (it is not associated with any particu
# lar command).
# PSU_DDRC_PCFGR_2_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_2_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters
# will be parallel loaded after reset, or after each grant to the corresp
# onding port. The aging counters down-count every clock cycle where the p
# ort is requesting but not granted. The higher significant 5-bits of the
# read aging counter sets the priority of the read channel of a given port
# . Port's priority will increase as the higher significant 5-bits of the
# counter starts to decrease. When the aging counter becomes 0, the corres
# ponding port channel will have the highest priority level (timeout condi
# tion - Priority0). For multi-port configurations, the aging counters can
# not be used to set port priorities when external dynamic priority inputs
# (arqos) are enabled (timeout is still applicable). For single port conf
# igurations, the aging counters are only used when they timeout (become 0
# ) to force read-write direction switching. In this case, external dynami
# c priority input, arqos (for reads only) can still be used to set the DD
# RC read priority (2 priority levels: low priority read - LPR, high prior
# ity read - HPR) on a command by command basis. Note: The two LSBs of thi
# s register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_2_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD070564, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070564 0x000073FF 0x0000200F
# Register : PCFGW_2 @ 0XFD070568</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGW_2_WR_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
# bled and awurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
# ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
# serted anytime and as long as required which is independent of address h
# andshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGW_2_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_2_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counter
# s will be parallel loaded after reset, or after each grant to the corres
# ponding port. The aging counters down-count every clock cycle where the
# port is requesting but not granted. The higher significant 5-bits of the
# write aging counter sets the initial priority of the write channel of a
# given port. Port's priority will increase as the higher significant 5-b
# its of the counter starts to decrease. When the aging counter becomes 0,
# the corresponding port channel will have the highest priority level. Fo
# r multi-port configurations, the aging counters cannot be used to set po
# rt priorities when external dynamic priority inputs (awqos) are enabled
# (timeout is still applicable). For single port configurations, the aging
# counters are only used when they timeout (become 0) to force read-write
# direction switching. Note: The two LSBs of this register field are tied
# internally to 2'b00.
# PSU_DDRC_PCFGW_2_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD070568, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070568 0x000073FF 0x0000200F
# Register : PCTRL_2 @ 0XFD0705F0</p>
# Enables port n.
# PSU_DDRC_PCTRL_2_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD0705F0, 0x00000001U ,0x00000001U) */
mask_write 0XFD0705F0 0x00000001 0x00000001
# Register : PCFGQOS0_2 @ 0XFD0705F4</p>
# This bitfield indicates the traffic class of region2. For dual address q
# ueue configurations, region2 maps to the red address queue. Valid values
# are 1: VPR and 2: HPR only. When VPR support is disabled (UMCTL2_VPR_EN
# = 0) and traffic class of region2 is set to 1 (VPR), VPR traffic is ali
# ased to LPR traffic.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_REGION2 0x2
# This bitfield indicates the traffic class of region 1. Valid values are:
# 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
# maps to the blue address queue. In this case, valid values are 0: LPR a
# nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
# ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_REGION1 0x0
# This bitfield indicates the traffic class of region 0. Valid values are:
# 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
# maps to the blue address queue. In this case, valid values are: 0: LPR
# and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
# affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_REGION0 0x0
# Separation level2 indicating the end of region1 mapping; start of region
# 1 is (level1 + 1). Possible values for level2 are (level1 + 1) to 14 whi
# ch corresponds to arqos. Region2 starts from (level2 + 1) up to 15. Note
# that for PA, arqos values are used directly as port priorities, where t
# he higher the value corresponds to higher port priority. All of the map_
# level* registers must be set to distinct values.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_LEVEL2 0xb
# Separation level1 indicating the end of region0 mapping; start of region
# 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
# (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
# lues are used directly as port priorities, where the higher the value co
# rresponds to higher port priority. All of the map_level* registers must
# be set to distinct values.
# PSU_DDRC_PCFGQOS0_2_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD0705F4, 0x03330F0FU ,0x02000B03U) */
mask_write 0XFD0705F4 0x03330F0F 0x02000B03
# Register : PCFGQOS1_2 @ 0XFD0705F8</p>
# Specifies the timeout value for transactions mapped to the red address q
# ueue.
# PSU_DDRC_PCFGQOS1_2_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address
# queue.
# PSU_DDRC_PCFGQOS1_2_RQOS_MAP_TIMEOUTB 0x0
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD0705F8, 0x07FF07FFU ,0x00000000U) */
mask_write 0XFD0705F8 0x07FF07FF 0x00000000
# Register : PCFGR_3 @ 0XFD070614</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGR_3_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
# bled and arurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
# RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
# urgent signal can be asserted anytime and as long as required which is i
# ndependent of address handshaking (it is not associated with any particu
# lar command).
# PSU_DDRC_PCFGR_3_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_3_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters
# will be parallel loaded after reset, or after each grant to the corresp
# onding port. The aging counters down-count every clock cycle where the p
# ort is requesting but not granted. The higher significant 5-bits of the
# read aging counter sets the priority of the read channel of a given port
# . Port's priority will increase as the higher significant 5-bits of the
# counter starts to decrease. When the aging counter becomes 0, the corres
# ponding port channel will have the highest priority level (timeout condi
# tion - Priority0). For multi-port configurations, the aging counters can
# not be used to set port priorities when external dynamic priority inputs
# (arqos) are enabled (timeout is still applicable). For single port conf
# igurations, the aging counters are only used when they timeout (become 0
# ) to force read-write direction switching. In this case, external dynami
# c priority input, arqos (for reads only) can still be used to set the DD
# RC read priority (2 priority levels: low priority read - LPR, high prior
# ity read - HPR) on a command by command basis. Note: The two LSBs of thi
# s register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_3_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD070614, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070614 0x000073FF 0x0000200F
# Register : PCFGW_3 @ 0XFD070618</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGW_3_WR_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
# bled and awurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
# ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
# serted anytime and as long as required which is independent of address h
# andshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGW_3_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_3_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counter
# s will be parallel loaded after reset, or after each grant to the corres
# ponding port. The aging counters down-count every clock cycle where the
# port is requesting but not granted. The higher significant 5-bits of the
# write aging counter sets the initial priority of the write channel of a
# given port. Port's priority will increase as the higher significant 5-b
# its of the counter starts to decrease. When the aging counter becomes 0,
# the corresponding port channel will have the highest priority level. Fo
# r multi-port configurations, the aging counters cannot be used to set po
# rt priorities when external dynamic priority inputs (awqos) are enabled
# (timeout is still applicable). For single port configurations, the aging
# counters are only used when they timeout (become 0) to force read-write
# direction switching. Note: The two LSBs of this register field are tied
# internally to 2'b00.
# PSU_DDRC_PCFGW_3_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD070618, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070618 0x000073FF 0x0000200F
# Register : PCTRL_3 @ 0XFD0706A0</p>
# Enables port n.
# PSU_DDRC_PCTRL_3_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD0706A0, 0x00000001U ,0x00000001U) */
mask_write 0XFD0706A0 0x00000001 0x00000001
# Register : PCFGQOS0_3 @ 0XFD0706A4</p>
# This bitfield indicates the traffic class of region 1. Valid values are:
# 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
# maps to the blue address queue. In this case, valid values are 0: LPR a
# nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
# ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_3_RQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are:
# 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
# maps to the blue address queue. In this case, valid values are: 0: LPR
# and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
# affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_3_RQOS_MAP_REGION0 0x0
# Separation level1 indicating the end of region0 mapping; start of region
# 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
# (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
# lues are used directly as port priorities, where the higher the value co
# rresponds to higher port priority. All of the map_level* registers must
# be set to distinct values.
# PSU_DDRC_PCFGQOS0_3_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD0706A4, 0x0033000FU ,0x00100003U) */
mask_write 0XFD0706A4 0x0033000F 0x00100003
# Register : PCFGQOS1_3 @ 0XFD0706A8</p>
# Specifies the timeout value for transactions mapped to the red address q
# ueue.
# PSU_DDRC_PCFGQOS1_3_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address
# queue.
# PSU_DDRC_PCFGQOS1_3_RQOS_MAP_TIMEOUTB 0x4f
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD0706A8, 0x07FF07FFU ,0x0000004FU) */
mask_write 0XFD0706A8 0x07FF07FF 0x0000004F
# Register : PCFGWQOS0_3 @ 0XFD0706AC</p>
# This bitfield indicates the traffic class of region 1. Valid values are:
# 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
# affic class of region 1 is set to 1 (VPW), VPW traffic is aliased to LPW
# traffic.
# PSU_DDRC_PCFGWQOS0_3_WQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are:
# 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
# affic class of region0 is set to 1 (VPW), VPW traffic is aliased to NPW
# traffic.
# PSU_DDRC_PCFGWQOS0_3_WQOS_MAP_REGION0 0x0
# Separation level indicating the end of region0 mapping; start of region0
# is 0. Possible values for level1 are 0 to 14 which corresponds to awqos
# . Note that for PA, awqos values are used directly as port priorities, w
# here the higher the value corresponds to higher port priority.
# PSU_DDRC_PCFGWQOS0_3_WQOS_MAP_LEVEL 0x3
# Port n Write QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD0706AC, 0x0033000FU ,0x00100003U) */
mask_write 0XFD0706AC 0x0033000F 0x00100003
# Register : PCFGWQOS1_3 @ 0XFD0706B0</p>
# Specifies the timeout value for write transactions.
# PSU_DDRC_PCFGWQOS1_3_WQOS_MAP_TIMEOUT 0x4f
# Port n Write QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD0706B0, 0x000007FFU ,0x0000004FU) */
mask_write 0XFD0706B0 0x000007FF 0x0000004F
# Register : PCFGR_4 @ 0XFD0706C4</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGR_4_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
# bled and arurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
# RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
# urgent signal can be asserted anytime and as long as required which is i
# ndependent of address handshaking (it is not associated with any particu
# lar command).
# PSU_DDRC_PCFGR_4_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_4_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters
# will be parallel loaded after reset, or after each grant to the corresp
# onding port. The aging counters down-count every clock cycle where the p
# ort is requesting but not granted. The higher significant 5-bits of the
# read aging counter sets the priority of the read channel of a given port
# . Port's priority will increase as the higher significant 5-bits of the
# counter starts to decrease. When the aging counter becomes 0, the corres
# ponding port channel will have the highest priority level (timeout condi
# tion - Priority0). For multi-port configurations, the aging counters can
# not be used to set port priorities when external dynamic priority inputs
# (arqos) are enabled (timeout is still applicable). For single port conf
# igurations, the aging counters are only used when they timeout (become 0
# ) to force read-write direction switching. In this case, external dynami
# c priority input, arqos (for reads only) can still be used to set the DD
# RC read priority (2 priority levels: low priority read - LPR, high prior
# ity read - HPR) on a command by command basis. Note: The two LSBs of thi
# s register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_4_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD0706C4, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD0706C4 0x000073FF 0x0000200F
# Register : PCFGW_4 @ 0XFD0706C8</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGW_4_WR_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
# bled and awurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
# ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
# serted anytime and as long as required which is independent of address h
# andshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGW_4_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_4_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counter
# s will be parallel loaded after reset, or after each grant to the corres
# ponding port. The aging counters down-count every clock cycle where the
# port is requesting but not granted. The higher significant 5-bits of the
# write aging counter sets the initial priority of the write channel of a
# given port. Port's priority will increase as the higher significant 5-b
# its of the counter starts to decrease. When the aging counter becomes 0,
# the corresponding port channel will have the highest priority level. Fo
# r multi-port configurations, the aging counters cannot be used to set po
# rt priorities when external dynamic priority inputs (awqos) are enabled
# (timeout is still applicable). For single port configurations, the aging
# counters are only used when they timeout (become 0) to force read-write
# direction switching. Note: The two LSBs of this register field are tied
# internally to 2'b00.
# PSU_DDRC_PCFGW_4_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD0706C8, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD0706C8 0x000073FF 0x0000200F
# Register : PCTRL_4 @ 0XFD070750</p>
# Enables port n.
# PSU_DDRC_PCTRL_4_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD070750, 0x00000001U ,0x00000001U) */
mask_write 0XFD070750 0x00000001 0x00000001
# Register : PCFGQOS0_4 @ 0XFD070754</p>
# This bitfield indicates the traffic class of region 1. Valid values are:
# 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
# maps to the blue address queue. In this case, valid values are 0: LPR a
# nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
# ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_4_RQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are:
# 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
# maps to the blue address queue. In this case, valid values are: 0: LPR
# and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
# affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_4_RQOS_MAP_REGION0 0x0
# Separation level1 indicating the end of region0 mapping; start of region
# 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
# (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
# lues are used directly as port priorities, where the higher the value co
# rresponds to higher port priority. All of the map_level* registers must
# be set to distinct values.
# PSU_DDRC_PCFGQOS0_4_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070754, 0x0033000FU ,0x00100003U) */
mask_write 0XFD070754 0x0033000F 0x00100003
# Register : PCFGQOS1_4 @ 0XFD070758</p>
# Specifies the timeout value for transactions mapped to the red address q
# ueue.
# PSU_DDRC_PCFGQOS1_4_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address
# queue.
# PSU_DDRC_PCFGQOS1_4_RQOS_MAP_TIMEOUTB 0x4f
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070758, 0x07FF07FFU ,0x0000004FU) */
mask_write 0XFD070758 0x07FF07FF 0x0000004F
# Register : PCFGWQOS0_4 @ 0XFD07075C</p>
# This bitfield indicates the traffic class of region 1. Valid values are:
# 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
# affic class of region 1 is set to 1 (VPW), VPW traffic is aliased to LPW
# traffic.
# PSU_DDRC_PCFGWQOS0_4_WQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are:
# 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
# affic class of region0 is set to 1 (VPW), VPW traffic is aliased to NPW
# traffic.
# PSU_DDRC_PCFGWQOS0_4_WQOS_MAP_REGION0 0x0
# Separation level indicating the end of region0 mapping; start of region0
# is 0. Possible values for level1 are 0 to 14 which corresponds to awqos
# . Note that for PA, awqos values are used directly as port priorities, w
# here the higher the value corresponds to higher port priority.
# PSU_DDRC_PCFGWQOS0_4_WQOS_MAP_LEVEL 0x3
# Port n Write QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD07075C, 0x0033000FU ,0x00100003U) */
mask_write 0XFD07075C 0x0033000F 0x00100003
# Register : PCFGWQOS1_4 @ 0XFD070760</p>
# Specifies the timeout value for write transactions.
# PSU_DDRC_PCFGWQOS1_4_WQOS_MAP_TIMEOUT 0x4f
# Port n Write QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070760, 0x000007FFU ,0x0000004FU) */
mask_write 0XFD070760 0x000007FF 0x0000004F
# Register : PCFGR_5 @ 0XFD070774</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGR_5_RD_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
# bled and arurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
# RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
# urgent signal can be asserted anytime and as long as required which is i
# ndependent of address handshaking (it is not associated with any particu
# lar command).
# PSU_DDRC_PCFGR_5_RD_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the read channel of the port.
# PSU_DDRC_PCFGR_5_RD_PORT_AGING_EN 0x0
# Determines the initial load value of read aging counters. These counters
# will be parallel loaded after reset, or after each grant to the corresp
# onding port. The aging counters down-count every clock cycle where the p
# ort is requesting but not granted. The higher significant 5-bits of the
# read aging counter sets the priority of the read channel of a given port
# . Port's priority will increase as the higher significant 5-bits of the
# counter starts to decrease. When the aging counter becomes 0, the corres
# ponding port channel will have the highest priority level (timeout condi
# tion - Priority0). For multi-port configurations, the aging counters can
# not be used to set port priorities when external dynamic priority inputs
# (arqos) are enabled (timeout is still applicable). For single port conf
# igurations, the aging counters are only used when they timeout (become 0
# ) to force read-write direction switching. In this case, external dynami
# c priority input, arqos (for reads only) can still be used to set the DD
# RC read priority (2 priority levels: low priority read - LPR, high prior
# ity read - HPR) on a command by command basis. Note: The two LSBs of thi
# s register field are tied internally to 2'b00.
# PSU_DDRC_PCFGR_5_RD_PORT_PRIORITY 0xf
# Port n Configuration Read Register
#(OFFSET, MASK, VALUE) (0XFD070774, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070774 0x000073FF 0x0000200F
# Register : PCFGW_5 @ 0XFD070778</p>
# If set to 1, enables the Page Match feature. If enabled, once a requesti
# ng port is granted, the port is continued to be granted if the following
# immediate commands are to the same memory page (same bank and same row)
# . See also related PCCFG.pagematch_limit register.
# PSU_DDRC_PCFGW_5_WR_PORT_PAGEMATCH_EN 0x0
# If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
# bled and awurgent is asserted by the master, that port becomes the highe
# st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
# ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
# serted anytime and as long as required which is independent of address h
# andshaking (it is not associated with any particular command).
# PSU_DDRC_PCFGW_5_WR_PORT_URGENT_EN 0x1
# If set to 1, enables aging function for the write channel of the port.
# PSU_DDRC_PCFGW_5_WR_PORT_AGING_EN 0x0
# Determines the initial load value of write aging counters. These counter
# s will be parallel loaded after reset, or after each grant to the corres
# ponding port. The aging counters down-count every clock cycle where the
# port is requesting but not granted. The higher significant 5-bits of the
# write aging counter sets the initial priority of the write channel of a
# given port. Port's priority will increase as the higher significant 5-b
# its of the counter starts to decrease. When the aging counter becomes 0,
# the corresponding port channel will have the highest priority level. Fo
# r multi-port configurations, the aging counters cannot be used to set po
# rt priorities when external dynamic priority inputs (awqos) are enabled
# (timeout is still applicable). For single port configurations, the aging
# counters are only used when they timeout (become 0) to force read-write
# direction switching. Note: The two LSBs of this register field are tied
# internally to 2'b00.
# PSU_DDRC_PCFGW_5_WR_PORT_PRIORITY 0xf
# Port n Configuration Write Register
#(OFFSET, MASK, VALUE) (0XFD070778, 0x000073FFU ,0x0000200FU) */
mask_write 0XFD070778 0x000073FF 0x0000200F
# Register : PCTRL_5 @ 0XFD070800</p>
# Enables port n.
# PSU_DDRC_PCTRL_5_PORT_EN 0x1
# Port n Control Register
#(OFFSET, MASK, VALUE) (0XFD070800, 0x00000001U ,0x00000001U) */
mask_write 0XFD070800 0x00000001 0x00000001
# Register : PCFGQOS0_5 @ 0XFD070804</p>
# This bitfield indicates the traffic class of region 1. Valid values are:
# 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
# maps to the blue address queue. In this case, valid values are 0: LPR a
# nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
# ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_5_RQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are:
# 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
# maps to the blue address queue. In this case, valid values are: 0: LPR
# and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
# affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
# traffic.
# PSU_DDRC_PCFGQOS0_5_RQOS_MAP_REGION0 0x0
# Separation level1 indicating the end of region0 mapping; start of region
# 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
# (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
# lues are used directly as port priorities, where the higher the value co
# rresponds to higher port priority. All of the map_level* registers must
# be set to distinct values.
# PSU_DDRC_PCFGQOS0_5_RQOS_MAP_LEVEL1 0x3
# Port n Read QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD070804, 0x0033000FU ,0x00100003U) */
mask_write 0XFD070804 0x0033000F 0x00100003
# Register : PCFGQOS1_5 @ 0XFD070808</p>
# Specifies the timeout value for transactions mapped to the red address q
# ueue.
# PSU_DDRC_PCFGQOS1_5_RQOS_MAP_TIMEOUTR 0x0
# Specifies the timeout value for transactions mapped to the blue address
# queue.
# PSU_DDRC_PCFGQOS1_5_RQOS_MAP_TIMEOUTB 0x4f
# Port n Read QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070808, 0x07FF07FFU ,0x0000004FU) */
mask_write 0XFD070808 0x07FF07FF 0x0000004F
# Register : PCFGWQOS0_5 @ 0XFD07080C</p>
# This bitfield indicates the traffic class of region 1. Valid values are:
# 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
# affic class of region 1 is set to 1 (VPW), VPW traffic is aliased to LPW
# traffic.
# PSU_DDRC_PCFGWQOS0_5_WQOS_MAP_REGION1 0x1
# This bitfield indicates the traffic class of region 0. Valid values are:
# 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
# affic class of region0 is set to 1 (VPW), VPW traffic is aliased to NPW
# traffic.
# PSU_DDRC_PCFGWQOS0_5_WQOS_MAP_REGION0 0x0
# Separation level indicating the end of region0 mapping; start of region0
# is 0. Possible values for level1 are 0 to 14 which corresponds to awqos
# . Note that for PA, awqos values are used directly as port priorities, w
# here the higher the value corresponds to higher port priority.
# PSU_DDRC_PCFGWQOS0_5_WQOS_MAP_LEVEL 0x3
# Port n Write QoS Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD07080C, 0x0033000FU ,0x00100003U) */
mask_write 0XFD07080C 0x0033000F 0x00100003
# Register : PCFGWQOS1_5 @ 0XFD070810</p>
# Specifies the timeout value for write transactions.
# PSU_DDRC_PCFGWQOS1_5_WQOS_MAP_TIMEOUT 0x4f
# Port n Write QoS Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD070810, 0x000007FFU ,0x0000004FU) */
mask_write 0XFD070810 0x000007FF 0x0000004F
# Register : SARBASE0 @ 0XFD070F04</p>
# Base address for address region n specified as awaddr[UMCTL2_A_ADDRW-1:x
# ] and araddr[UMCTL2_A_ADDRW-1:x] where x is determined by the minimum bl
# ock size parameter UMCTL2_SARMINSIZE: (x=log2(block size)).
# PSU_DDRC_SARBASE0_BASE_ADDR 0x0
# SAR Base Address Register n
#(OFFSET, MASK, VALUE) (0XFD070F04, 0x000001FFU ,0x00000000U) */
mask_write 0XFD070F04 0x000001FF 0x00000000
# Register : SARSIZE0 @ 0XFD070F08</p>
# Number of blocks for address region n. This register determines the tota
# l size of the region in multiples of minimum block size as specified by
# the hardware parameter UMCTL2_SARMINSIZE. The register value is encoded
# as number of blocks = nblocks + 1. For example, if register is programme
# d to 0, region will have 1 block.
# PSU_DDRC_SARSIZE0_NBLOCKS 0x0
# SAR Size Register n
#(OFFSET, MASK, VALUE) (0XFD070F08, 0x000000FFU ,0x00000000U) */
mask_write 0XFD070F08 0x000000FF 0x00000000
# Register : SARBASE1 @ 0XFD070F0C</p>
# Base address for address region n specified as awaddr[UMCTL2_A_ADDRW-1:x
# ] and araddr[UMCTL2_A_ADDRW-1:x] where x is determined by the minimum bl
# ock size parameter UMCTL2_SARMINSIZE: (x=log2(block size)).
# PSU_DDRC_SARBASE1_BASE_ADDR 0x10
# SAR Base Address Register n
#(OFFSET, MASK, VALUE) (0XFD070F0C, 0x000001FFU ,0x00000010U) */
mask_write 0XFD070F0C 0x000001FF 0x00000010
# Register : SARSIZE1 @ 0XFD070F10</p>
# Number of blocks for address region n. This register determines the tota
# l size of the region in multiples of minimum block size as specified by
# the hardware parameter UMCTL2_SARMINSIZE. The register value is encoded
# as number of blocks = nblocks + 1. For example, if register is programme
# d to 0, region will have 1 block.
# PSU_DDRC_SARSIZE1_NBLOCKS 0xf
# SAR Size Register n
#(OFFSET, MASK, VALUE) (0XFD070F10, 0x000000FFU ,0x0000000FU) */
mask_write 0XFD070F10 0x000000FF 0x0000000F
# Register : DFITMG0_SHADOW @ 0XFD072190</p>
# Specifies the number of DFI clock cycles after an assertion or de-assert
# ion of the DFI control signals that the control signals at the PHY-DRAM
# interface reflect the assertion or de-assertion. If the DFI clock and th
# e memory clock are not phase-aligned, this timing parameter should be ro
# unded up to the next integer value. Note that if using RDIMM, it is nece
# ssary to increment this parameter by RDIMM's extra cycle of latency in t
# erms of DFI clock.
# PSU_DDRC_DFITMG0_SHADOW_DFI_T_CTRL_DELAY 0x7
# Defines whether dfi_rddata_en/dfi_rddata/dfi_rddata_valid is generated u
# sing HDR or SDR values Selects whether value in DFITMG0.dfi_t_rddata_en
# is in terms of SDR or HDR clock cycles: - 0 in terms of HDR clock cycles
# - 1 in terms of SDR clock cycles Refer to PHY specification for correct
# value.
# PSU_DDRC_DFITMG0_SHADOW_DFI_RDDATA_USE_SDR 0x1
# Time from the assertion of a read command on the DFI interface to the as
# sertion of the dfi_rddata_en signal. Refer to PHY specification for corr
# ect value. This corresponds to the DFI parameter trddata_en. Note that,
# depending on the PHY, if using RDIMM, it may be necessary to use the val
# ue (CL + 1) in the calculation of trddata_en. This is to compensate for
# the extra cycle of latency through the RDIMM. Unit: Clocks
# PSU_DDRC_DFITMG0_SHADOW_DFI_T_RDDATA_EN 0x2
# Defines whether dfi_wrdata_en/dfi_wrdata/dfi_wrdata_mask is generated us
# ing HDR or SDR values Selects whether value in DFITMG0.dfi_tphy_wrlat is
# in terms of SDR or HDR clock cycles Selects whether value in DFITMG0.df
# i_tphy_wrdata is in terms of SDR or HDR clock cycles - 0 in terms of HDR
# clock cycles - 1 in terms of SDR clock cycles Refer to PHY specificatio
# n for correct value.
# PSU_DDRC_DFITMG0_SHADOW_DFI_WRDATA_USE_SDR 0x1
# Specifies the number of clock cycles between when dfi_wrdata_en is asser
# ted to when the associated write data is driven on the dfi_wrdata signal
# . This corresponds to the DFI timing parameter tphy_wrdata. Refer to PHY
# specification for correct value. Note, max supported value is 8. Unit:
# Clocks
# PSU_DDRC_DFITMG0_SHADOW_DFI_TPHY_WRDATA 0x0
# Write latency Number of clocks from the write command to write data enab
# le (dfi_wrdata_en). This corresponds to the DFI timing parameter tphy_wr
# lat. Refer to PHY specification for correct value.Note that, depending o
# n the PHY, if using RDIMM, it may be necessary to use the value (CL + 1)
# in the calculation of tphy_wrlat. This is to compensate for the extra c
# ycle of latency through the RDIMM.
# PSU_DDRC_DFITMG0_SHADOW_DFI_TPHY_WRLAT 0x2
# DFI Timing Shadow Register 0
#(OFFSET, MASK, VALUE) (0XFD072190, 0x1FBFBF3FU ,0x07828002U) */
mask_write 0XFD072190 0x1FBFBF3F 0x07828002
# : DDR CONTROLLER RESET
# Register : RST_DDR_SS @ 0XFD1A0108</p>
# DDR block level reset inside of the DDR Sub System
# PSU_CRF_APB_RST_DDR_SS_DDR_RESET 0X0
# APM block level reset inside of the DDR Sub System
# PSU_CRF_APB_RST_DDR_SS_APM_RESET 0X0
# DDR sub system block level reset
#(OFFSET, MASK, VALUE) (0XFD1A0108, 0x0000000CU ,0x00000000U) */
mask_write 0XFD1A0108 0x0000000C 0x00000000
# : DDR PHY
# Register : PGCR0 @ 0XFD080010</p>
# Address Copy
# PSU_DDR_PHY_PGCR0_ADCP 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PGCR0_RESERVED_30_27 0x0
# PHY FIFO Reset
# PSU_DDR_PHY_PGCR0_PHYFRST 0x1
# Oscillator Mode Address/Command Delay Line Select
# PSU_DDR_PHY_PGCR0_OSCACDL 0x3
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PGCR0_RESERVED_23_19 0x0
# Digital Test Output Select
# PSU_DDR_PHY_PGCR0_DTOSEL 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PGCR0_RESERVED_13 0x0
# Oscillator Mode Division
# PSU_DDR_PHY_PGCR0_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_PGCR0_OSCEN 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PGCR0_RESERVED_7_0 0x0
# PHY General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080010, 0xFFFFFFFFU ,0x07001E00U) */
mask_write 0XFD080010 0xFFFFFFFF 0x07001E00
# Register : PGCR2 @ 0XFD080018</p>
# Clear Training Status Registers
# PSU_DDR_PHY_PGCR2_CLRTSTAT 0x0
# Clear Impedance Calibration
# PSU_DDR_PHY_PGCR2_CLRZCAL 0x0
# Clear Parity Error
# PSU_DDR_PHY_PGCR2_CLRPERR 0x0
# Initialization Complete Pin Configuration
# PSU_DDR_PHY_PGCR2_ICPC 0x0
# Data Training PUB Mode Exit Timer
# PSU_DDR_PHY_PGCR2_DTPMXTMR 0xf
# Initialization Bypass
# PSU_DDR_PHY_PGCR2_INITFSMBYP 0x0
# PLL FSM Bypass
# PSU_DDR_PHY_PGCR2_PLLFSMBYP 0x0
# Refresh Period
# PSU_DDR_PHY_PGCR2_TREFPRD 0x10010
# PHY General Configuration Register 2
#(OFFSET, MASK, VALUE) (0XFD080018, 0xFFFFFFFFU ,0x00F10010U) */
mask_write 0XFD080018 0xFFFFFFFF 0x00F10010
# Register : PGCR3 @ 0XFD08001C</p>
# CKN Enable
# PSU_DDR_PHY_PGCR3_CKNEN 0x55
# CK Enable
# PSU_DDR_PHY_PGCR3_CKEN 0xaa
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PGCR3_RESERVED_15 0x0
# Enable Clock Gating for AC [0] ctl_rd_clk
# PSU_DDR_PHY_PGCR3_GATEACRDCLK 0x2
# Enable Clock Gating for AC [0] ddr_clk
# PSU_DDR_PHY_PGCR3_GATEACDDRCLK 0x2
# Enable Clock Gating for AC [0] ctl_clk
# PSU_DDR_PHY_PGCR3_GATEACCTLCLK 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PGCR3_RESERVED_8 0x0
# Controls DDL Bypass Modes
# PSU_DDR_PHY_PGCR3_DDLBYPMODE 0x2
# IO Loop-Back Select
# PSU_DDR_PHY_PGCR3_IOLB 0x0
# AC Receive FIFO Read Mode
# PSU_DDR_PHY_PGCR3_RDMODE 0x0
# Read FIFO Reset Disable
# PSU_DDR_PHY_PGCR3_DISRST 0x0
# Clock Level when Clock Gating
# PSU_DDR_PHY_PGCR3_CLKLEVEL 0x0
# PHY General Configuration Register 3
#(OFFSET, MASK, VALUE) (0XFD08001C, 0xFFFFFFFFU ,0x55AA5480U) */
mask_write 0XFD08001C 0xFFFFFFFF 0x55AA5480
# Register : PGCR5 @ 0XFD080024</p>
# Frequency B Ratio Term
# PSU_DDR_PHY_PGCR5_FRQBT 0x1
# Frequency A Ratio Term
# PSU_DDR_PHY_PGCR5_FRQAT 0x1
# DFI Disconnect Time Period
# PSU_DDR_PHY_PGCR5_DISCNPERIOD 0x0
# Receiver bias core side control
# PSU_DDR_PHY_PGCR5_VREF_RBCTRL 0xf
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PGCR5_RESERVED_3 0x0
# Internal VREF generator REFSEL ragne select
# PSU_DDR_PHY_PGCR5_DXREFISELRANGE 0x1
# DDL Page Read Write select
# PSU_DDR_PHY_PGCR5_DDLPGACT 0x0
# DDL Page Read Write select
# PSU_DDR_PHY_PGCR5_DDLPGRW 0x0
# PHY General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080024, 0xFFFFFFFFU ,0x010100F4U) */
mask_write 0XFD080024 0xFFFFFFFF 0x010100F4
# Register : PTR0 @ 0XFD080040</p>
# PLL Power-Down Time
# PSU_DDR_PHY_PTR0_TPLLPD 0x56
# PLL Gear Shift Time
# PSU_DDR_PHY_PTR0_TPLLGS 0x2155
# PHY Reset Time
# PSU_DDR_PHY_PTR0_TPHYRST 0x10
# PHY Timing Register 0
#(OFFSET, MASK, VALUE) (0XFD080040, 0xFFFFFFFFU ,0x0AC85550U) */
mask_write 0XFD080040 0xFFFFFFFF 0x0AC85550
# Register : PTR1 @ 0XFD080044</p>
# PLL Lock Time
# PSU_DDR_PHY_PTR1_TPLLLOCK 0x4141
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_PTR1_RESERVED_15_13 0x0
# PLL Reset Time
# PSU_DDR_PHY_PTR1_TPLLRST 0xaff
# PHY Timing Register 1
#(OFFSET, MASK, VALUE) (0XFD080044, 0xFFFFFFFFU ,0x41410AFFU) */
mask_write 0XFD080044 0xFFFFFFFF 0x41410AFF
# Register : PLLCR0 @ 0XFD080068</p>
# PLL Bypass
# PSU_DDR_PHY_PLLCR0_PLLBYP 0x0
# PLL Reset
# PSU_DDR_PHY_PLLCR0_PLLRST 0x0
# PLL Power Down
# PSU_DDR_PHY_PLLCR0_PLLPD 0x0
# Reference Stop Mode
# PSU_DDR_PHY_PLLCR0_RSTOPM 0x0
# PLL Frequency Select
# PSU_DDR_PHY_PLLCR0_FRQSEL 0x1
# Relock Mode
# PSU_DDR_PHY_PLLCR0_RLOCKM 0x0
# Charge Pump Proportional Current Control
# PSU_DDR_PHY_PLLCR0_CPPC 0x8
# Charge Pump Integrating Current Control
# PSU_DDR_PHY_PLLCR0_CPIC 0x0
# Gear Shift
# PSU_DDR_PHY_PLLCR0_GSHIFT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_PLLCR0_RESERVED_11_9 0x0
# Analog Test Enable
# PSU_DDR_PHY_PLLCR0_ATOEN 0x0
# Analog Test Control
# PSU_DDR_PHY_PLLCR0_ATC 0x0
# Digital Test Control
# PSU_DDR_PHY_PLLCR0_DTC 0x0
# PLL Control Register 0 (Type B PLL Only)
#(OFFSET, MASK, VALUE) (0XFD080068, 0xFFFFFFFFU ,0x01100000U) */
mask_write 0XFD080068 0xFFFFFFFF 0x01100000
# Register : DSGCR @ 0XFD080090</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DSGCR_RESERVED_31_28 0x0
# When RDBI enabled, this bit is used to select RDBI CL calculation, if it
# is 1b1, calculation will use RDBICL, otherwise use default calculation.
# PSU_DDR_PHY_DSGCR_RDBICLSEL 0x0
# When RDBI enabled, if RDBICLSEL is asserted, RDBI CL adjust using this v
# alue.
# PSU_DDR_PHY_DSGCR_RDBICL 0x2
# PHY Impedance Update Enable
# PSU_DDR_PHY_DSGCR_PHYZUEN 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DSGCR_RESERVED_22 0x0
# SDRAM Reset Output Enable
# PSU_DDR_PHY_DSGCR_RSTOE 0x1
# Single Data Rate Mode
# PSU_DDR_PHY_DSGCR_SDRMODE 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DSGCR_RESERVED_18 0x0
# ATO Analog Test Enable
# PSU_DDR_PHY_DSGCR_ATOAE 0x0
# DTO Output Enable
# PSU_DDR_PHY_DSGCR_DTOOE 0x0
# DTO I/O Mode
# PSU_DDR_PHY_DSGCR_DTOIOM 0x0
# DTO Power Down Receiver
# PSU_DDR_PHY_DSGCR_DTOPDR 0x1
# Reserved. Return zeroes on reads
# PSU_DDR_PHY_DSGCR_RESERVED_13 0x0
# DTO On-Die Termination
# PSU_DDR_PHY_DSGCR_DTOODT 0x0
# PHY Update Acknowledge Delay
# PSU_DDR_PHY_DSGCR_PUAD 0x5
# Controller Update Acknowledge Enable
# PSU_DDR_PHY_DSGCR_CUAEN 0x1
# Reserved. Return zeroes on reads
# PSU_DDR_PHY_DSGCR_RESERVED_4_3 0x0
# Controller Impedance Update Enable
# PSU_DDR_PHY_DSGCR_CTLZUEN 0x0
# Reserved. Return zeroes on reads
# PSU_DDR_PHY_DSGCR_RESERVED_1 0x0
# PHY Update Request Enable
# PSU_DDR_PHY_DSGCR_PUREN 0x1
# DDR System General Configuration Register
#(OFFSET, MASK, VALUE) (0XFD080090, 0xFFFFFFFFU ,0x02A04161U) */
mask_write 0XFD080090 0xFFFFFFFF 0x02A04161
# Register : GPR0 @ 0XFD0800C0</p>
# General Purpose Register 0
# PSU_DDR_PHY_GPR0_GPR0 0xd3
# General Purpose Register 0
#(OFFSET, MASK, VALUE) (0XFD0800C0, 0xFFFFFFFFU ,0x000000D3U) */
mask_write 0XFD0800C0 0xFFFFFFFF 0x000000D3
# Register : DCR @ 0XFD080100</p>
# DDR4 Gear Down Timing.
# PSU_DDR_PHY_DCR_GEARDN 0x0
# Un-used Bank Group
# PSU_DDR_PHY_DCR_UBG 0x0
# Un-buffered DIMM Address Mirroring
# PSU_DDR_PHY_DCR_UDIMM 0x0
# DDR 2T Timing
# PSU_DDR_PHY_DCR_DDR2T 0x0
# No Simultaneous Rank Access
# PSU_DDR_PHY_DCR_NOSRA 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DCR_RESERVED_26_18 0x0
# Byte Mask
# PSU_DDR_PHY_DCR_BYTEMASK 0x1
# DDR Type
# PSU_DDR_PHY_DCR_DDRTYPE 0x0
# Multi-Purpose Register (MPR) DQ (DDR3 Only)
# PSU_DDR_PHY_DCR_MPRDQ 0x0
# Primary DQ (DDR3 Only)
# PSU_DDR_PHY_DCR_PDQ 0x0
# DDR 8-Bank
# PSU_DDR_PHY_DCR_DDR8BNK 0x1
# DDR Mode
# PSU_DDR_PHY_DCR_DDRMD 0x4
# DRAM Configuration Register
#(OFFSET, MASK, VALUE) (0XFD080100, 0xFFFFFFFFU ,0x0800040CU) */
mask_write 0XFD080100 0xFFFFFFFF 0x0800040C
# Register : DTPR0 @ 0XFD080110</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR0_RESERVED_31_29 0x0
# Activate to activate command delay (different banks)
# PSU_DDR_PHY_DTPR0_TRRD 0x6
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR0_RESERVED_23 0x0
# Activate to precharge command delay
# PSU_DDR_PHY_DTPR0_TRAS 0x24
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR0_RESERVED_15 0x0
# Precharge command period
# PSU_DDR_PHY_DTPR0_TRP 0xf
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR0_RESERVED_7_5 0x0
# Internal read to precharge command delay
# PSU_DDR_PHY_DTPR0_TRTP 0x8
# DRAM Timing Parameters Register 0
#(OFFSET, MASK, VALUE) (0XFD080110, 0xFFFFFFFFU ,0x06240F08U) */
mask_write 0XFD080110 0xFFFFFFFF 0x06240F08
# Register : DTPR1 @ 0XFD080114</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR1_RESERVED_31 0x0
# Minimum delay from when write leveling mode is programmed to the first D
# QS/DQS# rising edge.
# PSU_DDR_PHY_DTPR1_TWLMRD 0x28
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR1_RESERVED_23 0x0
# 4-bank activate period
# PSU_DDR_PHY_DTPR1_TFAW 0x20
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR1_RESERVED_15_11 0x0
# Load mode update delay (DDR4 and DDR3 only)
# PSU_DDR_PHY_DTPR1_TMOD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR1_RESERVED_7_5 0x0
# Load mode cycle time
# PSU_DDR_PHY_DTPR1_TMRD 0x8
# DRAM Timing Parameters Register 1
#(OFFSET, MASK, VALUE) (0XFD080114, 0xFFFFFFFFU ,0x28200008U) */
mask_write 0XFD080114 0xFFFFFFFF 0x28200008
# Register : DTPR2 @ 0XFD080118</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR2_RESERVED_31_29 0x0
# Read to Write command delay. Valid values are
# PSU_DDR_PHY_DTPR2_TRTW 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR2_RESERVED_27_25 0x0
# Read to ODT delay (DDR3 only)
# PSU_DDR_PHY_DTPR2_TRTODT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR2_RESERVED_23_20 0x0
# CKE minimum pulse width
# PSU_DDR_PHY_DTPR2_TCKE 0x7
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR2_RESERVED_15_10 0x0
# Self refresh exit delay
# PSU_DDR_PHY_DTPR2_TXS 0x300
# DRAM Timing Parameters Register 2
#(OFFSET, MASK, VALUE) (0XFD080118, 0xFFFFFFFFU ,0x00070300U) */
mask_write 0XFD080118 0xFFFFFFFF 0x00070300
# Register : DTPR3 @ 0XFD08011C</p>
# ODT turn-off delay extension
# PSU_DDR_PHY_DTPR3_TOFDX 0x4
# Read to read and write to write command delay
# PSU_DDR_PHY_DTPR3_TCCD 0x0
# DLL locking time
# PSU_DDR_PHY_DTPR3_TDLLK 0x300
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR3_RESERVED_15_12 0x0
# Maximum DQS output access time from CK/CK# (LPDDR2/3 only)
# PSU_DDR_PHY_DTPR3_TDQSCKMAX 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR3_RESERVED_7_3 0x0
# DQS output access time from CK/CK# (LPDDR2/3 only)
# PSU_DDR_PHY_DTPR3_TDQSCK 0x0
# DRAM Timing Parameters Register 3
#(OFFSET, MASK, VALUE) (0XFD08011C, 0xFFFFFFFFU ,0x83000800U) */
mask_write 0XFD08011C 0xFFFFFFFF 0x83000800
# Register : DTPR4 @ 0XFD080120</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR4_RESERVED_31_30 0x0
# ODT turn-on/turn-off delays (DDR2 only)
# PSU_DDR_PHY_DTPR4_TAOND_TAOFD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR4_RESERVED_27_26 0x0
# Refresh-to-Refresh
# PSU_DDR_PHY_DTPR4_TRFC 0x116
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR4_RESERVED_15_14 0x0
# Write leveling output delay
# PSU_DDR_PHY_DTPR4_TWLO 0x2b
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR4_RESERVED_7_5 0x0
# Power down exit delay
# PSU_DDR_PHY_DTPR4_TXP 0x7
# DRAM Timing Parameters Register 4
#(OFFSET, MASK, VALUE) (0XFD080120, 0xFFFFFFFFU ,0x01162B07U) */
mask_write 0XFD080120 0xFFFFFFFF 0x01162B07
# Register : DTPR5 @ 0XFD080124</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR5_RESERVED_31_24 0x0
# Activate to activate command delay (same bank)
# PSU_DDR_PHY_DTPR5_TRC 0x33
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR5_RESERVED_15 0x0
# Activate to read or write delay
# PSU_DDR_PHY_DTPR5_TRCD 0xf
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR5_RESERVED_7_5 0x0
# Internal write to read command delay
# PSU_DDR_PHY_DTPR5_TWTR 0x8
# DRAM Timing Parameters Register 5
#(OFFSET, MASK, VALUE) (0XFD080124, 0xFFFFFFFFU ,0x00330F08U) */
mask_write 0XFD080124 0xFFFFFFFF 0x00330F08
# Register : DTPR6 @ 0XFD080128</p>
# PUB Write Latency Enable
# PSU_DDR_PHY_DTPR6_PUBWLEN 0x0
# PUB Read Latency Enable
# PSU_DDR_PHY_DTPR6_PUBRLEN 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR6_RESERVED_29_14 0x0
# Write Latency
# PSU_DDR_PHY_DTPR6_PUBWL 0xe
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTPR6_RESERVED_7_6 0x0
# Read Latency
# PSU_DDR_PHY_DTPR6_PUBRL 0xf
# DRAM Timing Parameters Register 6
#(OFFSET, MASK, VALUE) (0XFD080128, 0xFFFFFFFFU ,0x00000E0FU) */
mask_write 0XFD080128 0xFFFFFFFF 0x00000E0F
# Register : RDIMMGCR0 @ 0XFD080140</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_31 0x0
# RDMIMM Quad CS Enable
# PSU_DDR_PHY_RDIMMGCR0_QCSEN 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_29_28 0x0
# RDIMM Outputs I/O Mode
# PSU_DDR_PHY_RDIMMGCR0_RDIMMIOM 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_26_24 0x0
# ERROUT# Output Enable
# PSU_DDR_PHY_RDIMMGCR0_ERROUTOE 0x0
# ERROUT# I/O Mode
# PSU_DDR_PHY_RDIMMGCR0_ERROUTIOM 0x1
# ERROUT# Power Down Receiver
# PSU_DDR_PHY_RDIMMGCR0_ERROUTPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_20 0x0
# ERROUT# On-Die Termination
# PSU_DDR_PHY_RDIMMGCR0_ERROUTODT 0x0
# Load Reduced DIMM
# PSU_DDR_PHY_RDIMMGCR0_LRDIMM 0x0
# PAR_IN I/O Mode
# PSU_DDR_PHY_RDIMMGCR0_PARINIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_16_8 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RNKMRREN_RSVD 0x0
# Rank Mirror Enable.
# PSU_DDR_PHY_RDIMMGCR0_RNKMRREN 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR0_RESERVED_3 0x0
# Stop on Parity Error
# PSU_DDR_PHY_RDIMMGCR0_SOPERR 0x0
# Parity Error No Registering
# PSU_DDR_PHY_RDIMMGCR0_ERRNOREG 0x0
# Registered DIMM
# PSU_DDR_PHY_RDIMMGCR0_RDIMM 0x0
# RDIMM General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080140, 0xFFFFFFFFU ,0x08400020U) */
mask_write 0XFD080140 0xFFFFFFFF 0x08400020
# Register : RDIMMGCR1 @ 0XFD080144</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_31_29 0x0
# Address [17] B-side Inversion Disable
# PSU_DDR_PHY_RDIMMGCR1_A17BID 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_27 0x0
# Command word to command word programming delay
# PSU_DDR_PHY_RDIMMGCR1_TBCMRD_L2 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_23 0x0
# Command word to command word programming delay
# PSU_DDR_PHY_RDIMMGCR1_TBCMRD_L 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_19 0x0
# Command word to command word programming delay
# PSU_DDR_PHY_RDIMMGCR1_TBCMRD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RDIMMGCR1_RESERVED_15_14 0x0
# Stabilization time
# PSU_DDR_PHY_RDIMMGCR1_TBCSTAB 0xc80
# RDIMM General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080144, 0xFFFFFFFFU ,0x00000C80U) */
mask_write 0XFD080144 0xFFFFFFFF 0x00000C80
# Register : RDIMMCR0 @ 0XFD080150</p>
# DDR4/DDR3 Control Word 7
# PSU_DDR_PHY_RDIMMCR0_RC7 0x0
# DDR4 Control Word 6 (Comman space Control Word) / DDR3 Reserved
# PSU_DDR_PHY_RDIMMCR0_RC6 0x0
# DDR4/DDR3 Control Word 5 (CK Driver Characteristics Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC5 0x0
# DDR4 Control Word 4 (ODT and CKE Signals Driver Characteristics Control
# Word) / DDR3 Control Word 4 (Control Signals Driver Characteristics Cont
# rol Word)
# PSU_DDR_PHY_RDIMMCR0_RC4 0x0
# DDR4 Control Word 3 (CA and CS Signals Driver Characteristics Control Wo
# rd) / DDR3 Control Word 3 (Command/Address Signals Driver Characteristri
# cs Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC3 0x0
# DDR4 Control Word 2 (Timing and IBT Control Word) / DDR3 Control Word 2
# (Timing Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC2 0x0
# DDR4/DDR3 Control Word 1 (Clock Driver Enable Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC1 0x0
# DDR4/DDR3 Control Word 0 (Global Features Control Word)
# PSU_DDR_PHY_RDIMMCR0_RC0 0x0
# RDIMM Control Register 0
#(OFFSET, MASK, VALUE) (0XFD080150, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080150 0xFFFFFFFF 0x00000000
# Register : RDIMMCR1 @ 0XFD080154</p>
# Control Word 15
# PSU_DDR_PHY_RDIMMCR1_RC15 0x0
# DDR4 Control Word 14 (Parity Control Word) / DDR3 Reserved
# PSU_DDR_PHY_RDIMMCR1_RC14 0x0
# DDR4 Control Word 13 (DIMM Configuration Control Word) / DDR3 Reserved
# PSU_DDR_PHY_RDIMMCR1_RC13 0x0
# DDR4 Control Word 12 (Training Control Word) / DDR3 Reserved
# PSU_DDR_PHY_RDIMMCR1_RC12 0x0
# DDR4 Control Word 11 (Operating Voltage VDD and VREFCA Source Control Wo
# rd) / DDR3 Control Word 11 (Operation Voltage VDD Control Word)
# PSU_DDR_PHY_RDIMMCR1_RC11 0x0
# DDR4/DDR3 Control Word 10 (RDIMM Operating Speed Control Word)
# PSU_DDR_PHY_RDIMMCR1_RC10 0x2
# DDR4/DDR3 Control Word 9 (Power Saving Settings Control Word)
# PSU_DDR_PHY_RDIMMCR1_RC9 0x0
# DDR4 Control Word 8 (Input/Output Configuration Control Word) / DDR3 Con
# trol Word 8 (Additional Input Bus Termination Setting Control Word)
# PSU_DDR_PHY_RDIMMCR1_RC8 0x0
# RDIMM Control Register 1
#(OFFSET, MASK, VALUE) (0XFD080154, 0xFFFFFFFFU ,0x00000200U) */
mask_write 0XFD080154 0xFFFFFFFF 0x00000200
# Register : MR0 @ 0XFD080180</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR0_RESERVED_31_8 0x6
# CA Terminating Rank
# PSU_DDR_PHY_MR0_CATR 0x0
# Reserved. These are JEDEC reserved bits and are recommended by JEDEC to
# be programmed to 0x0.
# PSU_DDR_PHY_MR0_RSVD_6_5 0x1
# Built-in Self-Test for RZQ
# PSU_DDR_PHY_MR0_RZQI 0x2
# Reserved. These are JEDEC reserved bits and are recommended by JEDEC to
# be programmed to 0x0.
# PSU_DDR_PHY_MR0_RSVD_2_0 0x0
# LPDDR4 Mode Register 0
#(OFFSET, MASK, VALUE) (0XFD080180, 0xFFFFFFFFU ,0x00000630U) */
mask_write 0XFD080180 0xFFFFFFFF 0x00000630
# Register : MR1 @ 0XFD080184</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR1_RESERVED_31_8 0x3
# Read Postamble Length
# PSU_DDR_PHY_MR1_RDPST 0x0
# Write-recovery for auto-precharge command
# PSU_DDR_PHY_MR1_NWR 0x0
# Read Preamble Length
# PSU_DDR_PHY_MR1_RDPRE 0x0
# Write Preamble Length
# PSU_DDR_PHY_MR1_WRPRE 0x0
# Burst Length
# PSU_DDR_PHY_MR1_BL 0x1
# LPDDR4 Mode Register 1
#(OFFSET, MASK, VALUE) (0XFD080184, 0xFFFFFFFFU ,0x00000301U) */
mask_write 0XFD080184 0xFFFFFFFF 0x00000301
# Register : MR2 @ 0XFD080188</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR2_RESERVED_31_8 0x0
# Write Leveling
# PSU_DDR_PHY_MR2_WRL 0x0
# Write Latency Set
# PSU_DDR_PHY_MR2_WLS 0x0
# Write Latency
# PSU_DDR_PHY_MR2_WL 0x4
# Read Latency
# PSU_DDR_PHY_MR2_RL 0x0
# LPDDR4 Mode Register 2
#(OFFSET, MASK, VALUE) (0XFD080188, 0xFFFFFFFFU ,0x00000020U) */
mask_write 0XFD080188 0xFFFFFFFF 0x00000020
# Register : MR3 @ 0XFD08018C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR3_RESERVED_31_8 0x2
# DBI-Write Enable
# PSU_DDR_PHY_MR3_DBIWR 0x0
# DBI-Read Enable
# PSU_DDR_PHY_MR3_DBIRD 0x0
# Pull-down Drive Strength
# PSU_DDR_PHY_MR3_PDDS 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR3_RSVD 0x0
# Write Postamble Length
# PSU_DDR_PHY_MR3_WRPST 0x0
# Pull-up Calibration Point
# PSU_DDR_PHY_MR3_PUCAL 0x0
# LPDDR4 Mode Register 3
#(OFFSET, MASK, VALUE) (0XFD08018C, 0xFFFFFFFFU ,0x00000200U) */
mask_write 0XFD08018C 0xFFFFFFFF 0x00000200
# Register : MR4 @ 0XFD080190</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR4_RESERVED_31_16 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR4_RSVD_15_13 0x0
# Write Preamble
# PSU_DDR_PHY_MR4_WRP 0x0
# Read Preamble
# PSU_DDR_PHY_MR4_RDP 0x0
# Read Preamble Training Mode
# PSU_DDR_PHY_MR4_RPTM 0x0
# Self Refresh Abort
# PSU_DDR_PHY_MR4_SRA 0x0
# CS to Command Latency Mode
# PSU_DDR_PHY_MR4_CS2CMDL 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR4_RSVD1 0x0
# Internal VREF Monitor
# PSU_DDR_PHY_MR4_IVM 0x0
# Temperature Controlled Refresh Mode
# PSU_DDR_PHY_MR4_TCRM 0x0
# Temperature Controlled Refresh Range
# PSU_DDR_PHY_MR4_TCRR 0x0
# Maximum Power Down Mode
# PSU_DDR_PHY_MR4_MPDM 0x0
# This is a JEDEC reserved bit and is recommended by JEDEC to be programme
# d to 0x0.
# PSU_DDR_PHY_MR4_RSVD_0 0x0
# DDR4 Mode Register 4
#(OFFSET, MASK, VALUE) (0XFD080190, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080190 0xFFFFFFFF 0x00000000
# Register : MR5 @ 0XFD080194</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR5_RESERVED_31_16 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR5_RSVD 0x0
# Read DBI
# PSU_DDR_PHY_MR5_RDBI 0x0
# Write DBI
# PSU_DDR_PHY_MR5_WDBI 0x0
# Data Mask
# PSU_DDR_PHY_MR5_DM 0x1
# CA Parity Persistent Error
# PSU_DDR_PHY_MR5_CAPPE 0x1
# RTT_PARK
# PSU_DDR_PHY_MR5_RTTPARK 0x3
# ODT Input Buffer during Power Down mode
# PSU_DDR_PHY_MR5_ODTIBPD 0x0
# C/A Parity Error Status
# PSU_DDR_PHY_MR5_CAPES 0x0
# CRC Error Clear
# PSU_DDR_PHY_MR5_CRCEC 0x0
# C/A Parity Latency Mode
# PSU_DDR_PHY_MR5_CAPM 0x0
# DDR4 Mode Register 5
#(OFFSET, MASK, VALUE) (0XFD080194, 0xFFFFFFFFU ,0x000006C0U) */
mask_write 0XFD080194 0xFFFFFFFF 0x000006C0
# Register : MR6 @ 0XFD080198</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR6_RESERVED_31_16 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR6_RSVD_15_13 0x0
# CAS_n to CAS_n command delay for same bank group (tCCD_L)
# PSU_DDR_PHY_MR6_TCCDL 0x2
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR6_RSVD_9_8 0x0
# VrefDQ Training Enable
# PSU_DDR_PHY_MR6_VDDQTEN 0x0
# VrefDQ Training Range
# PSU_DDR_PHY_MR6_VDQTRG 0x0
# VrefDQ Training Values
# PSU_DDR_PHY_MR6_VDQTVAL 0x19
# DDR4 Mode Register 6
#(OFFSET, MASK, VALUE) (0XFD080198, 0xFFFFFFFFU ,0x00000819U) */
mask_write 0XFD080198 0xFFFFFFFF 0x00000819
# Register : MR11 @ 0XFD0801AC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR11_RESERVED_31_8 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR11_RSVD 0x0
# Power Down Control
# PSU_DDR_PHY_MR11_PDCTL 0x0
# DQ Bus Receiver On-Die-Termination
# PSU_DDR_PHY_MR11_DQODT 0x0
# LPDDR4 Mode Register 11
#(OFFSET, MASK, VALUE) (0XFD0801AC, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD0801AC 0xFFFFFFFF 0x00000000
# Register : MR12 @ 0XFD0801B0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR12_RESERVED_31_8 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR12_RSVD 0x0
# VREF_CA Range Select.
# PSU_DDR_PHY_MR12_VR_CA 0x1
# Controls the VREF(ca) levels for Frequency-Set-Point[1:0].
# PSU_DDR_PHY_MR12_VREF_CA 0xd
# LPDDR4 Mode Register 12
#(OFFSET, MASK, VALUE) (0XFD0801B0, 0xFFFFFFFFU ,0x0000004DU) */
mask_write 0XFD0801B0 0xFFFFFFFF 0x0000004D
# Register : MR13 @ 0XFD0801B4</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR13_RESERVED_31_8 0x0
# Frequency Set Point Operation Mode
# PSU_DDR_PHY_MR13_FSPOP 0x0
# Frequency Set Point Write Enable
# PSU_DDR_PHY_MR13_FSPWR 0x0
# Data Mask Enable
# PSU_DDR_PHY_MR13_DMD 0x0
# Refresh Rate Option
# PSU_DDR_PHY_MR13_RRO 0x0
# VREF Current Generator
# PSU_DDR_PHY_MR13_VRCG 0x1
# VREF Output
# PSU_DDR_PHY_MR13_VRO 0x0
# Read Preamble Training Mode
# PSU_DDR_PHY_MR13_RPT 0x0
# Command Bus Training
# PSU_DDR_PHY_MR13_CBT 0x0
# LPDDR4 Mode Register 13
#(OFFSET, MASK, VALUE) (0XFD0801B4, 0xFFFFFFFFU ,0x00000008U) */
mask_write 0XFD0801B4 0xFFFFFFFF 0x00000008
# Register : MR14 @ 0XFD0801B8</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR14_RESERVED_31_8 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR14_RSVD 0x0
# VREFDQ Range Selects.
# PSU_DDR_PHY_MR14_VR_DQ 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR14_VREF_DQ 0xd
# LPDDR4 Mode Register 14
#(OFFSET, MASK, VALUE) (0XFD0801B8, 0xFFFFFFFFU ,0x0000004DU) */
mask_write 0XFD0801B8 0xFFFFFFFF 0x0000004D
# Register : MR22 @ 0XFD0801D8</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_MR22_RESERVED_31_8 0x0
# These are JEDEC reserved bits and are recommended by JEDEC to be program
# med to 0x0.
# PSU_DDR_PHY_MR22_RSVD 0x0
# CA ODT termination disable.
# PSU_DDR_PHY_MR22_ODTD_CA 0x0
# ODT CS override.
# PSU_DDR_PHY_MR22_ODTE_CS 0x0
# ODT CK override.
# PSU_DDR_PHY_MR22_ODTE_CK 0x0
# Controller ODT value for VOH calibration.
# PSU_DDR_PHY_MR22_CODT 0x0
# LPDDR4 Mode Register 22
#(OFFSET, MASK, VALUE) (0XFD0801D8, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD0801D8 0xFFFFFFFF 0x00000000
# Register : DTCR0 @ 0XFD080200</p>
# Refresh During Training
# PSU_DDR_PHY_DTCR0_RFSHDT 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR0_RESERVED_27_26 0x0
# Data Training Debug Rank Select
# PSU_DDR_PHY_DTCR0_DTDRS 0x0
# Data Training with Early/Extended Gate
# PSU_DDR_PHY_DTCR0_DTEXG 0x0
# Data Training Extended Write DQS
# PSU_DDR_PHY_DTCR0_DTEXD 0x0
# Data Training Debug Step
# PSU_DDR_PHY_DTCR0_DTDSTP 0x0
# Data Training Debug Enable
# PSU_DDR_PHY_DTCR0_DTDEN 0x0
# Data Training Debug Byte Select
# PSU_DDR_PHY_DTCR0_DTDBS 0x0
# Data Training read DBI deskewing configuration
# PSU_DDR_PHY_DTCR0_DTRDBITR 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR0_RESERVED_13 0x0
# Data Training Write Bit Deskew Data Mask
# PSU_DDR_PHY_DTCR0_DTWBDDM 0x1
# Refreshes Issued During Entry to Training
# PSU_DDR_PHY_DTCR0_RFSHEN 0x1
# Data Training Compare Data
# PSU_DDR_PHY_DTCR0_DTCMPD 0x1
# Data Training Using MPR
# PSU_DDR_PHY_DTCR0_DTMPR 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR0_RESERVED_5_4 0x0
# Data Training Repeat Number
# PSU_DDR_PHY_DTCR0_DTRPTN 0x7
# Data Training Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080200, 0xFFFFFFFFU ,0x800091C7U) */
mask_write 0XFD080200 0xFFFFFFFF 0x800091C7
# Register : DTCR1 @ 0XFD080204</p>
# Rank Enable.
# PSU_DDR_PHY_DTCR1_RANKEN_RSVD 0x0
# Rank Enable.
# PSU_DDR_PHY_DTCR1_RANKEN 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR1_RESERVED_15_14 0x0
# Data Training Rank
# PSU_DDR_PHY_DTCR1_DTRANK 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR1_RESERVED_11 0x0
# Read Leveling Gate Sampling Difference
# PSU_DDR_PHY_DTCR1_RDLVLGDIFF 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR1_RESERVED_7 0x0
# Read Leveling Gate Shift
# PSU_DDR_PHY_DTCR1_RDLVLGS 0x3
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DTCR1_RESERVED_3 0x0
# Read Preamble Training enable
# PSU_DDR_PHY_DTCR1_RDPRMVL_TRN 0x1
# Read Leveling Enable
# PSU_DDR_PHY_DTCR1_RDLVLEN 0x1
# Basic Gate Training Enable
# PSU_DDR_PHY_DTCR1_BSTEN 0x0
# Data Training Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080204, 0xFFFFFFFFU ,0x00010236U) */
mask_write 0XFD080204 0xFFFFFFFF 0x00010236
# Register : CATR0 @ 0XFD080240</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_CATR0_RESERVED_31_21 0x0
# Minimum time (in terms of number of dram clocks) between two consectuve
# CA calibration command
# PSU_DDR_PHY_CATR0_CACD 0x14
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_CATR0_RESERVED_15_13 0x0
# Minimum time (in terms of number of dram clocks) PUB should wait before
# sampling the CA response after Calibration command has been sent to the
# memory
# PSU_DDR_PHY_CATR0_CAADR 0x10
# CA_1 Response Byte Lane 1
# PSU_DDR_PHY_CATR0_CA1BYTE1 0x5
# CA_1 Response Byte Lane 0
# PSU_DDR_PHY_CATR0_CA1BYTE0 0x4
# CA Training Register 0
#(OFFSET, MASK, VALUE) (0XFD080240, 0xFFFFFFFFU ,0x00141054U) */
mask_write 0XFD080240 0xFFFFFFFF 0x00141054
# Register : DQSDR0 @ 0XFD080250</p>
# Number of delay taps by which the DQS gate LCDL will be updated when DQS
# drift is detected
# PSU_DDR_PHY_DQSDR0_DFTDLY 0x0
# Drift Impedance Update
# PSU_DDR_PHY_DQSDR0_DFTZQUP 0x0
# Drift DDL Update
# PSU_DDR_PHY_DQSDR0_DFTDDLUP 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DQSDR0_RESERVED_25_22 0x0
# Drift Read Spacing
# PSU_DDR_PHY_DQSDR0_DFTRDSPC 0x0
# Drift Back-to-Back Reads
# PSU_DDR_PHY_DQSDR0_DFTB2BRD 0x8
# Drift Idle Reads
# PSU_DDR_PHY_DQSDR0_DFTIDLRD 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DQSDR0_RESERVED_11_8 0x0
# Gate Pulse Enable
# PSU_DDR_PHY_DQSDR0_DFTGPULSE 0x0
# DQS Drift Update Mode
# PSU_DDR_PHY_DQSDR0_DFTUPMODE 0x0
# DQS Drift Detection Mode
# PSU_DDR_PHY_DQSDR0_DFTDTMODE 0x0
# DQS Drift Detection Enable
# PSU_DDR_PHY_DQSDR0_DFTDTEN 0x0
# DQS Drift Register 0
#(OFFSET, MASK, VALUE) (0XFD080250, 0xFFFFFFFFU ,0x00088000U) */
mask_write 0XFD080250 0xFFFFFFFF 0x00088000
# Register : BISTLSR @ 0XFD080414</p>
# LFSR seed for pseudo-random BIST patterns
# PSU_DDR_PHY_BISTLSR_SEED 0x12341000
# BIST LFSR Seed Register
#(OFFSET, MASK, VALUE) (0XFD080414, 0xFFFFFFFFU ,0x12341000U) */
mask_write 0XFD080414 0xFFFFFFFF 0x12341000
# Register : RIOCR5 @ 0XFD0804F4</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_RIOCR5_RESERVED_31_16 0x0
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_RIOCR5_ODTOEMODE_RSVD 0x0
# SDRAM On-die Termination Output Enable (OE) Mode Selection.
# PSU_DDR_PHY_RIOCR5_ODTOEMODE 0x5
# Rank I/O Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD0804F4, 0xFFFFFFFFU ,0x00000005U) */
mask_write 0XFD0804F4 0xFFFFFFFF 0x00000005
# Register : ACIOCR0 @ 0XFD080500</p>
# Address/Command Slew Rate (D3F I/O Only)
# PSU_DDR_PHY_ACIOCR0_ACSR 0x0
# SDRAM Reset I/O Mode
# PSU_DDR_PHY_ACIOCR0_RSTIOM 0x1
# SDRAM Reset Power Down Receiver
# PSU_DDR_PHY_ACIOCR0_RSTPDR 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACIOCR0_RESERVED_27 0x0
# SDRAM Reset On-Die Termination
# PSU_DDR_PHY_ACIOCR0_RSTODT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACIOCR0_RESERVED_25_10 0x0
# CK Duty Cycle Correction
# PSU_DDR_PHY_ACIOCR0_CKDCC 0x0
# AC Power Down Receiver Mode
# PSU_DDR_PHY_ACIOCR0_ACPDRMODE 0x2
# AC On-die Termination Mode
# PSU_DDR_PHY_ACIOCR0_ACODTMODE 0x2
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACIOCR0_RESERVED_1 0x0
# Control delayed or non-delayed clock to CS_N/ODT?CKE AC slices.
# PSU_DDR_PHY_ACIOCR0_ACRANKCLKSEL 0x0
# AC I/O Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080500, 0xFFFFFFFFU ,0x30000028U) */
mask_write 0XFD080500 0xFFFFFFFF 0x30000028
# Register : ACIOCR2 @ 0XFD080508</p>
# Clock gating for glue logic inside CLKGEN and glue logic inside CONTROL
# slice
# PSU_DDR_PHY_ACIOCR2_CLKGENCLKGATE 0x0
# Clock gating for Output Enable D slices [0]
# PSU_DDR_PHY_ACIOCR2_ACOECLKGATE0 0x0
# Clock gating for Power Down Receiver D slices [0]
# PSU_DDR_PHY_ACIOCR2_ACPDRCLKGATE0 0x0
# Clock gating for Termination Enable D slices [0]
# PSU_DDR_PHY_ACIOCR2_ACTECLKGATE0 0x0
# Clock gating for CK# D slices [1:0]
# PSU_DDR_PHY_ACIOCR2_CKNCLKGATE0 0x2
# Clock gating for CK D slices [1:0]
# PSU_DDR_PHY_ACIOCR2_CKCLKGATE0 0x2
# Clock gating for AC D slices [23:0]
# PSU_DDR_PHY_ACIOCR2_ACCLKGATE0 0x0
# AC I/O Configuration Register 2
#(OFFSET, MASK, VALUE) (0XFD080508, 0xFFFFFFFFU ,0x0A000000U) */
mask_write 0XFD080508 0xFFFFFFFF 0x0A000000
# Register : ACIOCR3 @ 0XFD08050C</p>
# SDRAM Parity Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_PAROEMODE 0x0
# SDRAM Bank Group Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_BGOEMODE 0x0
# SDRAM Bank Address Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_BAOEMODE 0x0
# SDRAM A[17] Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_A17OEMODE 0x0
# SDRAM A[16] / RAS_n Output Enable (OE) Mode Selection
# PSU_DDR_PHY_ACIOCR3_A16OEMODE 0x0
# SDRAM ACT_n Output Enable (OE) Mode Selection (DDR4 only)
# PSU_DDR_PHY_ACIOCR3_ACTOEMODE 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACIOCR3_RESERVED_15_8 0x0
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ACIOCR3_CKOEMODE_RSVD 0x0
# SDRAM CK Output Enable (OE) Mode Selection.
# PSU_DDR_PHY_ACIOCR3_CKOEMODE 0x9
# AC I/O Configuration Register 3
#(OFFSET, MASK, VALUE) (0XFD08050C, 0xFFFFFFFFU ,0x00000009U) */
mask_write 0XFD08050C 0xFFFFFFFF 0x00000009
# Register : ACIOCR4 @ 0XFD080510</p>
# Clock gating for AC LB slices and loopback read valid slices
# PSU_DDR_PHY_ACIOCR4_LBCLKGATE 0x0
# Clock gating for Output Enable D slices [1]
# PSU_DDR_PHY_ACIOCR4_ACOECLKGATE1 0x0
# Clock gating for Power Down Receiver D slices [1]
# PSU_DDR_PHY_ACIOCR4_ACPDRCLKGATE1 0x0
# Clock gating for Termination Enable D slices [1]
# PSU_DDR_PHY_ACIOCR4_ACTECLKGATE1 0x0
# Clock gating for CK# D slices [3:2]
# PSU_DDR_PHY_ACIOCR4_CKNCLKGATE1 0x2
# Clock gating for CK D slices [3:2]
# PSU_DDR_PHY_ACIOCR4_CKCLKGATE1 0x2
# Clock gating for AC D slices [47:24]
# PSU_DDR_PHY_ACIOCR4_ACCLKGATE1 0x0
# AC I/O Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080510, 0xFFFFFFFFU ,0x0A000000U) */
mask_write 0XFD080510 0xFFFFFFFF 0x0A000000
# Register : IOVCR0 @ 0XFD080520</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_IOVCR0_RESERVED_31_29 0x0
# Address/command lane VREF Pad Enable
# PSU_DDR_PHY_IOVCR0_ACREFPEN 0x0
# Address/command lane Internal VREF Enable
# PSU_DDR_PHY_IOVCR0_ACREFEEN 0x0
# Address/command lane Single-End VREF Enable
# PSU_DDR_PHY_IOVCR0_ACREFSEN 0x1
# Address/command lane Internal VREF Enable
# PSU_DDR_PHY_IOVCR0_ACREFIEN 0x1
# External VREF generato REFSEL range select
# PSU_DDR_PHY_IOVCR0_ACREFESELRANGE 0x0
# Address/command lane External VREF Select
# PSU_DDR_PHY_IOVCR0_ACREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_IOVCR0_ACREFSSELRANGE 0x1
# Address/command lane Single-End VREF Select
# PSU_DDR_PHY_IOVCR0_ACREFSSEL 0x30
# Internal VREF generator REFSEL ragne select
# PSU_DDR_PHY_IOVCR0_ACVREFISELRANGE 0x1
# REFSEL Control for internal AC IOs
# PSU_DDR_PHY_IOVCR0_ACVREFISEL 0x4e
# IO VREF Control Register 0
#(OFFSET, MASK, VALUE) (0XFD080520, 0xFFFFFFFFU ,0x0300B0CEU) */
mask_write 0XFD080520 0xFFFFFFFF 0x0300B0CE
# Register : VTCR0 @ 0XFD080528</p>
# Number of ctl_clk required to meet (> 150ns) timing requirements during
# DRAM DQ VREF training
# PSU_DDR_PHY_VTCR0_TVREF 0x7
# DRM DQ VREF training Enable
# PSU_DDR_PHY_VTCR0_DVEN 0x1
# Per Device Addressability Enable
# PSU_DDR_PHY_VTCR0_PDAEN 0x1
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_VTCR0_RESERVED_26 0x0
# VREF Word Count
# PSU_DDR_PHY_VTCR0_VWCR 0x4
# DRAM DQ VREF step size used during DRAM VREF training
# PSU_DDR_PHY_VTCR0_DVSS 0x0
# Maximum VREF limit value used during DRAM VREF training
# PSU_DDR_PHY_VTCR0_DVMAX 0x32
# Minimum VREF limit value used during DRAM VREF training
# PSU_DDR_PHY_VTCR0_DVMIN 0x0
# Initial DRAM DQ VREF value used during DRAM VREF training
# PSU_DDR_PHY_VTCR0_DVINIT 0x19
# VREF Training Control Register 0
#(OFFSET, MASK, VALUE) (0XFD080528, 0xFFFFFFFFU ,0xF9032019U) */
mask_write 0XFD080528 0xFFFFFFFF 0xF9032019
# Register : VTCR1 @ 0XFD08052C</p>
# Host VREF step size used during VREF training. The register value of N i
# ndicates step size of (N+1)
# PSU_DDR_PHY_VTCR1_HVSS 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_VTCR1_RESERVED_27 0x0
# Maximum VREF limit value used during DRAM VREF training.
# PSU_DDR_PHY_VTCR1_HVMAX 0x7f
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_VTCR1_RESERVED_19 0x0
# Minimum VREF limit value used during DRAM VREF training.
# PSU_DDR_PHY_VTCR1_HVMIN 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_VTCR1_RESERVED_11 0x0
# Static Host Vref Rank Value
# PSU_DDR_PHY_VTCR1_SHRNK 0x0
# Static Host Vref Rank Enable
# PSU_DDR_PHY_VTCR1_SHREN 0x1
# Number of ctl_clk required to meet (> 200ns) VREF Settling timing requir
# ements during Host IO VREF training
# PSU_DDR_PHY_VTCR1_TVREFIO 0x7
# Eye LCDL Offset value for VREF training
# PSU_DDR_PHY_VTCR1_EOFF 0x0
# Number of LCDL Eye points for which VREF training is repeated
# PSU_DDR_PHY_VTCR1_ENUM 0x0
# HOST (IO) internal VREF training Enable
# PSU_DDR_PHY_VTCR1_HVEN 0x1
# Host IO Type Control
# PSU_DDR_PHY_VTCR1_HVIO 0x1
# VREF Training Control Register 1
#(OFFSET, MASK, VALUE) (0XFD08052C, 0xFFFFFFFFU ,0x07F001E3U) */
mask_write 0XFD08052C 0xFFFFFFFF 0x07F001E3
# Register : ACBDLR1 @ 0XFD080544</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR1_RESERVED_31_30 0x0
# Delay select for the BDL on Parity.
# PSU_DDR_PHY_ACBDLR1_PARBD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR1_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[16]. In DDR3 mode this pin is conn
# ected to WE.
# PSU_DDR_PHY_ACBDLR1_A16BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR1_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[17]. When not in DDR4 modemode thi
# s pin is connected to CAS.
# PSU_DDR_PHY_ACBDLR1_A17BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR1_RESERVED_7_6 0x0
# Delay select for the BDL on ACTN.
# PSU_DDR_PHY_ACBDLR1_ACTBD 0x0
# AC Bit Delay Line Register 1
#(OFFSET, MASK, VALUE) (0XFD080544, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080544 0xFFFFFFFF 0x00000000
# Register : ACBDLR2 @ 0XFD080548</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR2_RESERVED_31_30 0x0
# Delay select for the BDL on BG[1].
# PSU_DDR_PHY_ACBDLR2_BG1BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR2_RESERVED_23_22 0x0
# Delay select for the BDL on BG[0].
# PSU_DDR_PHY_ACBDLR2_BG0BD 0x0
# Reser.ved Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR2_RESERVED_15_14 0x0
# Delay select for the BDL on BA[1].
# PSU_DDR_PHY_ACBDLR2_BA1BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR2_RESERVED_7_6 0x0
# Delay select for the BDL on BA[0].
# PSU_DDR_PHY_ACBDLR2_BA0BD 0x0
# AC Bit Delay Line Register 2
#(OFFSET, MASK, VALUE) (0XFD080548, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080548 0xFFFFFFFF 0x00000000
# Register : ACBDLR6 @ 0XFD080558</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR6_RESERVED_31_30 0x0
# Delay select for the BDL on Address A[3].
# PSU_DDR_PHY_ACBDLR6_A03BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR6_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[2].
# PSU_DDR_PHY_ACBDLR6_A02BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR6_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[1].
# PSU_DDR_PHY_ACBDLR6_A01BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR6_RESERVED_7_6 0x0
# Delay select for the BDL on Address A[0].
# PSU_DDR_PHY_ACBDLR6_A00BD 0x0
# AC Bit Delay Line Register 6
#(OFFSET, MASK, VALUE) (0XFD080558, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080558 0xFFFFFFFF 0x00000000
# Register : ACBDLR7 @ 0XFD08055C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR7_RESERVED_31_30 0x0
# Delay select for the BDL on Address A[7].
# PSU_DDR_PHY_ACBDLR7_A07BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR7_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[6].
# PSU_DDR_PHY_ACBDLR7_A06BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR7_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[5].
# PSU_DDR_PHY_ACBDLR7_A05BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR7_RESERVED_7_6 0x0
# Delay select for the BDL on Address A[4].
# PSU_DDR_PHY_ACBDLR7_A04BD 0x0
# AC Bit Delay Line Register 7
#(OFFSET, MASK, VALUE) (0XFD08055C, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD08055C 0xFFFFFFFF 0x00000000
# Register : ACBDLR8 @ 0XFD080560</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR8_RESERVED_31_30 0x0
# Delay select for the BDL on Address A[11].
# PSU_DDR_PHY_ACBDLR8_A11BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR8_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[10].
# PSU_DDR_PHY_ACBDLR8_A10BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR8_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[9].
# PSU_DDR_PHY_ACBDLR8_A09BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR8_RESERVED_7_6 0x0
# Delay select for the BDL on Address A[8].
# PSU_DDR_PHY_ACBDLR8_A08BD 0x0
# AC Bit Delay Line Register 8
#(OFFSET, MASK, VALUE) (0XFD080560, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080560 0xFFFFFFFF 0x00000000
# Register : ACBDLR9 @ 0XFD080564</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR9_RESERVED_31_30 0x0
# Delay select for the BDL on Address A[15].
# PSU_DDR_PHY_ACBDLR9_A15BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR9_RESERVED_23_22 0x0
# Delay select for the BDL on Address A[14].
# PSU_DDR_PHY_ACBDLR9_A14BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR9_RESERVED_15_14 0x0
# Delay select for the BDL on Address A[13].
# PSU_DDR_PHY_ACBDLR9_A13BD 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ACBDLR9_RESERVED_7_6 0x0
# Delay select for the BDL on Address A[12].
# PSU_DDR_PHY_ACBDLR9_A12BD 0x0
# AC Bit Delay Line Register 9
#(OFFSET, MASK, VALUE) (0XFD080564, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFD080564 0xFFFFFFFF 0x00000000
# Register : ZQCR @ 0XFD080680</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_ZQCR_RESERVED_31_26 0x0
# ZQ VREF Range
# PSU_DDR_PHY_ZQCR_ZQREFISELRANGE 0x0
# Programmable Wait for Frequency B
# PSU_DDR_PHY_ZQCR_PGWAIT_FRQB 0x11
# Programmable Wait for Frequency A
# PSU_DDR_PHY_ZQCR_PGWAIT_FRQA 0x15
# ZQ VREF Pad Enable
# PSU_DDR_PHY_ZQCR_ZQREFPEN 0x0
# ZQ Internal VREF Enable
# PSU_DDR_PHY_ZQCR_ZQREFIEN 0x1
# Choice of termination mode
# PSU_DDR_PHY_ZQCR_ODT_MODE 0x1
# Force ZCAL VT update
# PSU_DDR_PHY_ZQCR_FORCE_ZCAL_VT_UPDATE 0x0
# IO VT Drift Limit
# PSU_DDR_PHY_ZQCR_IODLMT 0x2
# Averaging algorithm enable, if set, enables averaging algorithm
# PSU_DDR_PHY_ZQCR_AVGEN 0x1
# Maximum number of averaging rounds to be used by averaging algorithm
# PSU_DDR_PHY_ZQCR_AVGMAX 0x2
# ZQ Calibration Type
# PSU_DDR_PHY_ZQCR_ZCALT 0x0
# ZQ Power Down
# PSU_DDR_PHY_ZQCR_ZQPD 0x0
# ZQ Impedance Control Register
#(OFFSET, MASK, VALUE) (0XFD080680, 0xFFFFFFFFU ,0x008AAA58U) */
mask_write 0XFD080680 0xFFFFFFFF 0x008AAA58
# Register : ZQ0PR0 @ 0XFD080684</p>
# Pull-down drive strength ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ0PR0_PD_DRV_ZDEN 0x0
# Pull-up drive strength ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ0PR0_PU_DRV_ZDEN 0x0
# Pull-down termination ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ0PR0_PD_ODT_ZDEN 0x0
# Pull-up termination ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ0PR0_PU_ODT_ZDEN 0x0
# Calibration segment bypass
# PSU_DDR_PHY_ZQ0PR0_ZSEGBYP 0x0
# VREF latch mode controls the mode in which the ZLE pin of the PVREF cell
# is driven by the PUB
# PSU_DDR_PHY_ZQ0PR0_ZLE_MODE 0x0
# Termination adjustment
# PSU_DDR_PHY_ZQ0PR0_ODT_ADJUST 0x0
# Pulldown drive strength adjustment
# PSU_DDR_PHY_ZQ0PR0_PD_DRV_ADJUST 0x0
# Pullup drive strength adjustment
# PSU_DDR_PHY_ZQ0PR0_PU_DRV_ADJUST 0x0
# DRAM Impedance Divide Ratio
# PSU_DDR_PHY_ZQ0PR0_ZPROG_DRAM_ODT 0x7
# HOST Impedance Divide Ratio
# PSU_DDR_PHY_ZQ0PR0_ZPROG_HOST_ODT 0x9
# Impedance Divide Ratio (pulldown drive calibration during asymmetric dri
# ve strength calibration)
# PSU_DDR_PHY_ZQ0PR0_ZPROG_ASYM_DRV_PD 0xd
# Impedance Divide Ratio (pullup drive calibration during asymmetric drive
# strength calibration)
# PSU_DDR_PHY_ZQ0PR0_ZPROG_ASYM_DRV_PU 0xd
# ZQ n Impedance Control Program Register 0
#(OFFSET, MASK, VALUE) (0XFD080684, 0xFFFFFFFFU ,0x000079DDU) */
mask_write 0XFD080684 0xFFFFFFFF 0x000079DD
# Register : ZQ0OR0 @ 0XFD080694</p>
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ZQ0OR0_RESERVED_31_26 0x0
# Override value for the pull-up output impedance
# PSU_DDR_PHY_ZQ0OR0_ZDATA_PU_DRV_OVRD 0x1e1
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ZQ0OR0_RESERVED_15_10 0x0
# Override value for the pull-down output impedance
# PSU_DDR_PHY_ZQ0OR0_ZDATA_PD_DRV_OVRD 0x210
# ZQ n Impedance Control Override Data Register 0
#(OFFSET, MASK, VALUE) (0XFD080694, 0xFFFFFFFFU ,0x01E10210U) */
mask_write 0XFD080694 0xFFFFFFFF 0x01E10210
# Register : ZQ0OR1 @ 0XFD080698</p>
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ZQ0OR1_RESERVED_31_26 0x0
# Override value for the pull-up termination
# PSU_DDR_PHY_ZQ0OR1_ZDATA_PU_ODT_OVRD 0x1e1
# Reserved. Return zeros on reads.
# PSU_DDR_PHY_ZQ0OR1_RESERVED_15_10 0x0
# Override value for the pull-down termination
# PSU_DDR_PHY_ZQ0OR1_ZDATA_PD_ODT_OVRD 0x0
# ZQ n Impedance Control Override Data Register 1
#(OFFSET, MASK, VALUE) (0XFD080698, 0xFFFFFFFFU ,0x01E10000U) */
mask_write 0XFD080698 0xFFFFFFFF 0x01E10000
# Register : ZQ1PR0 @ 0XFD0806A4</p>
# Pull-down drive strength ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ1PR0_PD_DRV_ZDEN 0x0
# Pull-up drive strength ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ1PR0_PU_DRV_ZDEN 0x0
# Pull-down termination ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ1PR0_PD_ODT_ZDEN 0x0
# Pull-up termination ZCTRL over-ride enable
# PSU_DDR_PHY_ZQ1PR0_PU_ODT_ZDEN 0x0
# Calibration segment bypass
# PSU_DDR_PHY_ZQ1PR0_ZSEGBYP 0x0
# VREF latch mode controls the mode in which the ZLE pin of the PVREF cell
# is driven by the PUB
# PSU_DDR_PHY_ZQ1PR0_ZLE_MODE 0x0
# Termination adjustment
# PSU_DDR_PHY_ZQ1PR0_ODT_ADJUST 0x0
# Pulldown drive strength adjustment
# PSU_DDR_PHY_ZQ1PR0_PD_DRV_ADJUST 0x1
# Pullup drive strength adjustment
# PSU_DDR_PHY_ZQ1PR0_PU_DRV_ADJUST 0x0
# DRAM Impedance Divide Ratio
# PSU_DDR_PHY_ZQ1PR0_ZPROG_DRAM_ODT 0x7
# HOST Impedance Divide Ratio
# PSU_DDR_PHY_ZQ1PR0_ZPROG_HOST_ODT 0xb
# Impedance Divide Ratio (pulldown drive calibration during asymmetric dri
# ve strength calibration)
# PSU_DDR_PHY_ZQ1PR0_ZPROG_ASYM_DRV_PD 0xd
# Impedance Divide Ratio (pullup drive calibration during asymmetric drive
# strength calibration)
# PSU_DDR_PHY_ZQ1PR0_ZPROG_ASYM_DRV_PU 0xb
# ZQ n Impedance Control Program Register 0
#(OFFSET, MASK, VALUE) (0XFD0806A4, 0xFFFFFFFFU ,0x00087BDBU) */
mask_write 0XFD0806A4 0xFFFFFFFF 0x00087BDB
# Register : DX0GCR0 @ 0XFD080700</p>
# Calibration Bypass
# PSU_DDR_PHY_DX0GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX0GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX0GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX0GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
# input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX0GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX0GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX0GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX0GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX0GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX0GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX0GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX0GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX0GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX0GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX0GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080700, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080700 0xFFFFFFFF 0x40800604
# Register : DX0GCR4 @ 0XFD080710</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX0GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX0GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX0GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX0GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX0GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX0GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX0GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX0GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX0GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX0GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080710, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080710 0xFFFFFFFF 0x0E00B03C
# Register : DX0GCR5 @ 0XFD080714</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX0GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX0GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX0GCR5_DXREFISELR1 0x55
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX0GCR5_DXREFISELR0 0x55
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080714, 0xFFFFFFFFU ,0x09095555U) */
mask_write 0XFD080714 0xFFFFFFFF 0x09095555
# Register : DX0GCR6 @ 0XFD080718</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX0GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX0GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX0GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX0GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX0GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080718, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080718 0xFFFFFFFF 0x09092B2B
# Register : DX1GCR0 @ 0XFD080800</p>
# Calibration Bypass
# PSU_DDR_PHY_DX1GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX1GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX1GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX1GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
# input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX1GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX1GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX1GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX1GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX1GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX1GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX1GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX1GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX1GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX1GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX1GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080800, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080800 0xFFFFFFFF 0x40800604
# Register : DX1GCR4 @ 0XFD080810</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX1GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX1GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX1GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX1GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX1GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX1GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX1GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX1GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX1GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX1GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080810, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080810 0xFFFFFFFF 0x0E00B03C
# Register : DX1GCR5 @ 0XFD080814</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX1GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX1GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX1GCR5_DXREFISELR1 0x55
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX1GCR5_DXREFISELR0 0x55
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080814, 0xFFFFFFFFU ,0x09095555U) */
mask_write 0XFD080814 0xFFFFFFFF 0x09095555
# Register : DX1GCR6 @ 0XFD080818</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX1GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX1GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX1GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX1GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX1GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080818, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080818 0xFFFFFFFF 0x09092B2B
# Register : DX2GCR0 @ 0XFD080900</p>
# Calibration Bypass
# PSU_DDR_PHY_DX2GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX2GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX2GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX2GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
# input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX2GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX2GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX2GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX2GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX2GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX2GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX2GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX2GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX2GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX2GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX2GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080900, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080900 0xFFFFFFFF 0x40800604
# Register : DX2GCR1 @ 0XFD080904</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX2GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX2GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX2GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX2GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX2GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX2GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX2GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX2GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX2GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX2GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080904, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080904 0xFFFFFFFF 0x00007FFF
# Register : DX2GCR4 @ 0XFD080910</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX2GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX2GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX2GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX2GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX2GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX2GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX2GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX2GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX2GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX2GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080910, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080910 0xFFFFFFFF 0x0E00B03C
# Register : DX2GCR5 @ 0XFD080914</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX2GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX2GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX2GCR5_DXREFISELR1 0x55
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX2GCR5_DXREFISELR0 0x55
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080914, 0xFFFFFFFFU ,0x09095555U) */
mask_write 0XFD080914 0xFFFFFFFF 0x09095555
# Register : DX2GCR6 @ 0XFD080918</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX2GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX2GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX2GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX2GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX2GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080918, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080918 0xFFFFFFFF 0x09092B2B
# Register : DX3GCR0 @ 0XFD080A00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX3GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX3GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX3GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX3GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
# input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX3GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX3GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX3GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX3GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX3GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX3GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX3GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX3GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX3GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX3GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX3GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080A00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080A00 0xFFFFFFFF 0x40800604
# Register : DX3GCR1 @ 0XFD080A04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX3GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX3GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX3GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX3GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX3GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX3GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX3GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX3GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX3GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX3GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080A04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080A04 0xFFFFFFFF 0x00007FFF
# Register : DX3GCR4 @ 0XFD080A10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX3GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX3GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX3GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX3GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX3GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX3GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX3GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX3GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX3GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX3GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080A10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080A10 0xFFFFFFFF 0x0E00B03C
# Register : DX3GCR5 @ 0XFD080A14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX3GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX3GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX3GCR5_DXREFISELR1 0x55
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX3GCR5_DXREFISELR0 0x55
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080A14, 0xFFFFFFFFU ,0x09095555U) */
mask_write 0XFD080A14 0xFFFFFFFF 0x09095555
# Register : DX3GCR6 @ 0XFD080A18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX3GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX3GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX3GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX3GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX3GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080A18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080A18 0xFFFFFFFF 0x09092B2B
# Register : DX4GCR0 @ 0XFD080B00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX4GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX4GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX4GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX4GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
# input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX4GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX4GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX4GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX4GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX4GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX4GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX4GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX4GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX4GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX4GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX4GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080B00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080B00 0xFFFFFFFF 0x40800604
# Register : DX4GCR1 @ 0XFD080B04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX4GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX4GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX4GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX4GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX4GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX4GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX4GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX4GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX4GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX4GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080B04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080B04 0xFFFFFFFF 0x00007FFF
# Register : DX4GCR4 @ 0XFD080B10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX4GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX4GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX4GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX4GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX4GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX4GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX4GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX4GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX4GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX4GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080B10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080B10 0xFFFFFFFF 0x0E00B03C
# Register : DX4GCR5 @ 0XFD080B14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX4GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX4GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX4GCR5_DXREFISELR1 0x55
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX4GCR5_DXREFISELR0 0x55
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080B14, 0xFFFFFFFFU ,0x09095555U) */
mask_write 0XFD080B14 0xFFFFFFFF 0x09095555
# Register : DX4GCR6 @ 0XFD080B18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX4GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX4GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX4GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX4GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX4GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080B18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080B18 0xFFFFFFFF 0x09092B2B
# Register : DX5GCR0 @ 0XFD080C00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX5GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX5GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX5GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX5GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
# input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX5GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX5GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX5GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX5GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX5GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX5GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX5GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX5GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX5GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX5GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX5GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080C00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080C00 0xFFFFFFFF 0x40800604
# Register : DX5GCR1 @ 0XFD080C04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX5GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX5GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX5GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX5GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX5GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX5GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX5GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX5GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX5GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX5GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080C04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080C04 0xFFFFFFFF 0x00007FFF
# Register : DX5GCR4 @ 0XFD080C10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX5GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX5GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX5GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX5GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX5GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX5GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX5GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX5GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX5GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX5GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080C10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080C10 0xFFFFFFFF 0x0E00B03C
# Register : DX5GCR5 @ 0XFD080C14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX5GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX5GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX5GCR5_DXREFISELR1 0x55
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX5GCR5_DXREFISELR0 0x55
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080C14, 0xFFFFFFFFU ,0x09095555U) */
mask_write 0XFD080C14 0xFFFFFFFF 0x09095555
# Register : DX5GCR6 @ 0XFD080C18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX5GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX5GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX5GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX5GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX5GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080C18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080C18 0xFFFFFFFF 0x09092B2B
# Register : DX6GCR0 @ 0XFD080D00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX6GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX6GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX6GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX6GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
# input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX6GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX6GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX6GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX6GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX6GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX6GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX6GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX6GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX6GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX6GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX6GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080D00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080D00 0xFFFFFFFF 0x40800604
# Register : DX6GCR1 @ 0XFD080D04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX6GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX6GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX6GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX6GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX6GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX6GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX6GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX6GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX6GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX6GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080D04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080D04 0xFFFFFFFF 0x00007FFF
# Register : DX6GCR4 @ 0XFD080D10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX6GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX6GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX6GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX6GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX6GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX6GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX6GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX6GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX6GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX6GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080D10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080D10 0xFFFFFFFF 0x0E00B03C
# Register : DX6GCR5 @ 0XFD080D14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX6GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX6GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX6GCR5_DXREFISELR1 0x55
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX6GCR5_DXREFISELR0 0x55
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080D14, 0xFFFFFFFFU ,0x09095555U) */
mask_write 0XFD080D14 0xFFFFFFFF 0x09095555
# Register : DX6GCR6 @ 0XFD080D18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX6GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX6GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX6GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX6GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX6GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080D18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080D18 0xFFFFFFFF 0x09092B2B
# Register : DX7GCR0 @ 0XFD080E00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX7GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX7GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX7GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX7GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
# input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX7GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX7GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX7GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX7GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX7GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX7GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX7GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX7GCR0_DQSGPDR 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX7GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX7GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX7GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080E00, 0xFFFFFFFFU ,0x40800604U) */
mask_write 0XFD080E00 0xFFFFFFFF 0x40800604
# Register : DX7GCR1 @ 0XFD080E04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX7GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX7GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX7GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX7GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX7GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX7GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX7GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX7GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX7GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX7GCR1_DQEN 0xff
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080E04, 0xFFFFFFFFU ,0x00007FFFU) */
mask_write 0XFD080E04 0xFFFFFFFF 0x00007FFF
# Register : DX7GCR4 @ 0XFD080E10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX7GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX7GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX7GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX7GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX7GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX7GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX7GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX7GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX7GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX7GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080E10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080E10 0xFFFFFFFF 0x0E00B03C
# Register : DX7GCR5 @ 0XFD080E14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX7GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX7GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX7GCR5_DXREFISELR1 0x55
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX7GCR5_DXREFISELR0 0x55
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080E14, 0xFFFFFFFFU ,0x09095555U) */
mask_write 0XFD080E14 0xFFFFFFFF 0x09095555
# Register : DX7GCR6 @ 0XFD080E18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX7GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX7GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX7GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX7GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX7GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080E18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080E18 0xFFFFFFFF 0x09092B2B
# Register : DX8GCR0 @ 0XFD080F00</p>
# Calibration Bypass
# PSU_DDR_PHY_DX8GCR0_CALBYP 0x0
# Master Delay Line Enable
# PSU_DDR_PHY_DX8GCR0_MDLEN 0x1
# Configurable ODT(TE) Phase Shift
# PSU_DDR_PHY_DX8GCR0_CODTSHFT 0x0
# DQS Duty Cycle Correction
# PSU_DDR_PHY_DX8GCR0_DQSDCC 0x0
# Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
# input for the respective bypte lane of the PHY
# PSU_DDR_PHY_DX8GCR0_RDDLY 0x8
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8GCR0_RESERVED_19_14 0x0
# DQSNSE Power Down Receiver
# PSU_DDR_PHY_DX8GCR0_DQSNSEPDR 0x0
# DQSSE Power Down Receiver
# PSU_DDR_PHY_DX8GCR0_DQSSEPDR 0x0
# RTT On Additive Latency
# PSU_DDR_PHY_DX8GCR0_RTTOAL 0x0
# RTT Output Hold
# PSU_DDR_PHY_DX8GCR0_RTTOH 0x3
# Configurable PDR Phase Shift
# PSU_DDR_PHY_DX8GCR0_CPDRSHFT 0x0
# DQSR Power Down
# PSU_DDR_PHY_DX8GCR0_DQSRPD 0x0
# DQSG Power Down Receiver
# PSU_DDR_PHY_DX8GCR0_DQSGPDR 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8GCR0_RESERVED_4 0x0
# DQSG On-Die Termination
# PSU_DDR_PHY_DX8GCR0_DQSGODT 0x0
# DQSG Output Enable
# PSU_DDR_PHY_DX8GCR0_DQSGOE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8GCR0_RESERVED_1_0 0x0
# DATX8 n General Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD080F00, 0xFFFFFFFFU ,0x40800624U) */
mask_write 0XFD080F00 0xFFFFFFFF 0x40800624
# Register : DX8GCR1 @ 0XFD080F04</p>
# Enables the PDR mode for DQ[7:0]
# PSU_DDR_PHY_DX8GCR1_DXPDRMODE 0x0
# Reserved. Returns zeroes on reads.
# PSU_DDR_PHY_DX8GCR1_RESERVED_15 0x0
# Select the delayed or non-delayed read data strobe #
# PSU_DDR_PHY_DX8GCR1_QSNSEL 0x1
# Select the delayed or non-delayed read data strobe
# PSU_DDR_PHY_DX8GCR1_QSSEL 0x1
# Enables Read Data Strobe in a byte lane
# PSU_DDR_PHY_DX8GCR1_OEEN 0x1
# Enables PDR in a byte lane
# PSU_DDR_PHY_DX8GCR1_PDREN 0x1
# Enables ODT/TE in a byte lane
# PSU_DDR_PHY_DX8GCR1_TEEN 0x1
# Enables Write Data strobe in a byte lane
# PSU_DDR_PHY_DX8GCR1_DSEN 0x1
# Enables DM pin in a byte lane
# PSU_DDR_PHY_DX8GCR1_DMEN 0x1
# Enables DQ corresponding to each bit in a byte
# PSU_DDR_PHY_DX8GCR1_DQEN 0x0
# DATX8 n General Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD080F04, 0xFFFFFFFFU ,0x00007F00U) */
mask_write 0XFD080F04 0xFFFFFFFF 0x00007F00
# Register : DX8GCR4 @ 0XFD080F10</p>
# Byte lane VREF IOM (Used only by D4MU IOs)
# PSU_DDR_PHY_DX8GCR4_RESERVED_31_29 0x0
# Byte Lane VREF Pad Enable
# PSU_DDR_PHY_DX8GCR4_DXREFPEN 0x0
# Byte Lane Internal VREF Enable
# PSU_DDR_PHY_DX8GCR4_DXREFEEN 0x3
# Byte Lane Single-End VREF Enable
# PSU_DDR_PHY_DX8GCR4_DXREFSEN 0x1
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR4_RESERVED_24 0x0
# External VREF generator REFSEL range select
# PSU_DDR_PHY_DX8GCR4_DXREFESELRANGE 0x0
# Byte Lane External VREF Select
# PSU_DDR_PHY_DX8GCR4_DXREFESEL 0x0
# Single ended VREF generator REFSEL range select
# PSU_DDR_PHY_DX8GCR4_DXREFSSELRANGE 0x1
# Byte Lane Single-End VREF Select
# PSU_DDR_PHY_DX8GCR4_DXREFSSEL 0x30
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR4_RESERVED_7_6 0x0
# VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX8GCR4_DXREFIEN 0xf
# VRMON control for DQ IO (Single Ended) buffers of a byte lane.
# PSU_DDR_PHY_DX8GCR4_DXREFIMON 0x0
# DATX8 n General Configuration Register 4
#(OFFSET, MASK, VALUE) (0XFD080F10, 0xFFFFFFFFU ,0x0E00B03CU) */
mask_write 0XFD080F10 0xFFFFFFFF 0x0E00B03C
# Register : DX8GCR5 @ 0XFD080F14</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR5_RESERVED_31 0x0
# Byte Lane internal VREF Select for Rank 3
# PSU_DDR_PHY_DX8GCR5_DXREFISELR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR5_RESERVED_23 0x0
# Byte Lane internal VREF Select for Rank 2
# PSU_DDR_PHY_DX8GCR5_DXREFISELR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR5_RESERVED_15 0x0
# Byte Lane internal VREF Select for Rank 1
# PSU_DDR_PHY_DX8GCR5_DXREFISELR1 0x55
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR5_RESERVED_7 0x0
# Byte Lane internal VREF Select for Rank 0
# PSU_DDR_PHY_DX8GCR5_DXREFISELR0 0x55
# DATX8 n General Configuration Register 5
#(OFFSET, MASK, VALUE) (0XFD080F14, 0xFFFFFFFFU ,0x09095555U) */
mask_write 0XFD080F14 0xFFFFFFFF 0x09095555
# Register : DX8GCR6 @ 0XFD080F18</p>
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR6_RESERVED_31_30 0x0
# DRAM DQ VREF Select for Rank3
# PSU_DDR_PHY_DX8GCR6_DXDQVREFR3 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR6_RESERVED_23_22 0x0
# DRAM DQ VREF Select for Rank2
# PSU_DDR_PHY_DX8GCR6_DXDQVREFR2 0x9
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR6_RESERVED_15_14 0x0
# DRAM DQ VREF Select for Rank1
# PSU_DDR_PHY_DX8GCR6_DXDQVREFR1 0x2b
# Reserved. Returns zeros on reads.
# PSU_DDR_PHY_DX8GCR6_RESERVED_7_6 0x0
# DRAM DQ VREF Select for Rank0
# PSU_DDR_PHY_DX8GCR6_DXDQVREFR0 0x2b
# DATX8 n General Configuration Register 6
#(OFFSET, MASK, VALUE) (0XFD080F18, 0xFFFFFFFFU ,0x09092B2BU) */
mask_write 0XFD080F18 0xFFFFFFFF 0x09092B2B
# Register : DX8SL0OSC @ 0XFD081400</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL0OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL0OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL0OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is e
# nabled.
# PSU_DDR_PHY_DX8SL0OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL0OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL0OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL0OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL0OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL0OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL0OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL0OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL0OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL0OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL0OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL0OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL0OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL0OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL0OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
# opback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD081400, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD081400 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL0PLLCR0 @ 0XFD081404</p>
# PLL Bypass
# PSU_DDR_PHY_DX8SL0PLLCR0_PLLBYP 0x0
# PLL Reset
# PSU_DDR_PHY_DX8SL0PLLCR0_PLLRST 0x0
# PLL Power Down
# PSU_DDR_PHY_DX8SL0PLLCR0_PLLPD 0x0
# Reference Stop Mode
# PSU_DDR_PHY_DX8SL0PLLCR0_RSTOPM 0x0
# PLL Frequency Select
# PSU_DDR_PHY_DX8SL0PLLCR0_FRQSEL 0x1
# Relock Mode
# PSU_DDR_PHY_DX8SL0PLLCR0_RLOCKM 0x0
# Charge Pump Proportional Current Control
# PSU_DDR_PHY_DX8SL0PLLCR0_CPPC 0x8
# Charge Pump Integrating Current Control
# PSU_DDR_PHY_DX8SL0PLLCR0_CPIC 0x0
# Gear Shift
# PSU_DDR_PHY_DX8SL0PLLCR0_GSHIFT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0PLLCR0_RESERVED_11_9 0x0
# Analog Test Enable (ATOEN)
# PSU_DDR_PHY_DX8SL0PLLCR0_ATOEN 0x0
# Analog Test Control
# PSU_DDR_PHY_DX8SL0PLLCR0_ATC 0x0
# Digital Test Control
# PSU_DDR_PHY_DX8SL0PLLCR0_DTC 0x0
# DAXT8 0-1 PLL Control Register 0
#(OFFSET, MASK, VALUE) (0XFD081404, 0xFFFFFFFFU ,0x01100000U) */
mask_write 0XFD081404 0xFFFFFFFF 0x01100000
# Register : DX8SL0DQSCTL @ 0XFD08141C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL0DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL0DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL0DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL0DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL0DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL0DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL0DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL0DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL0DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL0DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD08141C, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD08141C 0xFFFFFFFF 0x01264300
# Register : DX8SL0DXCTL2 @ 0XFD08142C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL0DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL0DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL0DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL0DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL0DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL0DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL0DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL0DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL0DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL0DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL0DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL0DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD08142C, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD08142C 0xFFFFFFFF 0x00041800
# Register : DX8SL0IOCR @ 0XFD081430</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL0IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL0IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL0IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL0IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL0IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL0IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD081430, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD081430 0xFFFFFFFF 0x70800000
# Register : DX8SL1OSC @ 0XFD081440</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL1OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL1OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL1OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is e
# nabled.
# PSU_DDR_PHY_DX8SL1OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL1OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL1OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL1OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL1OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL1OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL1OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL1OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL1OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL1OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL1OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL1OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL1OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL1OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL1OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
# opback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD081440, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD081440 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL1PLLCR0 @ 0XFD081444</p>
# PLL Bypass
# PSU_DDR_PHY_DX8SL1PLLCR0_PLLBYP 0x0
# PLL Reset
# PSU_DDR_PHY_DX8SL1PLLCR0_PLLRST 0x0
# PLL Power Down
# PSU_DDR_PHY_DX8SL1PLLCR0_PLLPD 0x0
# Reference Stop Mode
# PSU_DDR_PHY_DX8SL1PLLCR0_RSTOPM 0x0
# PLL Frequency Select
# PSU_DDR_PHY_DX8SL1PLLCR0_FRQSEL 0x1
# Relock Mode
# PSU_DDR_PHY_DX8SL1PLLCR0_RLOCKM 0x0
# Charge Pump Proportional Current Control
# PSU_DDR_PHY_DX8SL1PLLCR0_CPPC 0x8
# Charge Pump Integrating Current Control
# PSU_DDR_PHY_DX8SL1PLLCR0_CPIC 0x0
# Gear Shift
# PSU_DDR_PHY_DX8SL1PLLCR0_GSHIFT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1PLLCR0_RESERVED_11_9 0x0
# Analog Test Enable (ATOEN)
# PSU_DDR_PHY_DX8SL1PLLCR0_ATOEN 0x0
# Analog Test Control
# PSU_DDR_PHY_DX8SL1PLLCR0_ATC 0x0
# Digital Test Control
# PSU_DDR_PHY_DX8SL1PLLCR0_DTC 0x0
# DAXT8 0-1 PLL Control Register 0
#(OFFSET, MASK, VALUE) (0XFD081444, 0xFFFFFFFFU ,0x01100000U) */
mask_write 0XFD081444 0xFFFFFFFF 0x01100000
# Register : DX8SL1DQSCTL @ 0XFD08145C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL1DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL1DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL1DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL1DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL1DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL1DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL1DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL1DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL1DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL1DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD08145C, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD08145C 0xFFFFFFFF 0x01264300
# Register : DX8SL1DXCTL2 @ 0XFD08146C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL1DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL1DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL1DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL1DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL1DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL1DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL1DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL1DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL1DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL1DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL1DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL1DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD08146C, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD08146C 0xFFFFFFFF 0x00041800
# Register : DX8SL1IOCR @ 0XFD081470</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL1IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL1IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL1IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL1IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL1IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL1IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD081470, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD081470 0xFFFFFFFF 0x70800000
# Register : DX8SL2OSC @ 0XFD081480</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL2OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL2OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL2OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is e
# nabled.
# PSU_DDR_PHY_DX8SL2OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL2OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL2OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL2OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL2OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL2OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL2OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL2OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL2OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL2OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL2OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL2OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL2OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL2OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL2OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
# opback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD081480, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD081480 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL2PLLCR0 @ 0XFD081484</p>
# PLL Bypass
# PSU_DDR_PHY_DX8SL2PLLCR0_PLLBYP 0x0
# PLL Reset
# PSU_DDR_PHY_DX8SL2PLLCR0_PLLRST 0x0
# PLL Power Down
# PSU_DDR_PHY_DX8SL2PLLCR0_PLLPD 0x0
# Reference Stop Mode
# PSU_DDR_PHY_DX8SL2PLLCR0_RSTOPM 0x0
# PLL Frequency Select
# PSU_DDR_PHY_DX8SL2PLLCR0_FRQSEL 0x1
# Relock Mode
# PSU_DDR_PHY_DX8SL2PLLCR0_RLOCKM 0x0
# Charge Pump Proportional Current Control
# PSU_DDR_PHY_DX8SL2PLLCR0_CPPC 0x8
# Charge Pump Integrating Current Control
# PSU_DDR_PHY_DX8SL2PLLCR0_CPIC 0x0
# Gear Shift
# PSU_DDR_PHY_DX8SL2PLLCR0_GSHIFT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2PLLCR0_RESERVED_11_9 0x0
# Analog Test Enable (ATOEN)
# PSU_DDR_PHY_DX8SL2PLLCR0_ATOEN 0x0
# Analog Test Control
# PSU_DDR_PHY_DX8SL2PLLCR0_ATC 0x0
# Digital Test Control
# PSU_DDR_PHY_DX8SL2PLLCR0_DTC 0x0
# DAXT8 0-1 PLL Control Register 0
#(OFFSET, MASK, VALUE) (0XFD081484, 0xFFFFFFFFU ,0x01100000U) */
mask_write 0XFD081484 0xFFFFFFFF 0x01100000
# Register : DX8SL2DQSCTL @ 0XFD08149C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL2DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL2DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL2DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL2DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL2DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL2DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL2DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL2DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL2DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL2DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD08149C, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD08149C 0xFFFFFFFF 0x01264300
# Register : DX8SL2DXCTL2 @ 0XFD0814AC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL2DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL2DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL2DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL2DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL2DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL2DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL2DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL2DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL2DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL2DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL2DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL2DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD0814AC, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD0814AC 0xFFFFFFFF 0x00041800
# Register : DX8SL2IOCR @ 0XFD0814B0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL2IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL2IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL2IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL2IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL2IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL2IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD0814B0, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD0814B0 0xFFFFFFFF 0x70800000
# Register : DX8SL3OSC @ 0XFD0814C0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL3OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL3OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL3OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is e
# nabled.
# PSU_DDR_PHY_DX8SL3OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL3OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL3OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL3OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL3OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL3OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL3OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL3OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL3OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL3OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL3OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL3OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL3OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL3OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL3OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
# opback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD0814C0, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD0814C0 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL3PLLCR0 @ 0XFD0814C4</p>
# PLL Bypass
# PSU_DDR_PHY_DX8SL3PLLCR0_PLLBYP 0x0
# PLL Reset
# PSU_DDR_PHY_DX8SL3PLLCR0_PLLRST 0x0
# PLL Power Down
# PSU_DDR_PHY_DX8SL3PLLCR0_PLLPD 0x0
# Reference Stop Mode
# PSU_DDR_PHY_DX8SL3PLLCR0_RSTOPM 0x0
# PLL Frequency Select
# PSU_DDR_PHY_DX8SL3PLLCR0_FRQSEL 0x1
# Relock Mode
# PSU_DDR_PHY_DX8SL3PLLCR0_RLOCKM 0x0
# Charge Pump Proportional Current Control
# PSU_DDR_PHY_DX8SL3PLLCR0_CPPC 0x8
# Charge Pump Integrating Current Control
# PSU_DDR_PHY_DX8SL3PLLCR0_CPIC 0x0
# Gear Shift
# PSU_DDR_PHY_DX8SL3PLLCR0_GSHIFT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3PLLCR0_RESERVED_11_9 0x0
# Analog Test Enable (ATOEN)
# PSU_DDR_PHY_DX8SL3PLLCR0_ATOEN 0x0
# Analog Test Control
# PSU_DDR_PHY_DX8SL3PLLCR0_ATC 0x0
# Digital Test Control
# PSU_DDR_PHY_DX8SL3PLLCR0_DTC 0x0
# DAXT8 0-1 PLL Control Register 0
#(OFFSET, MASK, VALUE) (0XFD0814C4, 0xFFFFFFFFU ,0x01100000U) */
mask_write 0XFD0814C4 0xFFFFFFFF 0x01100000
# Register : DX8SL3DQSCTL @ 0XFD0814DC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL3DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL3DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL3DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL3DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL3DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL3DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL3DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL3DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL3DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL3DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD0814DC, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD0814DC 0xFFFFFFFF 0x01264300
# Register : DX8SL3DXCTL2 @ 0XFD0814EC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL3DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL3DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL3DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL3DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL3DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL3DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL3DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL3DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL3DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL3DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL3DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL3DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD0814EC, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD0814EC 0xFFFFFFFF 0x00041800
# Register : DX8SL3IOCR @ 0XFD0814F0</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL3IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL3IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL3IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL3IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL3IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL3IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD0814F0, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD0814F0 0xFFFFFFFF 0x70800000
# Register : DX8SL4OSC @ 0XFD081500</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4OSC_RESERVED_31_30 0x0
# Enable Clock Gating for DX ddr_clk
# PSU_DDR_PHY_DX8SL4OSC_GATEDXRDCLK 0x2
# Enable Clock Gating for DX ctl_rd_clk
# PSU_DDR_PHY_DX8SL4OSC_GATEDXDDRCLK 0x2
# Enable Clock Gating for DX ctl_clk
# PSU_DDR_PHY_DX8SL4OSC_GATEDXCTLCLK 0x2
# Selects the level to which clocks will be stalled when clock gating is e
# nabled.
# PSU_DDR_PHY_DX8SL4OSC_CLKLEVEL 0x0
# Loopback Mode
# PSU_DDR_PHY_DX8SL4OSC_LBMODE 0x0
# Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
# PSU_DDR_PHY_DX8SL4OSC_LBGSDQS 0x0
# Loopback DQS Gating
# PSU_DDR_PHY_DX8SL4OSC_LBGDQS 0x0
# Loopback DQS Shift
# PSU_DDR_PHY_DX8SL4OSC_LBDQSS 0x0
# PHY High-Speed Reset
# PSU_DDR_PHY_DX8SL4OSC_PHYHRST 0x1
# PHY FIFO Reset
# PSU_DDR_PHY_DX8SL4OSC_PHYFRST 0x1
# Delay Line Test Start
# PSU_DDR_PHY_DX8SL4OSC_DLTST 0x0
# Delay Line Test Mode
# PSU_DDR_PHY_DX8SL4OSC_DLTMODE 0x0
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL4OSC_RESERVED_12_11 0x3
# Oscillator Mode Write-Data Delay Line Select
# PSU_DDR_PHY_DX8SL4OSC_OSCWDDL 0x3
# Reserved. Caution, do not write to this register field.
# PSU_DDR_PHY_DX8SL4OSC_RESERVED_8_7 0x3
# Oscillator Mode Write-Leveling Delay Line Select
# PSU_DDR_PHY_DX8SL4OSC_OSCWDL 0x3
# Oscillator Mode Division
# PSU_DDR_PHY_DX8SL4OSC_OSCDIV 0xf
# Oscillator Enable
# PSU_DDR_PHY_DX8SL4OSC_OSCEN 0x0
# DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
# opback, and Gated Clock Control Register
#(OFFSET, MASK, VALUE) (0XFD081500, 0xFFFFFFFFU ,0x2A019FFEU) */
mask_write 0XFD081500 0xFFFFFFFF 0x2A019FFE
# Register : DX8SL4PLLCR0 @ 0XFD081504</p>
# PLL Bypass
# PSU_DDR_PHY_DX8SL4PLLCR0_PLLBYP 0x0
# PLL Reset
# PSU_DDR_PHY_DX8SL4PLLCR0_PLLRST 0x0
# PLL Power Down
# PSU_DDR_PHY_DX8SL4PLLCR0_PLLPD 0x0
# Reference Stop Mode
# PSU_DDR_PHY_DX8SL4PLLCR0_RSTOPM 0x0
# PLL Frequency Select
# PSU_DDR_PHY_DX8SL4PLLCR0_FRQSEL 0x1
# Relock Mode
# PSU_DDR_PHY_DX8SL4PLLCR0_RLOCKM 0x0
# Charge Pump Proportional Current Control
# PSU_DDR_PHY_DX8SL4PLLCR0_CPPC 0x8
# Charge Pump Integrating Current Control
# PSU_DDR_PHY_DX8SL4PLLCR0_CPIC 0x0
# Gear Shift
# PSU_DDR_PHY_DX8SL4PLLCR0_GSHIFT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4PLLCR0_RESERVED_11_9 0x0
# Analog Test Enable (ATOEN)
# PSU_DDR_PHY_DX8SL4PLLCR0_ATOEN 0x0
# Analog Test Control
# PSU_DDR_PHY_DX8SL4PLLCR0_ATC 0x0
# Digital Test Control
# PSU_DDR_PHY_DX8SL4PLLCR0_DTC 0x0
# DAXT8 0-1 PLL Control Register 0
#(OFFSET, MASK, VALUE) (0XFD081504, 0xFFFFFFFFU ,0x01100000U) */
mask_write 0XFD081504 0xFFFFFFFF 0x01100000
# Register : DX8SL4DQSCTL @ 0XFD08151C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL4DQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SL4DQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SL4DQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SL4DQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SL4DQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SL4DQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SL4DQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SL4DQSCTL_DXSR 0x3
# DQS_N Resistor
# PSU_DDR_PHY_DX8SL4DQSCTL_DQSNRES 0x0
# DQS Resistor
# PSU_DDR_PHY_DX8SL4DQSCTL_DQSRES 0x0
# DATX8 0-1 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD08151C, 0xFFFFFFFFU ,0x01264300U) */
mask_write 0XFD08151C 0xFFFFFFFF 0x01264300
# Register : DX8SL4DXCTL2 @ 0XFD08152C</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_31_24 0x0
# Configurable Read Data Enable
# PSU_DDR_PHY_DX8SL4DXCTL2_CRDEN 0x0
# OX Extension during Post-amble
# PSU_DDR_PHY_DX8SL4DXCTL2_POSOEX 0x0
# OE Extension during Pre-amble
# PSU_DDR_PHY_DX8SL4DXCTL2_PREOEX 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_17 0x0
# I/O Assisted Gate Select
# PSU_DDR_PHY_DX8SL4DXCTL2_IOAG 0x0
# I/O Loopback Select
# PSU_DDR_PHY_DX8SL4DXCTL2_IOLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_14_13 0x0
# Low Power Wakeup Threshold
# PSU_DDR_PHY_DX8SL4DXCTL2_LPWAKEUP_THRSH 0xc
# Read Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL4DXCTL2_RDBI 0x0
# Write Data Bus Inversion Enable
# PSU_DDR_PHY_DX8SL4DXCTL2_WDBI 0x0
# PUB Read FIFO Bypass
# PSU_DDR_PHY_DX8SL4DXCTL2_PRFBYP 0x0
# DATX8 Receive FIFO Read Mode
# PSU_DDR_PHY_DX8SL4DXCTL2_RDMODE 0x0
# Disables the Read FIFO Reset
# PSU_DDR_PHY_DX8SL4DXCTL2_DISRST 0x0
# Read DQS Gate I/O Loopback
# PSU_DDR_PHY_DX8SL4DXCTL2_DQSGLB 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_0 0x0
# DATX8 0-1 DX Control Register 2
#(OFFSET, MASK, VALUE) (0XFD08152C, 0xFFFFFFFFU ,0x00041800U) */
mask_write 0XFD08152C 0xFFFFFFFF 0x00041800
# Register : DX8SL4IOCR @ 0XFD081530</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SL4IOCR_RESERVED_31 0x0
# PVREF_DAC REFSEL range select
# PSU_DDR_PHY_DX8SL4IOCR_DXDACRANGE 0x7
# IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
# PSU_DDR_PHY_DX8SL4IOCR_DXVREFIOM 0x0
# DX IO Mode
# PSU_DDR_PHY_DX8SL4IOCR_DXIOM 0x2
# DX IO Transmitter Mode
# PSU_DDR_PHY_DX8SL4IOCR_DXTXM 0x0
# DX IO Receiver Mode
# PSU_DDR_PHY_DX8SL4IOCR_DXRXM 0x0
# DATX8 0-1 I/O Configuration Register
#(OFFSET, MASK, VALUE) (0XFD081530, 0xFFFFFFFFU ,0x70800000U) */
mask_write 0XFD081530 0xFFFFFFFF 0x70800000
# Register : DX8SLbPLLCR0 @ 0XFD0817C4</p>
# PLL Bypass
# PSU_DDR_PHY_DX8SLBPLLCR0_PLLBYP 0x0
# PLL Reset
# PSU_DDR_PHY_DX8SLBPLLCR0_PLLRST 0x0
# PLL Power Down
# PSU_DDR_PHY_DX8SLBPLLCR0_PLLPD 0x0
# Reference Stop Mode
# PSU_DDR_PHY_DX8SLBPLLCR0_RSTOPM 0x0
# PLL Frequency Select
# PSU_DDR_PHY_DX8SLBPLLCR0_FRQSEL 0x1
# Relock Mode
# PSU_DDR_PHY_DX8SLBPLLCR0_RLOCKM 0x0
# Charge Pump Proportional Current Control
# PSU_DDR_PHY_DX8SLBPLLCR0_CPPC 0x8
# Charge Pump Integrating Current Control
# PSU_DDR_PHY_DX8SLBPLLCR0_CPIC 0x0
# Gear Shift
# PSU_DDR_PHY_DX8SLBPLLCR0_GSHIFT 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SLBPLLCR0_RESERVED_11_9 0x0
# Analog Test Enable (ATOEN)
# PSU_DDR_PHY_DX8SLBPLLCR0_ATOEN 0x0
# Analog Test Control
# PSU_DDR_PHY_DX8SLBPLLCR0_ATC 0x0
# Digital Test Control
# PSU_DDR_PHY_DX8SLBPLLCR0_DTC 0x0
# DAXT8 0-8 PLL Control Register 0
#(OFFSET, MASK, VALUE) (0XFD0817C4, 0xFFFFFFFFU ,0x01100000U) */
mask_write 0XFD0817C4 0xFFFFFFFF 0x01100000
# Register : DX8SLbDQSCTL @ 0XFD0817DC</p>
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_31_25 0x0
# Read Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SLBDQSCTL_RRRMODE 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_23_22 0x0
# Write Path Rise-to-Rise Mode
# PSU_DDR_PHY_DX8SLBDQSCTL_WRRMODE 0x1
# DQS Gate Extension
# PSU_DDR_PHY_DX8SLBDQSCTL_DQSGX 0x0
# Low Power PLL Power Down
# PSU_DDR_PHY_DX8SLBDQSCTL_LPPLLPD 0x1
# Low Power I/O Power Down
# PSU_DDR_PHY_DX8SLBDQSCTL_LPIOPD 0x1
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_16_15 0x0
# QS Counter Enable
# PSU_DDR_PHY_DX8SLBDQSCTL_QSCNTEN 0x1
# Unused DQ I/O Mode
# PSU_DDR_PHY_DX8SLBDQSCTL_UDQIOM 0x0
# Reserved. Return zeroes on reads.
# PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_12_10 0x0
# Data Slew Rate
# PSU_DDR_PHY_DX8SLBDQSCTL_DXSR 0x3
# DQS# Resistor
# PSU_DDR_PHY_DX8SLBDQSCTL_DQSNRES 0xc
# DQS Resistor
# PSU_DDR_PHY_DX8SLBDQSCTL_DQSRES 0x4
# DATX8 0-8 DQS Control Register
#(OFFSET, MASK, VALUE) (0XFD0817DC, 0xFFFFFFFFU ,0x012643C4U) */
mask_write 0XFD0817DC 0xFFFFFFFF 0x012643C4
}
set psu_ddr_qos_init_data {
}
set psu_mio_init_data {
# : MIO PROGRAMMING
# Register : MIO_PIN_0 @ 0XFF180000</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_sclk_out-
# (QSPI Clock)
# PSU_IOU_SLCR_MIO_PIN_0_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_0_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[0]- (Test Scan Port) = test_scan, Output, test_scan_out[0
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_0_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[0]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[0]- (GPIO bank 0) 1= can1, Output, can1_phy
# _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
# 1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTAG
# TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_sc
# lk_out- (SPI Clock) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Out
# put, ua1_txd- (UART transmitter serial output) 7= trace, Output, trace_c
# lk- (Trace Port Clock)
# PSU_IOU_SLCR_MIO_PIN_0_L3_SEL 0
# Configures MIO Pin 0 peripheral interface mapping. S
#(OFFSET, MASK, VALUE) (0XFF180000, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180000 0x000000FE 0x00000002
# Register : MIO_PIN_1 @ 0XFF180004</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_mi1- (Q
# SPI Databus) 1= qspi, Output, qspi_so_mo1- (QSPI Databus)
# PSU_IOU_SLCR_MIO_PIN_1_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_1_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[1]- (Test Scan Port) = test_scan, Output, test_scan_out[1
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_1_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[1]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[1]- (GPIO bank 0) 1= can1, Input, can1_phy_
# rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
# , Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTAG
# TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc3, Ou
# tput, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART
# receiver serial input) 7= trace, Output, trace_ctl- (Trace Port Control
# Signal)
# PSU_IOU_SLCR_MIO_PIN_1_L3_SEL 0
# Configures MIO Pin 1 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180004, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180004 0x000000FE 0x00000002
# Register : MIO_PIN_2 @ 0XFF180008</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi2- (QSPI
# Databus) 1= qspi, Output, qspi_mo2- (QSPI Databus)
# PSU_IOU_SLCR_MIO_PIN_2_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_2_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[2]- (Test Scan Port) = test_scan, Output, test_scan_out[2
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_2_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[2]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[2]- (GPIO bank 0) 1= can0, Input, can0_phy_
# rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
# , Output, i2c0_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJTAG
# TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc2, I
# nput, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver se
# rial input) 7= trace, Output, tracedq[0]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_2_L3_SEL 0
# Configures MIO Pin 2 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180008, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180008 0x000000FE 0x00000002
# Register : MIO_PIN_3 @ 0XFF18000C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi3- (QSPI
# Databus) 1= qspi, Output, qspi_mo3- (QSPI Databus)
# PSU_IOU_SLCR_MIO_PIN_3_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_3_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[3]- (Test Scan Port) = test_scan, Output, test_scan_out[3
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_3_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[3]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[3]- (GPIO bank 0) 1= can0, Output, can0_phy
# _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
# 0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTAG
# TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output
# , spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc2, Output, ttc2_wave_out-
# (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial
# output) 7= trace, Output, tracedq[1]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_3_L3_SEL 0
# Configures MIO Pin 3 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18000C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18000C 0x000000FE 0x00000002
# Register : MIO_PIN_4 @ 0XFF180010</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_mo_mo0- (
# QSPI Databus) 1= qspi, Input, qspi_si_mi0- (QSPI Databus)
# PSU_IOU_SLCR_MIO_PIN_4_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_4_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[4]- (Test Scan Port) = test_scan, Output, test_scan_out[4
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_4_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[4]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[4]- (GPIO bank 0) 1= can1, Output, can1_phy
# _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
# 1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (Wa
# tch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi
# 0, Output, spi0_so- (MISO signal) 5= ttc1, Input, ttc1_clk_in- (TTC Cloc
# k) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, O
# utput, tracedq[2]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_4_L3_SEL 0
# Configures MIO Pin 4 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180010, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180010 0x000000FE 0x00000002
# Register : MIO_PIN_5 @ 0XFF180014</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_n_ss_out-
# (QSPI Slave Select)
# PSU_IOU_SLCR_MIO_PIN_5_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_5_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[5]- (Test Scan Port) = test_scan, Output, test_scan_out[5
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_5_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[5]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[5]- (GPIO bank 0) 1= can1, Input, can1_phy_
# rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
# , Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out- (W
# atch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4=
# spi0, Input, spi0_si- (MOSI signal) 5= ttc1, Output, ttc1_wave_out- (TTC
# Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7=
# trace, Output, tracedq[3]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_5_L3_SEL 0
# Configures MIO Pin 5 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180014, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180014 0x000000FE 0x00000002
# Register : MIO_PIN_6 @ 0XFF180018</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_clk_for_l
# pbk- (QSPI Clock to be fed-back)
# PSU_IOU_SLCR_MIO_PIN_6_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_6_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[6]- (Test Scan Port) = test_scan, Output, test_scan_out[6
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_6_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[6]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[6]- (GPIO bank 0) 1= can0, Input, can0_phy_
# rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
# , Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (Wat
# ch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= s
# pi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (TT
# C Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace,
# Output, tracedq[4]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_6_L3_SEL 0
# Configures MIO Pin 6 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180018, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180018 0x000000FE 0x00000002
# Register : MIO_PIN_7 @ 0XFF18001C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_n_ss_out_
# upper- (QSPI Slave Select upper)
# PSU_IOU_SLCR_MIO_PIN_7_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_7_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[7]- (Test Scan Port) = test_scan, Output, test_scan_out[7
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_7_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[7]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[7]- (GPIO bank 0) 1= can0, Output, can0_phy
# _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
# 0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out- (
# Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Ma
# ster Selects) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua
# 0, Output, ua0_txd- (UART transmitter serial output) 7= trace, Output, t
# racedq[5]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_7_L3_SEL 0
# Configures MIO Pin 7 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18001C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18001C 0x000000FE 0x00000002
# Register : MIO_PIN_8 @ 0XFF180020</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[0
# ]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_upper[0]- (QSPI Upper D
# atabus)
# PSU_IOU_SLCR_MIO_PIN_8_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_8_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[8]- (Test Scan Port) = test_scan, Output, test_scan_out[8
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_8_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[8]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[8]- (GPIO bank 0) 1= can1, Output, can1_phy
# _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
# 1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (Wa
# tch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Maste
# r Selects) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_
# txd- (UART transmitter serial output) 7= trace, Output, tracedq[6]- (Tra
# ce Port Databus)
# PSU_IOU_SLCR_MIO_PIN_8_L3_SEL 0
# Configures MIO Pin 8 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180020, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180020 0x000000FE 0x00000002
# Register : MIO_PIN_9 @ 0XFF180024</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[1
# ]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_upper[1]- (QSPI Upper D
# atabus)
# PSU_IOU_SLCR_MIO_PIN_9_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ce[1]- (NA
# ND chip enable)
# PSU_IOU_SLCR_MIO_PIN_9_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[9]- (Test Scan Port) = test_scan, Output, test_scan_out[9
# ]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_9_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[9]- (GPIO bank 0) 0= g
# pio0, Output, gpio_0_pin_out[9]- (GPIO bank 0) 1= can1, Input, can1_phy_
# rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
# , Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out- (W
# atch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master S
# elects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc3,
# Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UA
# RT receiver serial input) 7= trace, Output, tracedq[7]- (Trace Port Data
# bus)
# PSU_IOU_SLCR_MIO_PIN_9_L3_SEL 0
# Configures MIO Pin 9 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180024, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180024 0x000000FE 0x00000002
# Register : MIO_PIN_10 @ 0XFF180028</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[2
# ]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_upper[2]- (QSPI Upper D
# atabus)
# PSU_IOU_SLCR_MIO_PIN_10_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[0]- (N
# AND Ready/Busy)
# PSU_IOU_SLCR_MIO_PIN_10_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[10]- (Test Scan Port) = test_scan, Output, test_scan_out[
# 10]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_10_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[10]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[10]- (GPIO bank 0) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= sp
# i1, Output, spi1_so- (MISO signal) 5= ttc2, Input, ttc2_clk_in- (TTC Clo
# ck) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Outpu
# t, tracedq[8]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_10_L3_SEL 0
# Configures MIO Pin 10 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180028, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180028 0x000000FE 0x00000002
# Register : MIO_PIN_11 @ 0XFF18002C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[3
# ]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_upper[3]- (QSPI Upper D
# atabus)
# PSU_IOU_SLCR_MIO_PIN_11_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[1]- (N
# AND Ready/Busy)
# PSU_IOU_SLCR_MIO_PIN_11_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[11]- (Test Scan Port) = test_scan, Output, test_scan_out[
# 11]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_11_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[11]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[11]- (GPIO bank 0) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal)
# 4= spi1, Input, spi1_si- (MOSI signal) 5= ttc2, Output, ttc2_wave_out- (
# TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial ou
# tput) 7= trace, Output, tracedq[9]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_11_L3_SEL 0
# Configures MIO Pin 11 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18002C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18002C 0x000000FE 0x00000002
# Register : MIO_PIN_12 @ 0XFF180030</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_sclk_out_
# upper- (QSPI Upper Clock)
# PSU_IOU_SLCR_MIO_PIN_12_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dqs_in- (NA
# ND Strobe) 1= nand, Output, nfc_dqs_out- (NAND Strobe)
# PSU_IOU_SLCR_MIO_PIN_12_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
# , test_scan_in[12]- (Test Scan Port) = test_scan, Output, test_scan_out[
# 12]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_12_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[12]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[12]- (GPIO bank 0) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJT
# AG TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_
# sclk_out- (SPI Clock) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, O
# utput, ua1_txd- (UART transmitter serial output) 7= trace, Output, trace
# dq[10]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_12_L3_SEL 0
# Configures MIO Pin 12 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180030, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180030 0x000000FE 0x00000002
# Register : MIO_PIN_13 @ 0XFF180034</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_13_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ce[0]- (NA
# ND chip enable)
# PSU_IOU_SLCR_MIO_PIN_13_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[0]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[0]- (8-bit Data bus) 2= t
# est_scan, Input, test_scan_in[13]- (Test Scan Port) = test_scan, Output,
# test_scan_out[13]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_13_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[13]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[13]- (GPIO bank 0) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTA
# G TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc1,
# Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UAR
# T receiver serial input) 7= trace, Output, tracedq[11]- (Trace Port Data
# bus)
# PSU_IOU_SLCR_MIO_PIN_13_L3_SEL 0
# Configures MIO Pin 13 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180034, 0x000000FEU ,0x00000000U) */
mask_write 0XFF180034 0x000000FE 0x00000000
# Register : MIO_PIN_14 @ 0XFF180038</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_14_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_cle- (NAND
# Command Latch Enable)
# PSU_IOU_SLCR_MIO_PIN_14_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[1]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[1]- (8-bit Data bus) 2= t
# est_scan, Input, test_scan_in[14]- (Test Scan Port) = test_scan, Output,
# test_scan_out[14]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_14_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[14]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[14]- (GPIO bank 0) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJT
# AG TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc0,
# Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver
# serial input) 7= trace, Output, tracedq[12]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_14_L3_SEL 2
# Configures MIO Pin 14 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180038, 0x000000FEU ,0x00000040U) */
mask_write 0XFF180038 0x000000FE 0x00000040
# Register : MIO_PIN_15 @ 0XFF18003C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_15_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ale- (NAND
# Address Latch Enable)
# PSU_IOU_SLCR_MIO_PIN_15_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[2]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[2]- (8-bit Data bus) 2= t
# est_scan, Input, test_scan_in[15]- (Test Scan Port) = test_scan, Output,
# test_scan_out[15]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_15_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[15]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[15]- (GPIO bank 0) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJT
# AG TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Outp
# ut, spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc0, Output, ttc0_wave_ou
# t- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter seria
# l output) 7= trace, Output, tracedq[13]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_15_L3_SEL 2
# Configures MIO Pin 15 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18003C, 0x000000FEU ,0x00000040U) */
mask_write 0XFF18003C 0x000000FE 0x00000040
# Register : MIO_PIN_16 @ 0XFF180040</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_16_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[0]- (
# NAND Data Bus) 1= nand, Output, nfc_dq_out[0]- (NAND Data Bus)
# PSU_IOU_SLCR_MIO_PIN_16_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[3]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[3]- (8-bit Data bus) 2= t
# est_scan, Input, test_scan_in[16]- (Test Scan Port) = test_scan, Output,
# test_scan_out[16]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_16_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[16]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[16]- (GPIO bank 0) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
# Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= s
# pi0, Output, spi0_so- (MISO signal) 5= ttc3, Input, ttc3_clk_in- (TTC Cl
# ock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace,
# Output, tracedq[14]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_16_L3_SEL 2
# Configures MIO Pin 16 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180040, 0x000000FEU ,0x00000040U) */
mask_write 0XFF180040 0x000000FE 0x00000040
# Register : MIO_PIN_17 @ 0XFF180044</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_17_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[1]- (
# NAND Data Bus) 1= nand, Output, nfc_dq_out[1]- (NAND Data Bus)
# PSU_IOU_SLCR_MIO_PIN_17_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[4]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[4]- (8-bit Data bus) 2= t
# est_scan, Input, test_scan_in[17]- (Test Scan Port) = test_scan, Output,
# test_scan_out[17]- (Test Scan Port) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_17_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[17]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[17]- (GPIO bank 0) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
# (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4
# = spi0, Input, spi0_si- (MOSI signal) 5= ttc3, Output, ttc3_wave_out- (T
# TC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
# 7= trace, Output, tracedq[15]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_17_L3_SEL 2
# Configures MIO Pin 17 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180044, 0x000000FEU ,0x00000040U) */
mask_write 0XFF180044 0x000000FE 0x00000040
# Register : MIO_PIN_18 @ 0XFF180048</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_18_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[2]- (
# NAND Data Bus) 1= nand, Output, nfc_dq_out[2]- (NAND Data Bus)
# PSU_IOU_SLCR_MIO_PIN_18_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[5]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[5]- (8-bit Data bus) 2= t
# est_scan, Input, test_scan_in[18]- (Test Scan Port) = test_scan, Output,
# test_scan_out[18]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU
# Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_18_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[18]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[18]- (GPIO bank 0) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= sp
# i1, Output, spi1_so- (MISO signal) 5= ttc2, Input, ttc2_clk_in- (TTC Clo
# ck) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_18_L3_SEL 6
# Configures MIO Pin 18 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180048, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180048 0x000000FE 0x000000C0
# Register : MIO_PIN_19 @ 0XFF18004C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_19_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[3]- (
# NAND Data Bus) 1= nand, Output, nfc_dq_out[3]- (NAND Data Bus)
# PSU_IOU_SLCR_MIO_PIN_19_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[6]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[6]- (8-bit Data bus) 2= t
# est_scan, Input, test_scan_in[19]- (Test Scan Port) = test_scan, Output,
# test_scan_out[19]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU
# Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_19_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[19]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[19]- (GPIO bank 0) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI
# Master Selects) 5= ttc2, Output, ttc2_wave_out- (TTC Waveform Clock) 6=
# ua0, Output, ua0_txd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_19_L3_SEL 6
# Configures MIO Pin 19 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18004C, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF18004C 0x000000FE 0x000000C0
# Register : MIO_PIN_20 @ 0XFF180050</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_20_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[4]- (
# NAND Data Bus) 1= nand, Output, nfc_dq_out[4]- (NAND Data Bus)
# PSU_IOU_SLCR_MIO_PIN_20_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[7]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[7]- (8-bit Data bus) 2= t
# est_scan, Input, test_scan_in[20]- (Test Scan Port) = test_scan, Output,
# test_scan_out[20]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU
# Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_20_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[20]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[20]- (GPIO bank 0) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
# Watch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Mas
# ter Selects) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua
# 1_txd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_20_L3_SEL 6
# Configures MIO Pin 20 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180050, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180050 0x000000FE 0x000000C0
# Register : MIO_PIN_21 @ 0XFF180054</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_21_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[5]- (
# NAND Data Bus) 1= nand, Output, nfc_dq_out[5]- (NAND Data Bus)
# PSU_IOU_SLCR_MIO_PIN_21_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_cmd_in- (Com
# mand Indicator) = sd0, Output, sdio0_cmd_out- (Command Indicator) 2= tes
# t_scan, Input, test_scan_in[21]- (Test Scan Port) = test_scan, Output, t
# est_scan_out[21]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU E
# xt Tamper)
# PSU_IOU_SLCR_MIO_PIN_21_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[21]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[21]- (GPIO bank 0) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master
# Selects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc
# 1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (
# UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_21_L3_SEL 6
# Configures MIO Pin 21 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180054, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180054 0x000000FE 0x000000C0
# Register : MIO_PIN_22 @ 0XFF180058</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_22_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_we_b- (NAN
# D Write Enable)
# PSU_IOU_SLCR_MIO_PIN_22_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_clk_out-
# (SDSDIO clock) 2= test_scan, Input, test_scan_in[22]- (Test Scan Port) =
# test_scan, Output, test_scan_out[22]- (Test Scan Port) 3= csu, Input, c
# su_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_22_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[22]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[22]- (GPIO bank 0) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4=
# spi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (
# TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not U
# sed
# PSU_IOU_SLCR_MIO_PIN_22_L3_SEL 0
# Configures MIO Pin 22 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180058, 0x000000FEU ,0x00000000U) */
mask_write 0XFF180058 0x000000FE 0x00000000
# Register : MIO_PIN_23 @ 0XFF18005C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_23_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[6]- (
# NAND Data Bus) 1= nand, Output, nfc_dq_out[6]- (NAND Data Bus)
# PSU_IOU_SLCR_MIO_PIN_23_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_bus_pow-
# (SD card bus power) 2= test_scan, Input, test_scan_in[23]- (Test Scan Po
# rt) = test_scan, Output, test_scan_out[23]- (Test Scan Port) 3= csu, Inp
# ut, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_23_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[23]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[23]- (GPIO bank 0) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal)
# 4= spi1, Input, spi1_si- (MOSI signal) 5= ttc0, Output, ttc0_wave_out- (
# TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial ou
# tput) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_23_L3_SEL 0
# Configures MIO Pin 23 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18005C, 0x000000FEU ,0x00000000U) */
mask_write 0XFF18005C 0x000000FE 0x00000000
# Register : MIO_PIN_24 @ 0XFF180060</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_24_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[7]- (
# NAND Data Bus) 1= nand, Output, nfc_dq_out[7]- (NAND Data Bus)
# PSU_IOU_SLCR_MIO_PIN_24_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_cd_n- (SD
# card detect from connector) 2= test_scan, Input, test_scan_in[24]- (Test
# Scan Port) = test_scan, Output, test_scan_out[24]- (Test Scan Port) 3=
# csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_24_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[24]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[24]- (GPIO bank 0) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
# Watch Dog Timer Input clock) 4= Not Used 5= ttc3, Input, ttc3_clk_in- (T
# TC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= N
# ot Used
# PSU_IOU_SLCR_MIO_PIN_24_L3_SEL 1
# Configures MIO Pin 24 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180060, 0x000000FEU ,0x00000020U) */
mask_write 0XFF180060 0x000000FE 0x00000020
# Register : MIO_PIN_25 @ 0XFF180064</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_25_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_re_n- (NAN
# D Read Enable)
# PSU_IOU_SLCR_MIO_PIN_25_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_wp- (SD ca
# rd write protect from connector) 2= test_scan, Input, test_scan_in[25]-
# (Test Scan Port) = test_scan, Output, test_scan_out[25]- (Test Scan Port
# ) 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_25_L2_SEL 0
# Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[25]- (GPIO bank 0) 0=
# gpio0, Output, gpio_0_pin_out[25]- (GPIO bank 0) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
# (Watch Dog Timer Output clock) 4= Not Used 5= ttc3, Output, ttc3_wave_ou
# t- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial in
# put) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_25_L3_SEL 1
# Configures MIO Pin 25 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180064, 0x000000FEU ,0x00000020U) */
mask_write 0XFF180064 0x000000FE 0x00000020
# Register : MIO_PIN_26 @ 0XFF180068</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_tx_
# clk- (TX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_26_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ce[1]- (NA
# ND chip enable)
# PSU_IOU_SLCR_MIO_PIN_26_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[0]- (PMU
# GPI) 2= test_scan, Input, test_scan_in[26]- (Test Scan Port) = test_sca
# n, Output, test_scan_out[26]- (Test Scan Port) 3= csu, Input, csu_ext_ta
# mper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_26_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[0]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[0]- (GPIO bank 1) 1= can0, Input, can0_phy_
# rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
# , Output, i2c0_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTAG
# TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_scl
# k_out- (SPI Clock) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Inpu
# t, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[4]- (
# Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_26_L3_SEL 0
# Configures MIO Pin 26 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180068, 0x000000FEU ,0x00000000U) */
mask_write 0XFF180068 0x000000FE 0x00000000
# Register : MIO_PIN_27 @ 0XFF18006C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd
# [0]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_27_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[0]- (N
# AND Ready/Busy)
# PSU_IOU_SLCR_MIO_PIN_27_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[1]- (PMU
# GPI) 2= test_scan, Input, test_scan_in[27]- (Test Scan Port) = test_sca
# n, Output, test_scan_out[27]- (Test Scan Port) 3= dpaux, Input, dp_aux_d
# ata_in- (Dp Aux Data) = dpaux, Output, dp_aux_data_out- (Dp Aux Data)
# PSU_IOU_SLCR_MIO_PIN_27_L2_SEL 3
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[1]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[1]- (GPIO bank 1) 1= can0, Output, can0_phy
# _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
# 0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTAG
# TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc2, O
# utput, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UAR
# T transmitter serial output) 7= trace, Output, tracedq[5]- (Trace Port D
# atabus)
# PSU_IOU_SLCR_MIO_PIN_27_L3_SEL 0
# Configures MIO Pin 27 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18006C, 0x000000FEU ,0x00000018U) */
mask_write 0XFF18006C 0x000000FE 0x00000018
# Register : MIO_PIN_28 @ 0XFF180070</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd
# [1]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_28_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[1]- (N
# AND Ready/Busy)
# PSU_IOU_SLCR_MIO_PIN_28_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[2]- (PMU
# GPI) 2= test_scan, Input, test_scan_in[28]- (Test Scan Port) = test_sca
# n, Output, test_scan_out[28]- (Test Scan Port) 3= dpaux, Input, dp_hot_p
# lug_detect- (Dp Aux Hot Plug)
# PSU_IOU_SLCR_MIO_PIN_28_L2_SEL 3
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[2]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[2]- (GPIO bank 1) 1= can1, Output, can1_phy
# _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
# 1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJTA
# G TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc1,
# Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitt
# er serial output) 7= trace, Output, tracedq[6]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_28_L3_SEL 0
# Configures MIO Pin 28 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180070, 0x000000FEU ,0x00000018U) */
mask_write 0XFF180070 0x000000FE 0x00000018
# Register : MIO_PIN_29 @ 0XFF180074</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd
# [2]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_29_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
# PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_29_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[3]- (PMU
# GPI) 2= test_scan, Input, test_scan_in[29]- (Test Scan Port) = test_sca
# n, Output, test_scan_out[29]- (Test Scan Port) 3= dpaux, Input, dp_aux_d
# ata_in- (Dp Aux Data) = dpaux, Output, dp_aux_data_out- (Dp Aux Data)
# PSU_IOU_SLCR_MIO_PIN_29_L2_SEL 3
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[3]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[3]- (GPIO bank 1) 1= can1, Input, can1_phy_
# rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
# , Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTAG
# TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output,
# spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc1, Output, ttc1_wave_out-
# (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input
# ) 7= trace, Output, tracedq[7]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_29_L3_SEL 0
# Configures MIO Pin 29 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180074, 0x000000FEU ,0x00000018U) */
mask_write 0XFF180074 0x000000FE 0x00000018
# Register : MIO_PIN_30 @ 0XFF180078</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd
# [3]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_30_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
# PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_30_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[4]- (PMU
# GPI) 2= test_scan, Input, test_scan_in[30]- (Test Scan Port) = test_sca
# n, Output, test_scan_out[30]- (Test Scan Port) 3= dpaux, Input, dp_hot_p
# lug_detect- (Dp Aux Hot Plug)
# PSU_IOU_SLCR_MIO_PIN_30_L2_SEL 3
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[4]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[4]- (GPIO bank 1) 1= can0, Input, can0_phy_
# rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
# , Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (Wat
# ch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi0
# , Output, spi0_so- (MISO signal) 5= ttc0, Input, ttc0_clk_in- (TTC Clock
# ) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output,
# tracedq[8]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_30_L3_SEL 0
# Configures MIO Pin 30 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180078, 0x000000FEU ,0x00000018U) */
mask_write 0XFF180078 0x000000FE 0x00000018
# Register : MIO_PIN_31 @ 0XFF18007C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_tx_
# ctl- (TX RGMII control)
# PSU_IOU_SLCR_MIO_PIN_31_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
# PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_31_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[5]- (PMU
# GPI) 2= test_scan, Input, test_scan_in[31]- (Test Scan Port) = test_sca
# n, Output, test_scan_out[31]- (Test Scan Port) 3= csu, Input, csu_ext_ta
# mper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_31_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[5]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[5]- (GPIO bank 1) 1= can0, Output, can0_phy
# _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
# 0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out- (
# Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4=
# spi0, Input, spi0_si- (MOSI signal) 5= ttc0, Output, ttc0_wave_out- (TT
# C Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial outp
# ut) 7= trace, Output, tracedq[9]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_31_L3_SEL 0
# Configures MIO Pin 31 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18007C, 0x000000FEU ,0x00000000U) */
mask_write 0XFF18007C 0x000000FE 0x00000000
# Register : MIO_PIN_32 @ 0XFF180080</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rx_c
# lk- (RX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_32_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dqs_in- (NA
# ND Strobe) 1= nand, Output, nfc_dqs_out- (NAND Strobe)
# PSU_IOU_SLCR_MIO_PIN_32_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[0]- (PM
# U GPI) 2= test_scan, Input, test_scan_in[32]- (Test Scan Port) = test_sc
# an, Output, test_scan_out[32]- (Test Scan Port) 3= csu, Input, csu_ext_t
# amper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_32_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[6]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[6]- (GPIO bank 1) 1= can1, Output, can1_phy
# _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
# 1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (Wa
# tch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4=
# spi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc3, Input, ttc3_clk_in- (T
# TC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= t
# race, Output, tracedq[10]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_32_L3_SEL 0
# Configures MIO Pin 32 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180080, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180080 0x000000FE 0x00000008
# Register : MIO_PIN_33 @ 0XFF180084</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[
# 0]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_33_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
# PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_33_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[1]- (PM
# U GPI) 2= test_scan, Input, test_scan_in[33]- (Test Scan Port) = test_sc
# an, Output, test_scan_out[33]- (Test Scan Port) 3= csu, Input, csu_ext_t
# amper- (CSU Ext Tamper)
# PSU_IOU_SLCR_MIO_PIN_33_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[7]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[7]- (GPIO bank 1) 1= can1, Input, can1_phy_
# rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
# , Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out- (W
# atch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Mas
# ter Selects) 5= ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1
# , Input, ua1_rxd- (UART receiver serial input) 7= trace, Output, tracedq
# [11]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_33_L3_SEL 0
# Configures MIO Pin 33 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180084, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180084 0x000000FE 0x00000008
# Register : MIO_PIN_34 @ 0XFF180088</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[
# 1]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_34_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
# PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_34_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[2]- (PM
# U GPI) 2= test_scan, Input, test_scan_in[34]- (Test Scan Port) = test_sc
# an, Output, test_scan_out[34]- (Test Scan Port) 3= dpaux, Input, dp_aux_
# data_in- (Dp Aux Data) = dpaux, Output, dp_aux_data_out- (Dp Aux Data)
# PSU_IOU_SLCR_MIO_PIN_34_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[8]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[8]- (GPIO bank 1) 1= can0, Input, can0_phy_
# rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
# , Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (Wat
# ch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master
# Selects) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rx
# d- (UART receiver serial input) 7= trace, Output, tracedq[12]- (Trace Po
# rt Databus)
# PSU_IOU_SLCR_MIO_PIN_34_L3_SEL 0
# Configures MIO Pin 34 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180088, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180088 0x000000FE 0x00000008
# Register : MIO_PIN_35 @ 0XFF18008C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[
# 2]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_35_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
# PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_35_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[3]- (PM
# U GPI) 2= test_scan, Input, test_scan_in[35]- (Test Scan Port) = test_sc
# an, Output, test_scan_out[35]- (Test Scan Port) 3= dpaux, Input, dp_hot_
# plug_detect- (Dp Aux Hot Plug)
# PSU_IOU_SLCR_MIO_PIN_35_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[9]- (GPIO bank 1) 0= g
# pio1, Output, gpio_1_pin_out[9]- (GPIO bank 1) 1= can0, Output, can0_phy
# _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
# 0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out- (
# Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master
# Selects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc2
# , Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (
# UART transmitter serial output) 7= trace, Output, tracedq[13]- (Trace Po
# rt Databus)
# PSU_IOU_SLCR_MIO_PIN_35_L3_SEL 0
# Configures MIO Pin 35 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18008C, 0x000000FEU ,0x00000008U) */
mask_write 0XFF18008C 0x000000FE 0x00000008
# Register : MIO_PIN_36 @ 0XFF180090</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[
# 3]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_36_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
# PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_36_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[4]- (PM
# U GPI) 2= test_scan, Input, test_scan_in[36]- (Test Scan Port) = test_sc
# an, Output, test_scan_out[36]- (Test Scan Port) 3= dpaux, Input, dp_aux_
# data_in- (Dp Aux Data) = dpaux, Output, dp_aux_data_out- (Dp Aux Data)
# PSU_IOU_SLCR_MIO_PIN_36_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[10]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[10]- (GPIO bank 1) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
# Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= s
# pi1, Output, spi1_so- (MISO signal) 5= ttc1, Input, ttc1_clk_in- (TTC Cl
# ock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace,
# Output, tracedq[14]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_36_L3_SEL 0
# Configures MIO Pin 36 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180090, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180090 0x000000FE 0x00000008
# Register : MIO_PIN_37 @ 0XFF180094</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rx_c
# tl- (RX RGMII control )
# PSU_IOU_SLCR_MIO_PIN_37_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
# PCIE Reset signal)
# PSU_IOU_SLCR_MIO_PIN_37_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[5]- (PM
# U GPI) 2= test_scan, Input, test_scan_in[37]- (Test Scan Port) = test_sc
# an, Output, test_scan_out[37]- (Test Scan Port) 3= dpaux, Input, dp_hot_
# plug_detect- (Dp Aux Hot Plug)
# PSU_IOU_SLCR_MIO_PIN_37_L2_SEL 1
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[11]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[11]- (GPIO bank 1) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4
# = spi1, Input, spi1_si- (MOSI signal) 5= ttc1, Output, ttc1_wave_out- (T
# TC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
# 7= trace, Output, tracedq[15]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_37_L3_SEL 0
# Configures MIO Pin 37 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180094, 0x000000FEU ,0x00000008U) */
mask_write 0XFF180094 0x000000FE 0x00000008
# Register : MIO_PIN_38 @ 0XFF180098</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_tx_
# clk- (TX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_38_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_38_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_clk_out-
# (SDSDIO clock) 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_38_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[12]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[12]- (GPIO bank 1) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTA
# G TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_s
# clk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, In
# put, ua0_rxd- (UART receiver serial input) 7= trace, Output, trace_clk-
# (Trace Port Clock)
# PSU_IOU_SLCR_MIO_PIN_38_L3_SEL 0
# Configures MIO Pin 38 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180098, 0x000000FEU ,0x00000000U) */
mask_write 0XFF180098 0x000000FE 0x00000000
# Register : MIO_PIN_39 @ 0XFF18009C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd
# [0]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_39_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_39_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_cd_n- (SD
# card detect from connector) 2= sd1, Input, sd1_data_in[4]- (8-bit Data b
# us) = sd1, Output, sdio1_data_out[4]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_39_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[13]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[13]- (GPIO bank 1) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJT
# AG TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc0,
# Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (U
# ART transmitter serial output) 7= trace, Output, trace_ctl- (Trace Port
# Control Signal)
# PSU_IOU_SLCR_MIO_PIN_39_L3_SEL 0
# Configures MIO Pin 39 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18009C, 0x000000FEU ,0x00000010U) */
mask_write 0XFF18009C 0x000000FE 0x00000010
# Register : MIO_PIN_40 @ 0XFF1800A0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd
# [1]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_40_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_40_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_cmd_in- (Com
# mand Indicator) = sd0, Output, sdio0_cmd_out- (Command Indicator) 2= sd1
# , Input, sd1_data_in[5]- (8-bit Data bus) = sd1, Output, sdio1_data_out[
# 5]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_40_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[14]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[14]- (GPIO bank 1) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJ
# TAG TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc3
# , Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmi
# tter serial output) 7= trace, Output, tracedq[0]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_40_L3_SEL 0
# Configures MIO Pin 40 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800A0, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800A0 0x000000FE 0x00000010
# Register : MIO_PIN_41 @ 0XFF1800A4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd
# [2]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_41_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_41_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[0]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[0]- (8-bit Data bus) 2= s
# d1, Input, sd1_data_in[6]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
# t[6]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_41_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[15]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[15]- (GPIO bank 1) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTA
# G TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Outpu
# t, spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc3, Output, ttc3_wave_out
# - (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial inp
# ut) 7= trace, Output, tracedq[1]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_41_L3_SEL 0
# Configures MIO Pin 41 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800A4, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800A4 0x000000FE 0x00000010
# Register : MIO_PIN_42 @ 0XFF1800A8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd
# [3]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_42_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_42_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[1]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[1]- (8-bit Data bus) 2= s
# d1, Input, sd1_data_in[7]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
# t[7]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_42_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[16]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[16]- (GPIO bank 1) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= sp
# i0, Output, spi0_so- (MISO signal) 5= ttc2, Input, ttc2_clk_in- (TTC Clo
# ck) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Outpu
# t, tracedq[2]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_42_L3_SEL 0
# Configures MIO Pin 42 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800A8, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800A8 0x000000FE 0x00000010
# Register : MIO_PIN_43 @ 0XFF1800AC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_tx_
# ctl- (TX RGMII control)
# PSU_IOU_SLCR_MIO_PIN_43_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_43_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[2]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[2]- (8-bit Data bus) 2= s
# d1, Output, sdio1_bus_pow- (SD card bus power) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_43_L2_SEL 0
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[17]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[17]- (GPIO bank 1) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal)
# 4= spi0, Input, spi0_si- (MOSI signal) 5= ttc2, Output, ttc2_wave_out- (
# TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial ou
# tput) 7= trace, Output, tracedq[3]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_43_L3_SEL 0
# Configures MIO Pin 43 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800AC, 0x000000FEU ,0x00000000U) */
mask_write 0XFF1800AC 0x000000FE 0x00000000
# Register : MIO_PIN_44 @ 0XFF1800B0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rx_c
# lk- (RX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_44_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_44_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[3]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[3]- (8-bit Data bus) 2= s
# d1, Input, sdio1_wp- (SD card write protect from connector) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_44_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[18]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[18]- (GPIO bank 1) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
# Watch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4
# = spi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc1, Input, ttc1_clk_in-
# (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7=
# Not Used
# PSU_IOU_SLCR_MIO_PIN_44_L3_SEL 0
# Configures MIO Pin 44 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800B0, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800B0 0x000000FE 0x00000010
# Register : MIO_PIN_45 @ 0XFF1800B4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[
# 0]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_45_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_45_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[4]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[4]- (8-bit Data bus) 2= s
# d1, Input, sdio1_cd_n- (SD card detect from connector) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_45_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[19]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[19]- (GPIO bank 1) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI M
# aster Selects) 5= ttc1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= u
# a1, Input, ua1_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_45_L3_SEL 0
# Configures MIO Pin 45 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800B4, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800B4 0x000000FE 0x00000010
# Register : MIO_PIN_46 @ 0XFF1800B8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[
# 1]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_46_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_46_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[5]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[5]- (8-bit Data bus) 2= s
# d1, Input, sd1_data_in[0]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
# t[0]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_46_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[20]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[20]- (GPIO bank 1) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Mast
# er Selects) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_
# rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_46_L3_SEL 0
# Configures MIO Pin 46 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800B8, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800B8 0x000000FE 0x00000010
# Register : MIO_PIN_47 @ 0XFF1800BC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[
# 2]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_47_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_47_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[6]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[6]- (8-bit Data bus) 2= s
# d1, Input, sd1_data_in[1]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
# t[1]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_47_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[21]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[21]- (GPIO bank 1) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Maste
# r Selects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= tt
# c0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd-
# (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_47_L3_SEL 0
# Configures MIO Pin 47 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800BC, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800BC 0x000000FE 0x00000010
# Register : MIO_PIN_48 @ 0XFF1800C0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[
# 3]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_48_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_48_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[7]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[7]- (8-bit Data bus) 2= s
# d1, Input, sd1_data_in[2]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
# t[2]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_48_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[22]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[22]- (GPIO bank 1) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
# Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= s
# pi1, Output, spi1_so- (MISO signal) 5= ttc3, Input, ttc3_clk_in- (TTC Cl
# ock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= Not Us
# ed
# PSU_IOU_SLCR_MIO_PIN_48_L3_SEL 0
# Configures MIO Pin 48 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800C0, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800C0 0x000000FE 0x00000010
# Register : MIO_PIN_49 @ 0XFF1800C4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rx_c
# tl- (RX RGMII control )
# PSU_IOU_SLCR_MIO_PIN_49_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_49_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_bus_pow-
# (SD card bus power) 2= sd1, Input, sd1_data_in[3]- (8-bit Data bus) = sd
# 1, Output, sdio1_data_out[3]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_49_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[23]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[23]- (GPIO bank 1) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4
# = spi1, Input, spi1_si- (MOSI signal) 5= ttc3, Output, ttc3_wave_out- (T
# TC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
# 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_49_L3_SEL 0
# Configures MIO Pin 49 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800C4, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800C4 0x000000FE 0x00000010
# Register : MIO_PIN_50 @ 0XFF1800C8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem_tsu, Input, gem_tsu_clk-
# (TSU clock)
# PSU_IOU_SLCR_MIO_PIN_50_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_50_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_wp- (SD ca
# rd write protect from connector) 2= sd1, Input, sd1_cmd_in- (Command Ind
# icator) = sd1, Output, sdio1_cmd_out- (Command Indicator) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_50_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[24]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[24]- (GPIO bank 1) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= mdio1, Output, gem1_mdc- (MDIO Clock) 5=
# ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART rece
# iver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_50_L3_SEL 0
# Configures MIO Pin 50 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800C8, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800C8 0x000000FE 0x00000010
# Register : MIO_PIN_51 @ 0XFF1800CC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem_tsu, Input, gem_tsu_clk-
# (TSU clock)
# PSU_IOU_SLCR_MIO_PIN_51_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_51_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= sd1, Output, sdi
# o1_clk_out- (SDSDIO clock) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_51_L2_SEL 2
# Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[25]- (GPIO bank 1) 0=
# gpio1, Output, gpio_1_pin_out[25]- (GPIO bank 1) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= mdio1, Input, gem1_mdio_in- (MDIO Dat
# a) 4= mdio1, Output, gem1_mdio_out- (MDIO Data) 5= ttc2, Output, ttc2_wa
# ve_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter
# serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_51_L3_SEL 0
# Configures MIO Pin 51 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800CC, 0x000000FEU ,0x00000010U) */
mask_write 0XFF1800CC 0x000000FE 0x00000010
# Register : MIO_PIN_52 @ 0XFF1800D0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_tx_
# clk- (TX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_52_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_clk_i
# n- (ULPI Clock)
# PSU_IOU_SLCR_MIO_PIN_52_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_52_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[0]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[0]- (GPIO bank 2) 1= can1, Output, can1_phy
# _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
# 1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTAG
# TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_sc
# lk_out- (SPI Clock) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Out
# put, ua1_txd- (UART transmitter serial output) 7= trace, Output, trace_c
# lk- (Trace Port Clock)
# PSU_IOU_SLCR_MIO_PIN_52_L3_SEL 0
# Configures MIO Pin 52 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800D0, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800D0 0x000000FE 0x00000004
# Register : MIO_PIN_53 @ 0XFF1800D4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd
# [0]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_53_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_dir-
# (Data bus direction control)
# PSU_IOU_SLCR_MIO_PIN_53_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_53_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[1]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[1]- (GPIO bank 2) 1= can1, Input, can1_phy_
# rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
# , Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTAG
# TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc1, Ou
# tput, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART
# receiver serial input) 7= trace, Output, trace_ctl- (Trace Port Control
# Signal)
# PSU_IOU_SLCR_MIO_PIN_53_L3_SEL 0
# Configures MIO Pin 53 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800D4, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800D4 0x000000FE 0x00000004
# Register : MIO_PIN_54 @ 0XFF1800D8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd
# [1]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_54_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
# ta[2]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[2]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_54_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_54_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[2]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[2]- (GPIO bank 2) 1= can0, Input, can0_phy_
# rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
# , Output, i2c0_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJTAG
# TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc0, I
# nput, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver se
# rial input) 7= trace, Output, tracedq[0]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_54_L3_SEL 0
# Configures MIO Pin 54 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800D8, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800D8 0x000000FE 0x00000004
# Register : MIO_PIN_55 @ 0XFF1800DC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd
# [2]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_55_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_nxt-
# (Data flow control signal from the PHY)
# PSU_IOU_SLCR_MIO_PIN_55_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_55_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[3]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[3]- (GPIO bank 2) 1= can0, Output, can0_phy
# _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
# 0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTAG
# TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output
# , spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc0, Output, ttc0_wave_out-
# (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial
# output) 7= trace, Output, tracedq[1]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_55_L3_SEL 0
# Configures MIO Pin 55 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800DC, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800DC 0x000000FE 0x00000004
# Register : MIO_PIN_56 @ 0XFF1800E0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd
# [3]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_56_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
# ta[0]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[0]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_56_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_56_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[4]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[4]- (GPIO bank 2) 1= can1, Output, can1_phy
# _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
# 1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (Wa
# tch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi
# 0, Output, spi0_so- (MISO signal) 5= ttc3, Input, ttc3_clk_in- (TTC Cloc
# k) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, O
# utput, tracedq[2]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_56_L3_SEL 0
# Configures MIO Pin 56 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800E0, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800E0 0x000000FE 0x00000004
# Register : MIO_PIN_57 @ 0XFF1800E4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_tx_
# ctl- (TX RGMII control)
# PSU_IOU_SLCR_MIO_PIN_57_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
# ta[1]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[1]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_57_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_57_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[5]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[5]- (GPIO bank 2) 1= can1, Input, can1_phy_
# rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
# , Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out- (W
# atch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4=
# spi0, Input, spi0_si- (MOSI signal) 5= ttc3, Output, ttc3_wave_out- (TTC
# Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7=
# trace, Output, tracedq[3]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_57_L3_SEL 0
# Configures MIO Pin 57 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800E4, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800E4 0x000000FE 0x00000004
# Register : MIO_PIN_58 @ 0XFF1800E8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rx_c
# lk- (RX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_58_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Output, usb0_ulpi_stp-
# (Asserted to end or interrupt transfers)
# PSU_IOU_SLCR_MIO_PIN_58_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_58_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[6]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[6]- (GPIO bank 2) 1= can0, Input, can0_phy_
# rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
# , Output, i2c0_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTAG
# TCK) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= spi1, Output, spi1_scl
# k_out- (SPI Clock) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Inpu
# t, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[4]- (
# Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_58_L3_SEL 0
# Configures MIO Pin 58 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800E8, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800E8 0x000000FE 0x00000004
# Register : MIO_PIN_59 @ 0XFF1800EC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[
# 0]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_59_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
# ta[3]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[3]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_59_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_59_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[7]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[7]- (GPIO bank 2) 1= can0, Output, can0_phy
# _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
# 0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTAG
# TDI) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Master Selects) 5= ttc2, O
# utput, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UAR
# T transmitter serial output) 7= trace, Output, tracedq[5]- (Trace Port D
# atabus)
# PSU_IOU_SLCR_MIO_PIN_59_L3_SEL 0
# Configures MIO Pin 59 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800EC, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800EC 0x000000FE 0x00000004
# Register : MIO_PIN_60 @ 0XFF1800F0</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[
# 1]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_60_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
# ta[4]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[4]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_60_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_60_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[8]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[8]- (GPIO bank 2) 1= can1, Output, can1_phy
# _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
# 1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJTA
# G TDO) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master Selects) 5= ttc1,
# Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitt
# er serial output) 7= trace, Output, tracedq[6]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_60_L3_SEL 0
# Configures MIO Pin 60 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800F0, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800F0 0x000000FE 0x00000004
# Register : MIO_PIN_61 @ 0XFF1800F4</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[
# 2]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_61_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
# ta[5]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[5]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_61_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_61_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[9]- (GPIO bank 2) 0= g
# pio2, Output, gpio_2_pin_out[9]- (GPIO bank 2) 1= can1, Input, can1_phy_
# rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
# , Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTAG
# TMS) 4= spi1, Input, spi1_n_ss_in- (SPI Master Selects) 4= spi1, Output,
# spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc1, Output, ttc1_wave_out-
# (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input
# ) 7= trace, Output, tracedq[7]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_61_L3_SEL 0
# Configures MIO Pin 61 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800F4, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800F4 0x000000FE 0x00000004
# Register : MIO_PIN_62 @ 0XFF1800F8</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[
# 3]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_62_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
# ta[6]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[6]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_62_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_62_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[10]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[10]- (GPIO bank 2) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= sp
# i1, Output, spi1_so- (MISO signal) 5= ttc0, Input, ttc0_clk_in- (TTC Clo
# ck) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Outpu
# t, tracedq[8]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_62_L3_SEL 0
# Configures MIO Pin 62 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800F8, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800F8 0x000000FE 0x00000004
# Register : MIO_PIN_63 @ 0XFF1800FC</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rx_c
# tl- (RX RGMII control )
# PSU_IOU_SLCR_MIO_PIN_63_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
# ta[7]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[7]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_63_L1_SEL 1
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
# Used
# PSU_IOU_SLCR_MIO_PIN_63_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[11]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[11]- (GPIO bank 2) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal)
# 4= spi1, Input, spi1_si- (MOSI signal) 5= ttc0, Output, ttc0_wave_out- (
# TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial ou
# tput) 7= trace, Output, tracedq[9]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_63_L3_SEL 0
# Configures MIO Pin 63 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF1800FC, 0x000000FEU ,0x00000004U) */
mask_write 0XFF1800FC 0x000000FE 0x00000004
# Register : MIO_PIN_64 @ 0XFF180100</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_tx_
# clk- (TX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_64_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_clk_i
# n- (ULPI Clock)
# PSU_IOU_SLCR_MIO_PIN_64_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_clk_out-
# (SDSDIO clock) 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_64_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[12]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[12]- (GPIO bank 2) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
# Watch Dog Timer Input clock) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4
# = spi0, Output, spi0_sclk_out- (SPI Clock) 5= ttc3, Input, ttc3_clk_in-
# (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7=
# trace, Output, tracedq[10]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_64_L3_SEL 0
# Configures MIO Pin 64 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180100, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180100 0x000000FE 0x00000002
# Register : MIO_PIN_65 @ 0XFF180104</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd
# [0]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_65_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_dir-
# (Data bus direction control)
# PSU_IOU_SLCR_MIO_PIN_65_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_cd_n- (SD
# card detect from connector) 2= Not Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_65_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[13]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[13]- (GPIO bank 2) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
# (Watch Dog Timer Output clock) 4= spi0, Output, spi0_n_ss_out[2]- (SPI M
# aster Selects) 5= ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= u
# a1, Input, ua1_rxd- (UART receiver serial input) 7= trace, Output, trace
# dq[11]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_65_L3_SEL 0
# Configures MIO Pin 65 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180104, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180104 0x000000FE 0x00000002
# Register : MIO_PIN_66 @ 0XFF180108</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd
# [1]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_66_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
# ta[2]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[2]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_66_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_cmd_in- (Com
# mand Indicator) = sd0, Output, sdio0_cmd_out- (Command Indicator) 2= Not
# Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_66_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[14]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[14]- (GPIO bank 2) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Mast
# er Selects) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_
# rxd- (UART receiver serial input) 7= trace, Output, tracedq[12]- (Trace
# Port Databus)
# PSU_IOU_SLCR_MIO_PIN_66_L3_SEL 0
# Configures MIO Pin 66 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180108, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180108 0x000000FE 0x00000002
# Register : MIO_PIN_67 @ 0XFF18010C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd
# [2]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_67_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_nxt-
# (Data flow control signal from the PHY)
# PSU_IOU_SLCR_MIO_PIN_67_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[0]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[0]- (8-bit Data bus) 2= N
# ot Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_67_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[15]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[15]- (GPIO bank 2) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= spi0, Input, spi0_n_ss_in- (SPI Maste
# r Selects) 4= spi0, Output, spi0_n_ss_out[0]- (SPI Master Selects) 5= tt
# c2, Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd-
# (UART transmitter serial output) 7= trace, Output, tracedq[13]- (Trace
# Port Databus)
# PSU_IOU_SLCR_MIO_PIN_67_L3_SEL 0
# Configures MIO Pin 67 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18010C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18010C 0x000000FE 0x00000002
# Register : MIO_PIN_68 @ 0XFF180110</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd
# [3]- (TX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_68_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
# ta[0]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[0]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_68_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[1]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[1]- (8-bit Data bus) 2= N
# ot Used 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_68_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[16]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[16]- (GPIO bank 2) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
# Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= s
# pi0, Output, spi0_so- (MISO signal) 5= ttc1, Input, ttc1_clk_in- (TTC Cl
# ock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace,
# Output, tracedq[14]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_68_L3_SEL 0
# Configures MIO Pin 68 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180110, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180110 0x000000FE 0x00000002
# Register : MIO_PIN_69 @ 0XFF180114</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_tx_
# ctl- (TX RGMII control)
# PSU_IOU_SLCR_MIO_PIN_69_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
# ta[1]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[1]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_69_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[2]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[2]- (8-bit Data bus) 2= s
# d1, Input, sdio1_wp- (SD card write protect from connector) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_69_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[17]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[17]- (GPIO bank 2) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
# (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4
# = spi0, Input, spi0_si- (MOSI signal) 5= ttc1, Output, ttc1_wave_out- (T
# TC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
# 7= trace, Output, tracedq[15]- (Trace Port Databus)
# PSU_IOU_SLCR_MIO_PIN_69_L3_SEL 0
# Configures MIO Pin 69 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180114, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180114 0x000000FE 0x00000002
# Register : MIO_PIN_70 @ 0XFF180118</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rx_c
# lk- (RX RGMII clock)
# PSU_IOU_SLCR_MIO_PIN_70_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Output, usb1_ulpi_stp-
# (Asserted to end or interrupt transfers)
# PSU_IOU_SLCR_MIO_PIN_70_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[3]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[3]- (8-bit Data bus) 2= s
# d1, Output, sdio1_bus_pow- (SD card bus power) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_70_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[18]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[18]- (GPIO bank 2) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4=
# spi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (
# TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not U
# sed
# PSU_IOU_SLCR_MIO_PIN_70_L3_SEL 0
# Configures MIO Pin 70 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180118, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180118 0x000000FE 0x00000002
# Register : MIO_PIN_71 @ 0XFF18011C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[
# 0]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_71_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
# ta[3]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[3]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_71_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[4]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[4]- (8-bit Data bus) 2= s
# d1, Input, sd1_data_in[0]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
# t[0]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_71_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[19]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[19]- (GPIO bank 2) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI
# Master Selects) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6=
# ua0, Output, ua0_txd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_71_L3_SEL 0
# Configures MIO Pin 71 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18011C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18011C 0x000000FE 0x00000002
# Register : MIO_PIN_72 @ 0XFF180120</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[
# 1]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_72_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
# ta[4]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[4]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_72_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[5]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[5]- (8-bit Data bus) 2= s
# d1, Input, sd1_data_in[1]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
# t[1]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_72_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[20]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[20]- (GPIO bank 2) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
# Watch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Mas
# ter Selects) 5= Not Used 6= ua1, Output, ua1_txd- (UART transmitter seri
# al output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_72_L3_SEL 0
# Configures MIO Pin 72 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180120, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180120 0x000000FE 0x00000002
# Register : MIO_PIN_73 @ 0XFF180124</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[
# 2]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_73_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
# ta[5]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[5]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_73_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[6]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[6]- (8-bit Data bus) 2= s
# d1, Input, sd1_data_in[2]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
# t[2]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_73_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[21]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[21]- (GPIO bank 2) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master
# Selects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= Not
# Used 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_73_L3_SEL 0
# Configures MIO Pin 73 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180124, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180124 0x000000FE 0x00000002
# Register : MIO_PIN_74 @ 0XFF180128</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[
# 3]- (RX RGMII data)
# PSU_IOU_SLCR_MIO_PIN_74_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
# ta[6]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[6]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_74_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[7]-
# (8-bit Data bus) = sd0, Output, sdio0_data_out[7]- (8-bit Data bus) 2= s
# d1, Input, sd1_data_in[3]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
# t[3]- (8-bit Data bus) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_74_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[22]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[22]- (GPIO bank 2) 1= can0, Input, can0_ph
# y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
# c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
# atch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= sp
# i1, Output, spi1_so- (MISO signal) 5= Not Used 6= ua0, Input, ua0_rxd- (
# UART receiver serial input) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_74_L3_SEL 0
# Configures MIO Pin 74 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180128, 0x000000FEU ,0x00000002U) */
mask_write 0XFF180128 0x000000FE 0x00000002
# Register : MIO_PIN_75 @ 0XFF18012C</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rx_c
# tl- (RX RGMII control )
# PSU_IOU_SLCR_MIO_PIN_75_L0_SEL 1
# Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
# ta[7]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[7]- (ULPI data
# bus)
# PSU_IOU_SLCR_MIO_PIN_75_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_bus_pow-
# (SD card bus power) 2= sd1, Input, sd1_cmd_in- (Command Indicator) = sd1
# , Output, sdio1_cmd_out- (Command Indicator) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_75_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[23]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[23]- (GPIO bank 2) 1= can0, Output, can0_p
# hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
# 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
# (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal)
# 4= spi1, Input, spi1_si- (MOSI signal) 5= Not Used 6= ua0, Output, ua0_t
# xd- (UART transmitter serial output) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_75_L3_SEL 0
# Configures MIO Pin 75 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF18012C, 0x000000FEU ,0x00000002U) */
mask_write 0XFF18012C 0x000000FE 0x00000002
# Register : MIO_PIN_76 @ 0XFF180130</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_76_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_76_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_wp- (SD ca
# rd write protect from connector) 2= sd1, Output, sdio1_clk_out- (SDSDIO
# clock) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_76_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[24]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[24]- (GPIO bank 2) 1= can1, Output, can1_p
# hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
# 2c1, Output, i2c1_scl_out- (SCL signal) 3= mdio0, Output, gem0_mdc- (MDI
# O Clock) 4= mdio1, Output, gem1_mdc- (MDIO Clock) 5= mdio2, Output, gem2
# _mdc- (MDIO Clock) 6= mdio3, Output, gem3_mdc- (MDIO Clock) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_76_L3_SEL 6
# Configures MIO Pin 76 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180130, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180130 0x000000FE 0x000000C0
# Register : MIO_PIN_77 @ 0XFF180134</p>
# Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_77_L0_SEL 0
# Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
# PSU_IOU_SLCR_MIO_PIN_77_L1_SEL 0
# Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= sd1, Input, sdio
# 1_cd_n- (SD card detect from connector) 3= Not Used
# PSU_IOU_SLCR_MIO_PIN_77_L2_SEL 0
# Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[25]- (GPIO bank 2) 0=
# gpio2, Output, gpio_2_pin_out[25]- (GPIO bank 2) 1= can1, Input, can1_ph
# y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
# c1, Output, i2c1_sda_out- (SDA signal) 3= mdio0, Input, gem0_mdio_in- (M
# DIO Data) 3= mdio0, Output, gem0_mdio_out- (MDIO Data) 4= mdio1, Input,
# gem1_mdio_in- (MDIO Data) 4= mdio1, Output, gem1_mdio_out- (MDIO Data) 5
# = mdio2, Input, gem2_mdio_in- (MDIO Data) 5= mdio2, Output, gem2_mdio_ou
# t- (MDIO Data) 6= mdio3, Input, gem3_mdio_in- (MDIO Data) 6= mdio3, Outp
# ut, gem3_mdio_out- (MDIO Data) 7= Not Used
# PSU_IOU_SLCR_MIO_PIN_77_L3_SEL 6
# Configures MIO Pin 77 peripheral interface mapping
#(OFFSET, MASK, VALUE) (0XFF180134, 0x000000FEU ,0x000000C0U) */
mask_write 0XFF180134 0x000000FE 0x000000C0
# Register : MIO_MST_TRI0 @ 0XFF180204</p>
# Master Tri-state Enable for pin 0, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_00_TRI 0
# Master Tri-state Enable for pin 1, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_01_TRI 0
# Master Tri-state Enable for pin 2, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_02_TRI 0
# Master Tri-state Enable for pin 3, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_03_TRI 0
# Master Tri-state Enable for pin 4, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_04_TRI 0
# Master Tri-state Enable for pin 5, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_05_TRI 0
# Master Tri-state Enable for pin 6, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_06_TRI 0
# Master Tri-state Enable for pin 7, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_07_TRI 0
# Master Tri-state Enable for pin 8, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_08_TRI 0
# Master Tri-state Enable for pin 9, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_09_TRI 0
# Master Tri-state Enable for pin 10, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_10_TRI 0
# Master Tri-state Enable for pin 11, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_11_TRI 0
# Master Tri-state Enable for pin 12, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_12_TRI 0
# Master Tri-state Enable for pin 13, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_13_TRI 0
# Master Tri-state Enable for pin 14, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_14_TRI 0
# Master Tri-state Enable for pin 15, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_15_TRI 0
# Master Tri-state Enable for pin 16, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_16_TRI 0
# Master Tri-state Enable for pin 17, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_17_TRI 0
# Master Tri-state Enable for pin 18, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_18_TRI 1
# Master Tri-state Enable for pin 19, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_19_TRI 0
# Master Tri-state Enable for pin 20, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_20_TRI 0
# Master Tri-state Enable for pin 21, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_21_TRI 1
# Master Tri-state Enable for pin 22, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_22_TRI 0
# Master Tri-state Enable for pin 23, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_23_TRI 0
# Master Tri-state Enable for pin 24, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_24_TRI 0
# Master Tri-state Enable for pin 25, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_25_TRI 1
# Master Tri-state Enable for pin 26, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_26_TRI 0
# Master Tri-state Enable for pin 27, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_27_TRI 0
# Master Tri-state Enable for pin 28, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_28_TRI 1
# Master Tri-state Enable for pin 29, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_29_TRI 0
# Master Tri-state Enable for pin 30, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_30_TRI 1
# Master Tri-state Enable for pin 31, active high
# PSU_IOU_SLCR_MIO_MST_TRI0_PIN_31_TRI 0
# MIO pin Tri-state Enables, 31:0
#(OFFSET, MASK, VALUE) (0XFF180204, 0xFFFFFFFFU ,0x52240000U) */
mask_write 0XFF180204 0xFFFFFFFF 0x52240000
# Register : MIO_MST_TRI1 @ 0XFF180208</p>
# Master Tri-state Enable for pin 32, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_32_TRI 0
# Master Tri-state Enable for pin 33, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_33_TRI 0
# Master Tri-state Enable for pin 34, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_34_TRI 0
# Master Tri-state Enable for pin 35, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_35_TRI 0
# Master Tri-state Enable for pin 36, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_36_TRI 0
# Master Tri-state Enable for pin 37, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_37_TRI 0
# Master Tri-state Enable for pin 38, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_38_TRI 0
# Master Tri-state Enable for pin 39, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_39_TRI 0
# Master Tri-state Enable for pin 40, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_40_TRI 0
# Master Tri-state Enable for pin 41, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_41_TRI 0
# Master Tri-state Enable for pin 42, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_42_TRI 0
# Master Tri-state Enable for pin 43, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_43_TRI 0
# Master Tri-state Enable for pin 44, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_44_TRI 1
# Master Tri-state Enable for pin 45, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_45_TRI 1
# Master Tri-state Enable for pin 46, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_46_TRI 0
# Master Tri-state Enable for pin 47, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_47_TRI 0
# Master Tri-state Enable for pin 48, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_48_TRI 0
# Master Tri-state Enable for pin 49, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_49_TRI 0
# Master Tri-state Enable for pin 50, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_50_TRI 0
# Master Tri-state Enable for pin 51, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_51_TRI 0
# Master Tri-state Enable for pin 52, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_52_TRI 1
# Master Tri-state Enable for pin 53, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_53_TRI 1
# Master Tri-state Enable for pin 54, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_54_TRI 0
# Master Tri-state Enable for pin 55, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_55_TRI 1
# Master Tri-state Enable for pin 56, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_56_TRI 0
# Master Tri-state Enable for pin 57, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_57_TRI 0
# Master Tri-state Enable for pin 58, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_58_TRI 0
# Master Tri-state Enable for pin 59, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_59_TRI 0
# Master Tri-state Enable for pin 60, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_60_TRI 0
# Master Tri-state Enable for pin 61, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_61_TRI 0
# Master Tri-state Enable for pin 62, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_62_TRI 0
# Master Tri-state Enable for pin 63, active high
# PSU_IOU_SLCR_MIO_MST_TRI1_PIN_63_TRI 0
# MIO pin Tri-state Enables, 63:32
#(OFFSET, MASK, VALUE) (0XFF180208, 0xFFFFFFFFU ,0x00B03000U) */
mask_write 0XFF180208 0xFFFFFFFF 0x00B03000
# Register : MIO_MST_TRI2 @ 0XFF18020C</p>
# Master Tri-state Enable for pin 64, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_64_TRI 0
# Master Tri-state Enable for pin 65, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_65_TRI 0
# Master Tri-state Enable for pin 66, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_66_TRI 0
# Master Tri-state Enable for pin 67, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_67_TRI 0
# Master Tri-state Enable for pin 68, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_68_TRI 0
# Master Tri-state Enable for pin 69, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_69_TRI 0
# Master Tri-state Enable for pin 70, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_70_TRI 1
# Master Tri-state Enable for pin 71, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_71_TRI 1
# Master Tri-state Enable for pin 72, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_72_TRI 1
# Master Tri-state Enable for pin 73, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_73_TRI 1
# Master Tri-state Enable for pin 74, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_74_TRI 1
# Master Tri-state Enable for pin 75, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_75_TRI 1
# Master Tri-state Enable for pin 76, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_76_TRI 0
# Master Tri-state Enable for pin 77, active high
# PSU_IOU_SLCR_MIO_MST_TRI2_PIN_77_TRI 0
# MIO pin Tri-state Enables, 77:64
#(OFFSET, MASK, VALUE) (0XFF18020C, 0x00003FFFU ,0x00000FC0U) */
mask_write 0XFF18020C 0x00003FFF 0x00000FC0
# Register : bank0_ctrl0 @ 0XFF180138</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_25 1
# Drive0 control to MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF180138, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180138 0x03FFFFFF 0x03FFFFFF
# Register : bank0_ctrl1 @ 0XFF18013C</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_25 1
# Drive1 control to MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF18013C, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF18013C 0x03FFFFFF 0x03FFFFFF
# Register : bank0_ctrl3 @ 0XFF180140</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_25 0
# Selects either Schmitt or CMOS input for MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF180140, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF180140 0x03FFFFFF 0x00000000
# Register : bank0_ctrl4 @ 0XFF180144</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_25 1
# When mio_bank0_pull_enable is set, this selects pull up or pull down for
# MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF180144, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180144 0x03FFFFFF 0x03FFFFFF
# Register : bank0_ctrl5 @ 0XFF180148</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_25 1
# When set, this enables mio_bank0_pullupdown to selects pull up or pull d
# own for MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF180148, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180148 0x03FFFFFF 0x03FFFFFF
# Register : bank0_ctrl6 @ 0XFF18014C</p>
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[0].
# PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_25 0
# Slew rate control to MIO Bank 0 - control MIO[25:0]
#(OFFSET, MASK, VALUE) (0XFF18014C, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF18014C 0x03FFFFFF 0x00000000
# Register : bank1_ctrl0 @ 0XFF180154</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_25 1
# Drive0 control to MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180154, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180154 0x03FFFFFF 0x03FFFFFF
# Register : bank1_ctrl1 @ 0XFF180158</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_25 1
# Drive1 control to MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180158, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180158 0x03FFFFFF 0x03FFFFFF
# Register : bank1_ctrl3 @ 0XFF18015C</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_25 0
# Selects either Schmitt or CMOS input for MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF18015C, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF18015C 0x03FFFFFF 0x00000000
# Register : bank1_ctrl4 @ 0XFF180160</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_25 1
# When mio_bank1_pull_enable is set, this selects pull up or pull down for
# MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180160, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180160 0x03FFFFFF 0x03FFFFFF
# Register : bank1_ctrl5 @ 0XFF180164</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_25 1
# When set, this enables mio_bank1_pullupdown to selects pull up or pull d
# own for MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180164, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180164 0x03FFFFFF 0x03FFFFFF
# Register : bank1_ctrl6 @ 0XFF180168</p>
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[26].
# PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_25 0
# Slew rate control to MIO Bank 1 - control MIO[51:26]
#(OFFSET, MASK, VALUE) (0XFF180168, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF180168 0x03FFFFFF 0x00000000
# Register : bank2_ctrl0 @ 0XFF180170</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_25 1
# Drive0 control to MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180170, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180170 0x03FFFFFF 0x03FFFFFF
# Register : bank2_ctrl1 @ 0XFF180174</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_25 1
# Drive1 control to MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180174, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180174 0x03FFFFFF 0x03FFFFFF
# Register : bank2_ctrl3 @ 0XFF180178</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_25 0
# Selects either Schmitt or CMOS input for MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180178, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF180178 0x03FFFFFF 0x00000000
# Register : bank2_ctrl4 @ 0XFF18017C</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_25 1
# When mio_bank2_pull_enable is set, this selects pull up or pull down for
# MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF18017C, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF18017C 0x03FFFFFF 0x03FFFFFF
# Register : bank2_ctrl5 @ 0XFF180180</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_0 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_1 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_2 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_3 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_4 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_5 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_6 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_7 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_8 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_9 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_10 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_11 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_12 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_13 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_14 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_15 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_16 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_17 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_18 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_19 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_20 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_21 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_22 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_23 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_24 1
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_25 1
# When set, this enables mio_bank2_pullupdown to selects pull up or pull d
# own for MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180180, 0x03FFFFFFU ,0x03FFFFFFU) */
mask_write 0XFF180180 0x03FFFFFF 0x03FFFFFF
# Register : bank2_ctrl6 @ 0XFF180184</p>
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_0 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_1 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_2 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_3 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_4 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_5 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_6 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_7 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_8 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_9 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_10 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_11 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_12 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_13 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_14 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_15 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_16 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_17 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_18 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_19 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_20 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_21 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_22 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_23 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_24 0
# Each bit applies to a single IO. Bit 0 for MIO[52].
# PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_25 0
# Slew rate control to MIO Bank 2 - control MIO[77:52]
#(OFFSET, MASK, VALUE) (0XFF180184, 0x03FFFFFFU ,0x00000000U) */
mask_write 0XFF180184 0x03FFFFFF 0x00000000
# : LOOPBACK
# Register : MIO_LOOPBACK @ 0XFF180200</p>
# I2C Loopback Control. 0 = Connect I2C inputs according to MIO mapping. 1
# = Loop I2C 0 outputs to I2C 1 inputs, and I2C 1 outputs to I2C 0 inputs
# .
# PSU_IOU_SLCR_MIO_LOOPBACK_I2C0_LOOP_I2C1 0
# CAN Loopback Control. 0 = Connect CAN inputs according to MIO mapping. 1
# = Loop CAN 0 Tx to CAN 1 Rx, and CAN 1 Tx to CAN 0 Rx.
# PSU_IOU_SLCR_MIO_LOOPBACK_CAN0_LOOP_CAN1 0
# UART Loopback Control. 0 = Connect UART inputs according to MIO mapping.
# 1 = Loop UART 0 outputs to UART 1 inputs, and UART 1 outputs to UART 0
# inputs. RXD/TXD cross-connected. RTS/CTS cross-connected. DSR, DTR, DCD
# and RI not used.
# PSU_IOU_SLCR_MIO_LOOPBACK_UA0_LOOP_UA1 0
# SPI Loopback Control. 0 = Connect SPI inputs according to MIO mapping. 1
# = Loop SPI 0 outputs to SPI 1 inputs, and SPI 1 outputs to SPI 0 inputs
# . The other SPI core will appear on the LS Slave Select.
# PSU_IOU_SLCR_MIO_LOOPBACK_SPI0_LOOP_SPI1 0
# Loopback function within MIO
#(OFFSET, MASK, VALUE) (0XFF180200, 0x0000000FU ,0x00000000U) */
mask_write 0XFF180200 0x0000000F 0x00000000
}
set psu_peripherals_init_data {
# : COHERENCY
# : FPD RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# PCIE config reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CFG_RESET 0
# PCIE control block level reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CTRL_RESET 0
# PCIE bridge block level reset (AXI interface)
# PSU_CRF_APB_RST_FPD_TOP_PCIE_BRIDGE_RESET 0
# Display Port block level reset (includes DPDMA)
# PSU_CRF_APB_RST_FPD_TOP_DP_RESET 0
# FPD WDT reset
# PSU_CRF_APB_RST_FPD_TOP_SWDT_RESET 0
# GDMA block level reset
# PSU_CRF_APB_RST_FPD_TOP_GDMA_RESET 0
# Pixel Processor (submodule of GPU) block level reset
# PSU_CRF_APB_RST_FPD_TOP_GPU_PP0_RESET 0
# Pixel Processor (submodule of GPU) block level reset
# PSU_CRF_APB_RST_FPD_TOP_GPU_PP1_RESET 0
# GPU block level reset
# PSU_CRF_APB_RST_FPD_TOP_GPU_RESET 0
# GT block level reset
# PSU_CRF_APB_RST_FPD_TOP_GT_RESET 0
# Sata block level reset
# PSU_CRF_APB_RST_FPD_TOP_SATA_RESET 0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x000F807EU ,0x00000000U) */
mask_write 0XFD1A0100 0x000F807E 0x00000000
# : RESET BLOCKS
# : TIMESTAMP
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TIMESTAMP_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_IOU_CC_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_ADMA_RESET 0
# Software control register for the IOU block. Each bit will cause a singl
# erperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x001A0000U ,0x00000000U) */
mask_write 0XFF5E0238 0x001A0000 0x00000000
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# Reset entire full power domain.
# PSU_CRL_APB_RST_LPD_TOP_FPD_RESET 0
# LPD SWDT
# PSU_CRL_APB_RST_LPD_TOP_LPD_SWDT_RESET 0
# Sysmonitor reset
# PSU_CRL_APB_RST_LPD_TOP_SYSMON_RESET 0
# Real Time Clock reset
# PSU_CRL_APB_RST_LPD_TOP_RTC_RESET 0
# APM reset
# PSU_CRL_APB_RST_LPD_TOP_APM_RESET 0
# IPI reset
# PSU_CRL_APB_RST_LPD_TOP_IPI_RESET 0
# reset entire RPU power island
# PSU_CRL_APB_RST_LPD_TOP_RPU_PGE_RESET 0
# reset ocm
# PSU_CRL_APB_RST_LPD_TOP_OCM_RESET 0
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x0093C018U ,0x00000000U) */
mask_write 0XFF5E023C 0x0093C018 0x00000000
# : ENET
# Register : RST_LPD_IOU0 @ 0XFF5E0230</p>
# GEM 3 reset
# PSU_CRL_APB_RST_LPD_IOU0_GEM3_RESET 0
# Software controlled reset for the GEMs
#(OFFSET, MASK, VALUE) (0XFF5E0230, 0x00000008U ,0x00000000U) */
mask_write 0XFF5E0230 0x00000008 0x00000000
# : QSPI
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_QSPI_RESET 0
# Software control register for the IOU block. Each bit will cause a singl
# erperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000001U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000001 0x00000000
# : QSPI TAP DELAY
# Register : IOU_TAPDLY_BYPASS @ 0XFF180390</p>
# 0: Do not by pass the tap delays on the Rx clock signal of LQSPI 1: Bypa
# ss the Tap delay on the Rx clock signal of LQSPI
# PSU_IOU_SLCR_IOU_TAPDLY_BYPASS_LQSPI_RX 1
# IOU tap delay bypass for the LQSPI and NAND controllers
#(OFFSET, MASK, VALUE) (0XFF180390, 0x00000004U ,0x00000004U) */
mask_write 0XFF180390 0x00000004 0x00000004
# : NAND
# : USB
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# USB 0 reset for control registers
# PSU_CRL_APB_RST_LPD_TOP_USB0_APB_RESET 0
# USB 0 sleep circuit reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_HIBERRESET 0
# USB 0 reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_CORERESET 0
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000540U ,0x00000000U) */
mask_write 0XFF5E023C 0x00000540 0x00000000
# : USB0 PIPE POWER PRESENT
# Register : fpd_power_prsnt @ 0XFF9D0080</p>
# This bit is used to choose between PIPE power present and 1'b1
# PSU_USB3_0_FPD_POWER_PRSNT_OPTION 0X1
# fpd_power_prsnt
#(OFFSET, MASK, VALUE) (0XFF9D0080, 0x00000001U ,0x00000001U) */
mask_write 0XFF9D0080 0x00000001 0x00000001
# Register : fpd_pipe_clk @ 0XFF9D007C</p>
# This bit is used to choose between PIPE clock coming from SerDes and the
# suspend clk
# PSU_USB3_0_FPD_PIPE_CLK_OPTION 0x0
# fpd_pipe_clk
#(OFFSET, MASK, VALUE) (0XFF9D007C, 0x00000001U ,0x00000000U) */
mask_write 0XFF9D007C 0x00000001 0x00000000
# : SD
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_SDIO1_RESET 0
# Software control register for the IOU block. Each bit will cause a singl
# erperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000040U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000040 0x00000000
# Register : CTRL_REG_SD @ 0XFF180310</p>
# SD or eMMC selection on SDIO1 0: SD enabled 1: eMMC enabled
# PSU_IOU_SLCR_CTRL_REG_SD_SD1_EMMC_SEL 0
# SD eMMC selection
#(OFFSET, MASK, VALUE) (0XFF180310, 0x00008000U ,0x00000000U) */
mask_write 0XFF180310 0x00008000 0x00000000
# Register : SD_CONFIG_REG2 @ 0XFF180320</p>
# Should be set based on the final product usage 00 - Removable SCard Slot
# 01 - Embedded Slot for One Device 10 - Shared Bus Slot 11 - Reserved
# PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_SLOTTYPE 0
# 1.8V Support 1: 1.8V supported 0: 1.8V not supported support
# PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_1P8V 1
# 3.0V Support 1: 3.0V supported 0: 3.0V not supported support
# PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_3P0V 0
# 3.3V Support 1: 3.3V supported 0: 3.3V not supported support
# PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_3P3V 1
# SD Config Register 2
#(OFFSET, MASK, VALUE) (0XFF180320, 0x33800000U ,0x02800000U) */
mask_write 0XFF180320 0x33800000 0x02800000
# : SD1 BASE CLOCK
# Register : SD_CONFIG_REG1 @ 0XFF18031C</p>
# Base Clock Frequency for SD Clock. This is the frequency of the xin_clk.
# PSU_IOU_SLCR_SD_CONFIG_REG1_SD1_BASECLK 0xc8
# Configures the Number of Taps (Phases) of the rxclk_in that is supported
# .
# PSU_IOU_SLCR_SD_CONFIG_REG1_SD1_TUNIGCOUNT 0x28
# SD Config Register 1
#(OFFSET, MASK, VALUE) (0XFF18031C, 0x7FFE0000U ,0x64500000U) */
mask_write 0XFF18031C 0x7FFE0000 0x64500000
# Register : SD_DLL_CTRL @ 0XFF180358</p>
# Reserved.
# PSU_IOU_SLCR_SD_DLL_CTRL_RESERVED 1
# SDIO status register
#(OFFSET, MASK, VALUE) (0XFF180358, 0x00000008U ,0x00000008U) */
mask_write 0XFF180358 0x00000008 0x00000008
# : SD1 RETUNER
# Register : SD_CONFIG_REG3 @ 0XFF180324</p>
# This is the Timer Count for Re-Tuning Timer for Re-Tuning Mode 1 to 3. S
# etting to 4'b0 disables Re-Tuning Timer. 0h - Get information via other
# source 1h = 1 seconds 2h = 2 seconds 3h = 4 seconds 4h = 8 seconds -- n
# = 2(n-1) seconds -- Bh = 1024 seconds Fh - Ch = Reserved
# PSU_IOU_SLCR_SD_CONFIG_REG3_SD1_RETUNETMR 0X0
# SD Config Register 3
#(OFFSET, MASK, VALUE) (0XFF180324, 0x03C00000U ,0x00000000U) */
mask_write 0XFF180324 0x03C00000 0x00000000
# : CAN
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_CAN1_RESET 0
# Software control register for the IOU block. Each bit will cause a singl
# erperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000100U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000100 0x00000000
# : I2C
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_I2C0_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_I2C1_RESET 0
# Software control register for the IOU block. Each bit will cause a singl
# erperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000600U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000600 0x00000000
# : SWDT
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_SWDT_RESET 0
# Software control register for the IOU block. Each bit will cause a singl
# erperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00008000U ,0x00000000U) */
mask_write 0XFF5E0238 0x00008000 0x00000000
# : SPI
# : TTC
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TTC0_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TTC1_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TTC2_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_TTC3_RESET 0
# Software control register for the IOU block. Each bit will cause a singl
# erperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00007800U ,0x00000000U) */
mask_write 0XFF5E0238 0x00007800 0x00000000
# : UART
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_UART0_RESET 0
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_UART1_RESET 0
# Software control register for the IOU block. Each bit will cause a singl
# erperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000006U ,0x00000000U) */
mask_write 0XFF5E0238 0x00000006 0x00000000
# : UART BAUD RATE
# Register : Baud_rate_divider_reg0 @ 0XFF000034</p>
# Baud rate divider value: 0 - 3: ignored 4 - 255: Baud rate
# PSU_UART0_BAUD_RATE_DIVIDER_REG0_BDIV 0x5
# Baud Rate Divider Register
#(OFFSET, MASK, VALUE) (0XFF000034, 0x000000FFU ,0x00000005U) */
mask_write 0XFF000034 0x000000FF 0x00000005
# Register : Baud_rate_gen_reg0 @ 0XFF000018</p>
# Baud Rate Clock Divisor Value: 0: Disables baud_sample 1: Clock divisor
# bypass (baud_sample = sel_clk) 2 - 65535: baud_sample
# PSU_UART0_BAUD_RATE_GEN_REG0_CD 0x8f
# Baud Rate Generator Register.
#(OFFSET, MASK, VALUE) (0XFF000018, 0x0000FFFFU ,0x0000008FU) */
mask_write 0XFF000018 0x0000FFFF 0x0000008F
# Register : Control_reg0 @ 0XFF000000</p>
# Stop transmitter break: 0: no affect 1: stop transmission of the break a
# fter a minimum of one character length and transmit a high level during
# 12 bit periods. It can be set regardless of the value of STTBRK.
# PSU_UART0_CONTROL_REG0_STPBRK 0x0
# Start transmitter break: 0: no affect 1: start to transmit a break after
# the characters currently present in the FIFO and the transmit shift reg
# ister have been transmitted. It can only be set if STPBRK (Stop transmit
# ter break) is not high.
# PSU_UART0_CONTROL_REG0_STTBRK 0x0
# Restart receiver timeout counter: 1: receiver timeout counter is restart
# ed. This bit is self clearing once the restart has completed.
# PSU_UART0_CONTROL_REG0_RSTTO 0x0
# Transmit disable: 0: enable transmitter 1: disable transmitter
# PSU_UART0_CONTROL_REG0_TXDIS 0x0
# Transmit enable: 0: disable transmitter 1: enable transmitter, provided
# the TXDIS field is set to 0.
# PSU_UART0_CONTROL_REG0_TXEN 0x1
# Receive disable: 0: enable 1: disable, regardless of the value of RXEN
# PSU_UART0_CONTROL_REG0_RXDIS 0x0
# Receive enable: 0: disable 1: enable When set to one, the receiver logic
# is enabled, provided the RXDIS field is set to zero.
# PSU_UART0_CONTROL_REG0_RXEN 0x1
# Software reset for Tx data path: 0: no affect 1: transmitter logic is re
# set and all pending transmitter data is discarded This bit is self clear
# ing once the reset has completed.
# PSU_UART0_CONTROL_REG0_TXRES 0x1
# Software reset for Rx data path: 0: no affect 1: receiver logic is reset
# and all pending receiver data is discarded. This bit is self clearing o
# nce the reset has completed.
# PSU_UART0_CONTROL_REG0_RXRES 0x1
# UART Control Register
#(OFFSET, MASK, VALUE) (0XFF000000, 0x000001FFU ,0x00000017U) */
mask_write 0XFF000000 0x000001FF 0x00000017
# Register : mode_reg0 @ 0XFF000004</p>
# Channel mode: Defines the mode of operation of the UART. 00: normal 01:
# automatic echo 10: local loopback 11: remote loopback
# PSU_UART0_MODE_REG0_CHMODE 0x0
# Number of stop bits: Defines the number of stop bits to detect on receiv
# e and to generate on transmit. 00: 1 stop bit 01: 1.5 stop bits 10: 2 st
# op bits 11: reserved
# PSU_UART0_MODE_REG0_NBSTOP 0x0
# Parity type select: Defines the expected parity to check on receive and
# the parity to generate on transmit. 000: even parity 001: odd parity 010
# : forced to 0 parity (space) 011: forced to 1 parity (mark) 1xx: no pari
# ty
# PSU_UART0_MODE_REG0_PAR 0x4
# Character length select: Defines the number of bits in each character. 1
# 1: 6 bits 10: 7 bits 0x: 8 bits
# PSU_UART0_MODE_REG0_CHRL 0x0
# Clock source select: This field defines whether a pre-scalar of 8 is app
# lied to the baud rate generator input clock. 0: clock source is uart_ref
# _clk 1: clock source is uart_ref_clk/8
# PSU_UART0_MODE_REG0_CLKS 0x0
# UART Mode Register
#(OFFSET, MASK, VALUE) (0XFF000004, 0x000003FFU ,0x00000020U) */
mask_write 0XFF000004 0x000003FF 0x00000020
# Register : Baud_rate_divider_reg0 @ 0XFF010034</p>
# Baud rate divider value: 0 - 3: ignored 4 - 255: Baud rate
# PSU_UART1_BAUD_RATE_DIVIDER_REG0_BDIV 0x5
# Baud Rate Divider Register
#(OFFSET, MASK, VALUE) (0XFF010034, 0x000000FFU ,0x00000005U) */
mask_write 0XFF010034 0x000000FF 0x00000005
# Register : Baud_rate_gen_reg0 @ 0XFF010018</p>
# Baud Rate Clock Divisor Value: 0: Disables baud_sample 1: Clock divisor
# bypass (baud_sample = sel_clk) 2 - 65535: baud_sample
# PSU_UART1_BAUD_RATE_GEN_REG0_CD 0x8f
# Baud Rate Generator Register.
#(OFFSET, MASK, VALUE) (0XFF010018, 0x0000FFFFU ,0x0000008FU) */
mask_write 0XFF010018 0x0000FFFF 0x0000008F
# Register : Control_reg0 @ 0XFF010000</p>
# Stop transmitter break: 0: no affect 1: stop transmission of the break a
# fter a minimum of one character length and transmit a high level during
# 12 bit periods. It can be set regardless of the value of STTBRK.
# PSU_UART1_CONTROL_REG0_STPBRK 0x0
# Start transmitter break: 0: no affect 1: start to transmit a break after
# the characters currently present in the FIFO and the transmit shift reg
# ister have been transmitted. It can only be set if STPBRK (Stop transmit
# ter break) is not high.
# PSU_UART1_CONTROL_REG0_STTBRK 0x0
# Restart receiver timeout counter: 1: receiver timeout counter is restart
# ed. This bit is self clearing once the restart has completed.
# PSU_UART1_CONTROL_REG0_RSTTO 0x0
# Transmit disable: 0: enable transmitter 1: disable transmitter
# PSU_UART1_CONTROL_REG0_TXDIS 0x0
# Transmit enable: 0: disable transmitter 1: enable transmitter, provided
# the TXDIS field is set to 0.
# PSU_UART1_CONTROL_REG0_TXEN 0x1
# Receive disable: 0: enable 1: disable, regardless of the value of RXEN
# PSU_UART1_CONTROL_REG0_RXDIS 0x0
# Receive enable: 0: disable 1: enable When set to one, the receiver logic
# is enabled, provided the RXDIS field is set to zero.
# PSU_UART1_CONTROL_REG0_RXEN 0x1
# Software reset for Tx data path: 0: no affect 1: transmitter logic is re
# set and all pending transmitter data is discarded This bit is self clear
# ing once the reset has completed.
# PSU_UART1_CONTROL_REG0_TXRES 0x1
# Software reset for Rx data path: 0: no affect 1: receiver logic is reset
# and all pending receiver data is discarded. This bit is self clearing o
# nce the reset has completed.
# PSU_UART1_CONTROL_REG0_RXRES 0x1
# UART Control Register
#(OFFSET, MASK, VALUE) (0XFF010000, 0x000001FFU ,0x00000017U) */
mask_write 0XFF010000 0x000001FF 0x00000017
# Register : mode_reg0 @ 0XFF010004</p>
# Channel mode: Defines the mode of operation of the UART. 00: normal 01:
# automatic echo 10: local loopback 11: remote loopback
# PSU_UART1_MODE_REG0_CHMODE 0x0
# Number of stop bits: Defines the number of stop bits to detect on receiv
# e and to generate on transmit. 00: 1 stop bit 01: 1.5 stop bits 10: 2 st
# op bits 11: reserved
# PSU_UART1_MODE_REG0_NBSTOP 0x0
# Parity type select: Defines the expected parity to check on receive and
# the parity to generate on transmit. 000: even parity 001: odd parity 010
# : forced to 0 parity (space) 011: forced to 1 parity (mark) 1xx: no pari
# ty
# PSU_UART1_MODE_REG0_PAR 0x4
# Character length select: Defines the number of bits in each character. 1
# 1: 6 bits 10: 7 bits 0x: 8 bits
# PSU_UART1_MODE_REG0_CHRL 0x0
# Clock source select: This field defines whether a pre-scalar of 8 is app
# lied to the baud rate generator input clock. 0: clock source is uart_ref
# _clk 1: clock source is uart_ref_clk/8
# PSU_UART1_MODE_REG0_CLKS 0x0
# UART Mode Register
#(OFFSET, MASK, VALUE) (0XFF010004, 0x000003FFU ,0x00000020U) */
mask_write 0XFF010004 0x000003FF 0x00000020
# : GPIO
# Register : RST_LPD_IOU2 @ 0XFF5E0238</p>
# Block level reset
# PSU_CRL_APB_RST_LPD_IOU2_GPIO_RESET 0
# Software control register for the IOU block. Each bit will cause a singl
# erperipheral or part of the peripheral to be reset.
#(OFFSET, MASK, VALUE) (0XFF5E0238, 0x00040000U ,0x00000000U) */
mask_write 0XFF5E0238 0x00040000 0x00000000
# : ADMA TZ
# Register : slcr_adma @ 0XFF4B0024</p>
# TrustZone Classification for ADMA
# PSU_LPD_SLCR_SECURE_SLCR_ADMA_TZ 0XFF
# RPU TrustZone settings
#(OFFSET, MASK, VALUE) (0XFF4B0024, 0x000000FFU ,0x000000FFU) */
mask_write 0XFF4B0024 0x000000FF 0x000000FF
# : CSU TAMPERING
# : CSU TAMPER STATUS
# Register : tamper_status @ 0XFFCA5000</p>
# CSU regsiter
# PSU_CSU_TAMPER_STATUS_TAMPER_0 0
# External MIO
# PSU_CSU_TAMPER_STATUS_TAMPER_1 0
# JTAG toggle detect
# PSU_CSU_TAMPER_STATUS_TAMPER_2 0
# PL SEU error
# PSU_CSU_TAMPER_STATUS_TAMPER_3 0
# AMS over temperature alarm for LPD
# PSU_CSU_TAMPER_STATUS_TAMPER_4 0
# AMS over temperature alarm for APU
# PSU_CSU_TAMPER_STATUS_TAMPER_5 0
# AMS voltage alarm for VCCPINT_FPD
# PSU_CSU_TAMPER_STATUS_TAMPER_6 0
# AMS voltage alarm for VCCPINT_LPD
# PSU_CSU_TAMPER_STATUS_TAMPER_7 0
# AMS voltage alarm for VCCPAUX
# PSU_CSU_TAMPER_STATUS_TAMPER_8 0
# AMS voltage alarm for DDRPHY
# PSU_CSU_TAMPER_STATUS_TAMPER_9 0
# AMS voltage alarm for PSIO bank 0/1/2
# PSU_CSU_TAMPER_STATUS_TAMPER_10 0
# AMS voltage alarm for PSIO bank 3 (dedicated pins)
# PSU_CSU_TAMPER_STATUS_TAMPER_11 0
# AMS voltaage alarm for GT
# PSU_CSU_TAMPER_STATUS_TAMPER_12 0
# Tamper Response Status
#(OFFSET, MASK, VALUE) (0XFFCA5000, 0x00001FFFU ,0x00000000U) */
mask_write 0XFFCA5000 0x00001FFF 0x00000000
# : CSU TAMPER RESPONSE
# : CPU QOS DEFAULT
# Register : ACE_CTRL @ 0XFD5C0060</p>
# Set ACE outgoing AWQOS value
# PSU_APU_ACE_CTRL_AWQOS 0X0
# Set ACE outgoing ARQOS value
# PSU_APU_ACE_CTRL_ARQOS 0X0
# ACE Control Register
#(OFFSET, MASK, VALUE) (0XFD5C0060, 0x000F000FU ,0x00000000U) */
mask_write 0XFD5C0060 0x000F000F 0x00000000
# : ENABLES RTC SWITCH TO BATTERY WHEN VCC_PSAUX IS NOT AVAILABLE
# Register : CONTROL @ 0XFFA60040</p>
# Enables the RTC. By writing a 0 to this bit, RTC will be powered off and
# the only module that potentially draws current from the battery will be
# BBRAM. The value read through this bit does not necessarily reflect whe
# ther RTC is enabled or not. It is expected that RTC is enabled every tim
# e it is being configured. If RTC is not used in the design, FSBL will di
# sable it by writing a 0 to this bit.
# PSU_RTC_CONTROL_BATTERY_DISABLE 0X1
# This register controls various functionalities within the RTC
#(OFFSET, MASK, VALUE) (0XFFA60040, 0x80000000U ,0x80000000U) */
mask_write 0XFFA60040 0x80000000 0x80000000
# : TIMESTAMP COUNTER
# Register : base_frequency_ID_register @ 0XFF260020</p>
# Frequency in number of ticks per second. Valid range from 10 MHz to 100
# MHz.
# PSU_IOU_SCNTRS_BASE_FREQUENCY_ID_REGISTER_FREQ 0x5f5b9f0
# Program this register to match the clock frequency of the timestamp gene
# rator, in ticks per second. For example, for a 50 MHz clock, program 0x0
# 2FAF080. This register is not accessible to the read-only programming in
# terface.
#(OFFSET, MASK, VALUE) (0XFF260020, 0xFFFFFFFFU ,0x05F5B9F0U) */
mask_write 0XFF260020 0xFFFFFFFF 0x05F5B9F0
# Register : counter_control_register @ 0XFF260000</p>
# Enable 0: The counter is disabled and not incrementing. 1: The counter i
# s enabled and is incrementing.
# PSU_IOU_SCNTRS_COUNTER_CONTROL_REGISTER_EN 0x1
# Controls the counter increments. This register is not accessible to the
# read-only programming interface.
#(OFFSET, MASK, VALUE) (0XFF260000, 0x00000001U ,0x00000001U) */
mask_write 0XFF260000 0x00000001 0x00000001
# : TTC SRC SELECT
# : PCIE GPIO RESET
# : PCIE RESET
# : DIR MODE BANK 0
# : DIR MODE BANK 1
# Register : DIRM_1 @ 0XFF0A0244</p>
# Operation is the same as DIRM_0[DIRECTION_0]
# PSU_GPIO_DIRM_1_DIRECTION_1 0x20
# Direction mode (GPIO Bank1, MIO)
#(OFFSET, MASK, VALUE) (0XFF0A0244, 0x03FFFFFFU ,0x00000020U) */
mask_write 0XFF0A0244 0x03FFFFFF 0x00000020
# : DIR MODE BANK 2
# : OUTPUT ENABLE BANK 0
# : OUTPUT ENABLE BANK 1
# Register : OEN_1 @ 0XFF0A0248</p>
# Operation is the same as OEN_0[OP_ENABLE_0]
# PSU_GPIO_OEN_1_OP_ENABLE_1 0x20
# Output enable (GPIO Bank1, MIO)
#(OFFSET, MASK, VALUE) (0XFF0A0248, 0x03FFFFFFU ,0x00000020U) */
mask_write 0XFF0A0248 0x03FFFFFF 0x00000020
# : OUTPUT ENABLE BANK 2
# : MASK_DATA_0_LSW LOW BANK [15:0]
# : MASK_DATA_0_MSW LOW BANK [25:16]
# : MASK_DATA_1_LSW LOW BANK [41:26]
# Register : MASK_DATA_1_LSW @ 0XFF0A0008</p>
# Operation is the same as MASK_DATA_0_LSW[MASK_0_LSW]
# PSU_GPIO_MASK_DATA_1_LSW_MASK_1_LSW 0xffdf
# Operation is the same as MASK_DATA_0_LSW[DATA_0_LSW]
# PSU_GPIO_MASK_DATA_1_LSW_DATA_1_LSW 0x20
# Maskable Output Data (GPIO Bank1, MIO, Lower 16bits)
#(OFFSET, MASK, VALUE) (0XFF0A0008, 0xFFFFFFFFU ,0xFFDF0020U) */
mask_write 0XFF0A0008 0xFFFFFFFF 0xFFDF0020
# : MASK_DATA_1_MSW HIGH BANK [51:42]
# : MASK_DATA_1_LSW HIGH BANK [67:52]
# : MASK_DATA_1_LSW HIGH BANK [77:68]
# : ADD 1 MS DELAY
mask_delay 0x00000000 1
# : MASK_DATA_0_LSW LOW BANK [15:0]
# : MASK_DATA_0_MSW LOW BANK [25:16]
# : MASK_DATA_1_LSW LOW BANK [41:26]
# Register : MASK_DATA_1_LSW @ 0XFF0A0008</p>
# Operation is the same as MASK_DATA_0_LSW[MASK_0_LSW]
# PSU_GPIO_MASK_DATA_1_LSW_MASK_1_LSW 0xffdf
# Operation is the same as MASK_DATA_0_LSW[DATA_0_LSW]
# PSU_GPIO_MASK_DATA_1_LSW_DATA_1_LSW 0x0
# Maskable Output Data (GPIO Bank1, MIO, Lower 16bits)
#(OFFSET, MASK, VALUE) (0XFF0A0008, 0xFFFFFFFFU ,0xFFDF0000U) */
mask_write 0XFF0A0008 0xFFFFFFFF 0xFFDF0000
# : MASK_DATA_1_MSW HIGH BANK [51:42]
# : MASK_DATA_1_LSW HIGH BANK [67:52]
# : MASK_DATA_1_LSW HIGH BANK [77:68]
# : ADD 5 MS DELAY
mask_delay 0x00000000 5
}
set psu_post_config_data {
# : POST_CONFIG
}
set psu_peripherals_powerdwn_data {
# : POWER DOWN REQUEST INTERRUPT ENABLE
# : POWER DOWN TRIGGER
}
set psu_lpd_xppu_data {
# : MASTER ID LIST
# : APERTURE PERMISIION LIST
# : APERTURE NAME: UART0, START ADDRESS: FF000000, END ADDRESS: FF00FFFF
# : APERTURE NAME: UART1, START ADDRESS: FF010000, END ADDRESS: FF01FFFF
# : APERTURE NAME: I2C0, START ADDRESS: FF020000, END ADDRESS: FF02FFFF
# : APERTURE NAME: I2C1, START ADDRESS: FF030000, END ADDRESS: FF03FFFF
# : APERTURE NAME: SPI0, START ADDRESS: FF040000, END ADDRESS: FF04FFFF
# : APERTURE NAME: SPI1, START ADDRESS: FF050000, END ADDRESS: FF05FFFF
# : APERTURE NAME: CAN0, START ADDRESS: FF060000, END ADDRESS: FF06FFFF
# : APERTURE NAME: CAN1, START ADDRESS: FF070000, END ADDRESS: FF07FFFF
# : APERTURE NAME: RPU_UNUSED_12, START ADDRESS: FF080000, END ADDRESS: FF09FFFF
# : APERTURE NAME: RPU_UNUSED_12, START ADDRESS: FF080000, END ADDRESS: FF09FFFF
# : APERTURE NAME: GPIO, START ADDRESS: FF0A0000, END ADDRESS: FF0AFFFF
# : APERTURE NAME: GEM0, START ADDRESS: FF0B0000, END ADDRESS: FF0BFFFF
# : APERTURE NAME: GEM1, START ADDRESS: FF0C0000, END ADDRESS: FF0CFFFF
# : APERTURE NAME: GEM2, START ADDRESS: FF0D0000, END ADDRESS: FF0DFFFF
# : APERTURE NAME: GEM3, START ADDRESS: FF0E0000, END ADDRESS: FF0EFFFF
# : APERTURE NAME: QSPI, START ADDRESS: FF0F0000, END ADDRESS: FF0FFFFF
# : APERTURE NAME: NAND, START ADDRESS: FF100000, END ADDRESS: FF10FFFF
# : APERTURE NAME: TTC0, START ADDRESS: FF110000, END ADDRESS: FF11FFFF
# : APERTURE NAME: TTC1, START ADDRESS: FF120000, END ADDRESS: FF12FFFF
# : APERTURE NAME: TTC2, START ADDRESS: FF130000, END ADDRESS: FF13FFFF
# : APERTURE NAME: TTC3, START ADDRESS: FF140000, END ADDRESS: FF14FFFF
# : APERTURE NAME: SWDT, START ADDRESS: FF150000, END ADDRESS: FF15FFFF
# : APERTURE NAME: SD0, START ADDRESS: FF160000, END ADDRESS: FF16FFFF
# : APERTURE NAME: SD1, START ADDRESS: FF170000, END ADDRESS: FF17FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
# : APERTURE NAME: IOU_SECURE_SLCR, START ADDRESS: FF240000, END ADDRESS: FF24FFFF
# : APERTURE NAME: IOU_SCNTR, START ADDRESS: FF250000, END ADDRESS: FF25FFFF
# : APERTURE NAME: IOU_SCNTRS, START ADDRESS: FF260000, END ADDRESS: FF26FFFF
# : APERTURE NAME: RPU_UNUSED_11, START ADDRESS: FF270000, END ADDRESS: FF2AFFFF
# : APERTURE NAME: RPU_UNUSED_11, START ADDRESS: FF270000, END ADDRESS: FF2AFFFF
# : APERTURE NAME: RPU_UNUSED_11, START ADDRESS: FF270000, END ADDRESS: FF2AFFFF
# : APERTURE NAME: RPU_UNUSED_11, START ADDRESS: FF270000, END ADDRESS: FF2AFFFF
# : APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2FFFFF
# : APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2FFFFF
# : APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2FFFFF
# : APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2FFFFF
# : APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2FFFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
# : APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
# : APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
# : APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
# : APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
# : APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
# : APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
# : APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
# : APERTURE NAME: LPD_UNUSED_1, START ADDRESS: FF400000, END ADDRESS: FF40FFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
# : APERTURE NAME: LPD_SLCR_SECURE, START ADDRESS: FF4B0000, END ADDRESS: FF4DFFFF
# : APERTURE NAME: LPD_SLCR_SECURE, START ADDRESS: FF4B0000, END ADDRESS: FF4DFFFF
# : APERTURE NAME: LPD_SLCR_SECURE, START ADDRESS: FF4B0000, END ADDRESS: FF4DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DFFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95FFFF
# : APERTURE NAME: OCM_SLCR, START ADDRESS: FF960000, END ADDRESS: FF96FFFF
# : APERTURE NAME: LPD_UNUSED_4, START ADDRESS: FF970000, END ADDRESS: FF97FFFF
# : APERTURE NAME: LPD_XPPU, START ADDRESS: FF980000, END ADDRESS: FF99FFFF
# : APERTURE NAME: RPU, START ADDRESS: FF9A0000, END ADDRESS: FF9AFFFF
# : APERTURE NAME: AFIFM6, START ADDRESS: FF9B0000, END ADDRESS: FF9BFFFF
# : APERTURE NAME: LPD_XPPU_SINK, START ADDRESS: FF9C0000, END ADDRESS: FF9CFFFF
# : APERTURE NAME: USB3_0, START ADDRESS: FF9D0000, END ADDRESS: FF9DFFFF
# : APERTURE NAME: USB3_1, START ADDRESS: FF9E0000, END ADDRESS: FF9EFFFF
# : APERTURE NAME: LPD_UNUSED_5, START ADDRESS: FF9F0000, END ADDRESS: FF9FFFFF
# : APERTURE NAME: APM0, START ADDRESS: FFA00000, END ADDRESS: FFA0FFFF
# : APERTURE NAME: APM1, START ADDRESS: FFA10000, END ADDRESS: FFA1FFFF
# : APERTURE NAME: APM_INTC_IOU, START ADDRESS: FFA20000, END ADDRESS: FFA2FFFF
# : APERTURE NAME: APM_FPD_LPD, START ADDRESS: FFA30000, END ADDRESS: FFA3FFFF
# : APERTURE NAME: LPD_UNUSED_6, START ADDRESS: FFA40000, END ADDRESS: FFA4FFFF
# : APERTURE NAME: AMS, START ADDRESS: FFA50000, END ADDRESS: FFA5FFFF
# : APERTURE NAME: RTC, START ADDRESS: FFA60000, END ADDRESS: FFA6FFFF
# : APERTURE NAME: OCM_XMPU_CFG, START ADDRESS: FFA70000, END ADDRESS: FFA7FFFF
# : APERTURE NAME: ADMA_0, START ADDRESS: FFA80000, END ADDRESS: FFA8FFFF
# : APERTURE NAME: ADMA_1, START ADDRESS: FFA90000, END ADDRESS: FFA9FFFF
# : APERTURE NAME: ADMA_2, START ADDRESS: FFAA0000, END ADDRESS: FFAAFFFF
# : APERTURE NAME: ADMA_3, START ADDRESS: FFAB0000, END ADDRESS: FFABFFFF
# : APERTURE NAME: ADMA_4, START ADDRESS: FFAC0000, END ADDRESS: FFACFFFF
# : APERTURE NAME: ADMA_5, START ADDRESS: FFAD0000, END ADDRESS: FFADFFFF
# : APERTURE NAME: ADMA_6, START ADDRESS: FFAE0000, END ADDRESS: FFAEFFFF
# : APERTURE NAME: ADMA_7, START ADDRESS: FFAF0000, END ADDRESS: FFAFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFFFFF
# : APERTURE NAME: CSU_ROM, START ADDRESS: FFC00000, END ADDRESS: FFC1FFFF
# : APERTURE NAME: CSU_ROM, START ADDRESS: FFC00000, END ADDRESS: FFC1FFFF
# : APERTURE NAME: CSU_LOCAL, START ADDRESS: FFC20000, END ADDRESS: FFC2FFFF
# : APERTURE NAME: PUF, START ADDRESS: FFC30000, END ADDRESS: FFC3FFFF
# : APERTURE NAME: CSU_RAM, START ADDRESS: FFC40000, END ADDRESS: FFC5FFFF
# : APERTURE NAME: CSU_RAM, START ADDRESS: FFC40000, END ADDRESS: FFC5FFFF
# : APERTURE NAME: CSU_IOMODULE, START ADDRESS: FFC60000, END ADDRESS: FFC7FFFF
# : APERTURE NAME: CSU_IOMODULE, START ADDRESS: FFC60000, END ADDRESS: FFC7FFFF
# : APERTURE NAME: CSUDMA, START ADDRESS: FFC80000, END ADDRESS: FFC9FFFF
# : APERTURE NAME: CSUDMA, START ADDRESS: FFC80000, END ADDRESS: FFC9FFFF
# : APERTURE NAME: CSU, START ADDRESS: FFCA0000, END ADDRESS: FFCAFFFF
# : APERTURE NAME: CSU_WDT, START ADDRESS: FFCB0000, END ADDRESS: FFCBFFFF
# : APERTURE NAME: EFUSE, START ADDRESS: FFCC0000, END ADDRESS: FFCCFFFF
# : APERTURE NAME: BBRAM, START ADDRESS: FFCD0000, END ADDRESS: FFCDFFFF
# : APERTURE NAME: RSA_CORE, START ADDRESS: FFCE0000, END ADDRESS: FFCEFFFF
# : APERTURE NAME: MBISTJTAG, START ADDRESS: FFCF0000, END ADDRESS: FFCFFFFF
# : APERTURE NAME: PMU_ROM, START ADDRESS: FFD00000, END ADDRESS: FFD3FFFF
# : APERTURE NAME: PMU_ROM, START ADDRESS: FFD00000, END ADDRESS: FFD3FFFF
# : APERTURE NAME: PMU_ROM, START ADDRESS: FFD00000, END ADDRESS: FFD3FFFF
# : APERTURE NAME: PMU_ROM, START ADDRESS: FFD00000, END ADDRESS: FFD3FFFF
# : APERTURE NAME: PMU_IOMODULE, START ADDRESS: FFD40000, END ADDRESS: FFD5FFFF
# : APERTURE NAME: PMU_IOMODULE, START ADDRESS: FFD40000, END ADDRESS: FFD5FFFF
# : APERTURE NAME: PMU_LOCAL, START ADDRESS: FFD60000, END ADDRESS: FFD7FFFF
# : APERTURE NAME: PMU_LOCAL, START ADDRESS: FFD60000, END ADDRESS: FFD7FFFF
# : APERTURE NAME: PMU_GLOBAL, START ADDRESS: FFD80000, END ADDRESS: FFDBFFFF
# : APERTURE NAME: PMU_GLOBAL, START ADDRESS: FFD80000, END ADDRESS: FFDBFFFF
# : APERTURE NAME: PMU_GLOBAL, START ADDRESS: FFD80000, END ADDRESS: FFDBFFFF
# : APERTURE NAME: PMU_GLOBAL, START ADDRESS: FFD80000, END ADDRESS: FFDBFFFF
# : APERTURE NAME: PMU_RAM, START ADDRESS: FFDC0000, END ADDRESS: FFDFFFFF
# : APERTURE NAME: PMU_RAM, START ADDRESS: FFDC0000, END ADDRESS: FFDFFFFF
# : APERTURE NAME: PMU_RAM, START ADDRESS: FFDC0000, END ADDRESS: FFDFFFFF
# : APERTURE NAME: PMU_RAM, START ADDRESS: FFDC0000, END ADDRESS: FFDFFFFF
# : APERTURE NAME: R5_0_ATCM, START ADDRESS: FFE00000, END ADDRESS: FFE0FFFF
# : APERTURE NAME: R5_0_ATCM_LOCKSTEP, START ADDRESS: FFE10000, END ADDRESS: FFE1FFFF
# : APERTURE NAME: R5_0_BTCM, START ADDRESS: FFE20000, END ADDRESS: FFE2FFFF
# : APERTURE NAME: R5_0_BTCM_LOCKSTEP, START ADDRESS: FFE30000, END ADDRESS: FFE3FFFF
# : APERTURE NAME: R5_0_INSTRUCTION_CACHE, START ADDRESS: FFE40000, END ADDRESS: FFE4FFFF
# : APERTURE NAME: R5_0_DATA_CACHE, START ADDRESS: FFE50000, END ADDRESS: FFE5FFFF
# : APERTURE NAME: LPD_UNUSED_8, START ADDRESS: FFE60000, END ADDRESS: FFE8FFFF
# : APERTURE NAME: LPD_UNUSED_8, START ADDRESS: FFE60000, END ADDRESS: FFE8FFFF
# : APERTURE NAME: LPD_UNUSED_8, START ADDRESS: FFE60000, END ADDRESS: FFE8FFFF
# : APERTURE NAME: R5_1_ATCM_, START ADDRESS: FFE90000, END ADDRESS: FFE9FFFF
# : APERTURE NAME: RPU_UNUSED_10, START ADDRESS: FFEA0000, END ADDRESS: FFEAFFFF
# : APERTURE NAME: R5_1_BTCM_, START ADDRESS: FFEB0000, END ADDRESS: FFEBFFFF
# : APERTURE NAME: R5_1_INSTRUCTION_CACHE, START ADDRESS: FFEC0000, END ADDRESS: FFECFFFF
# : APERTURE NAME: R5_1_DATA_CACHE, START ADDRESS: FFED0000, END ADDRESS: FFEDFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBFFFF
# : APERTURE NAME: LPD_UNUSED_15, START ADDRESS: FFFD0000, END ADDRESS: FFFFFFFF
# : APERTURE NAME: LPD_UNUSED_15, START ADDRESS: FFFD0000, END ADDRESS: FFFFFFFF
# : APERTURE NAME: LPD_UNUSED_15, START ADDRESS: FFFD0000, END ADDRESS: FFFFFFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
# : APERTURE NAME: IOU_GPV, START ADDRESS: FE000000, END ADDRESS: FE0FFFFF
# : APERTURE NAME: LPD_GPV, START ADDRESS: FE100000, END ADDRESS: FE1FFFFF
# : APERTURE NAME: USB3_0_XHCI, START ADDRESS: FE200000, END ADDRESS: FE2FFFFF
# : APERTURE NAME: USB3_1_XHCI, START ADDRESS: FE300000, END ADDRESS: FE3FFFFF
# : APERTURE NAME: LPD_UNUSED_13, START ADDRESS: FE400000, END ADDRESS: FE7FFFFF
# : APERTURE NAME: LPD_UNUSED_13, START ADDRESS: FE400000, END ADDRESS: FE7FFFFF
# : APERTURE NAME: LPD_UNUSED_13, START ADDRESS: FE400000, END ADDRESS: FE7FFFFF
# : APERTURE NAME: LPD_UNUSED_13, START ADDRESS: FE400000, END ADDRESS: FE7FFFFF
# : APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
# : APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
# : APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
# : APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
# : APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
# : APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
# : APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
# : APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
# : APERTURE NAME: QSPI_LINEAR_ADDRESS, START ADDRESS: C0000000, END ADDRESS: DFFFFFFF
# : XPPU CONTROL
}
set psu_ddr_xmpu0_data {
# : DDR XMPU0
}
set psu_ddr_xmpu1_data {
# : DDR XMPU1
}
set psu_ddr_xmpu2_data {
# : DDR XMPU2
}
set psu_ddr_xmpu3_data {
# : DDR XMPU3
}
set psu_ddr_xmpu4_data {
# : DDR XMPU4
}
set psu_ddr_xmpu5_data {
# : DDR XMPU5
}
set psu_ocm_xmpu_data {
# : OCM XMPU
}
set psu_fpd_xmpu_data {
# : FPD XMPU
}
set psu_protection_lock_data {
# : LOCKING PROTECTION MODULE
# : XPPU LOCK
# : APERTURE NAME: LPD_XPPU, START ADDRESS: FF980000, END ADDRESS: FF99FFFF
# : XMPU LOCK
# : LOCK OCM XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
# : LOCK FPD XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
# : LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
# : LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
# : LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
# : LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
# : LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
# : LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
}
set psu_apply_master_tz {
# : RPU
# : DP TZ
# Register : slcr_dpdma @ 0XFD690040</p>
# TrustZone classification for DisplayPort DMA
# PSU_FPD_SLCR_SECURE_SLCR_DPDMA_TZ 1
# DPDMA TrustZone Settings
#(OFFSET, MASK, VALUE) (0XFD690040, 0x00000001U ,0x00000001U) */
mask_write 0XFD690040 0x00000001 0x00000001
# : SATA TZ
# : PCIE TZ
# Register : slcr_pcie @ 0XFD690030</p>
# TrustZone classification for DMA Channel 0
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_0 1
# TrustZone classification for DMA Channel 1
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_1 1
# TrustZone classification for DMA Channel 2
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_2 1
# TrustZone classification for DMA Channel 3
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_3 1
# TrustZone classification for Ingress Address Translation 0
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_0 1
# TrustZone classification for Ingress Address Translation 1
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_1 1
# TrustZone classification for Ingress Address Translation 2
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_2 1
# TrustZone classification for Ingress Address Translation 3
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_3 1
# TrustZone classification for Ingress Address Translation 4
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_4 1
# TrustZone classification for Ingress Address Translation 5
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_5 1
# TrustZone classification for Ingress Address Translation 6
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_6 1
# TrustZone classification for Ingress Address Translation 7
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_7 1
# TrustZone classification for Egress Address Translation 0
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_0 1
# TrustZone classification for Egress Address Translation 1
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_1 1
# TrustZone classification for Egress Address Translation 2
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_2 1
# TrustZone classification for Egress Address Translation 3
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_3 1
# TrustZone classification for Egress Address Translation 4
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_4 1
# TrustZone classification for Egress Address Translation 5
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_5 1
# TrustZone classification for Egress Address Translation 6
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_6 1
# TrustZone classification for Egress Address Translation 7
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_7 1
# TrustZone classification for DMA Registers
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_REGS 1
# TrustZone classification for MSIx Table
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_MSIX_TABLE 1
# TrustZone classification for MSIx PBA
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_MSIX_PBA 1
# TrustZone classification for ECAM
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_ECAM 1
# TrustZone classification for Bridge Common Registers
# PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_BRIDGE_REGS 1
# PCIe TrustZone settings. This register may only be modified during bootu
# p (while PCIe block is disabled)
#(OFFSET, MASK, VALUE) (0XFD690030, 0x01FFFFFFU ,0x01FFFFFFU) */
mask_write 0XFD690030 0x01FFFFFF 0x01FFFFFF
# : USB TZ
# Register : slcr_usb @ 0XFF4B0034</p>
# TrustZone Classification for USB3_0
# PSU_LPD_SLCR_SECURE_SLCR_USB_TZ_USB3_0 1
# TrustZone Classification for USB3_1
# PSU_LPD_SLCR_SECURE_SLCR_USB_TZ_USB3_1 1
# USB3 TrustZone settings
#(OFFSET, MASK, VALUE) (0XFF4B0034, 0x00000003U ,0x00000003U) */
mask_write 0XFF4B0034 0x00000003 0x00000003
# : SD TZ
# Register : IOU_AXI_RPRTCN @ 0XFF240004</p>
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_SD0_AXI_ARPROT 2
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_SD1_AXI_ARPROT 2
# AXI read protection type selection
#(OFFSET, MASK, VALUE) (0XFF240004, 0x003F0000U ,0x00120000U) */
mask_write 0XFF240004 0x003F0000 0x00120000
# Register : IOU_AXI_WPRTCN @ 0XFF240000</p>
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_SD0_AXI_AWPROT 2
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_SD1_AXI_AWPROT 2
# AXI write protection type selection
#(OFFSET, MASK, VALUE) (0XFF240000, 0x003F0000U ,0x00120000U) */
mask_write 0XFF240000 0x003F0000 0x00120000
# : GEM TZ
# Register : IOU_AXI_RPRTCN @ 0XFF240004</p>
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_GEM0_AXI_ARPROT 2
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_GEM1_AXI_ARPROT 2
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_GEM2_AXI_ARPROT 2
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_GEM3_AXI_ARPROT 2
# AXI read protection type selection
#(OFFSET, MASK, VALUE) (0XFF240004, 0x00000FFFU ,0x00000492U) */
mask_write 0XFF240004 0x00000FFF 0x00000492
# Register : IOU_AXI_WPRTCN @ 0XFF240000</p>
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_GEM0_AXI_AWPROT 2
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_GEM1_AXI_AWPROT 2
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_GEM2_AXI_AWPROT 2
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_GEM3_AXI_AWPROT 2
# AXI write protection type selection
#(OFFSET, MASK, VALUE) (0XFF240000, 0x00000FFFU ,0x00000492U) */
mask_write 0XFF240000 0x00000FFF 0x00000492
# : QSPI TZ
# Register : IOU_AXI_WPRTCN @ 0XFF240000</p>
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_QSPI_AXI_AWPROT 2
# AXI write protection type selection
#(OFFSET, MASK, VALUE) (0XFF240000, 0x0E000000U ,0x04000000U) */
mask_write 0XFF240000 0x0E000000 0x04000000
# : NAND TZ
# Register : IOU_AXI_RPRTCN @ 0XFF240004</p>
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_NAND_AXI_ARPROT 2
# AXI read protection type selection
#(OFFSET, MASK, VALUE) (0XFF240004, 0x01C00000U ,0x00800000U) */
mask_write 0XFF240004 0x01C00000 0x00800000
# Register : IOU_AXI_WPRTCN @ 0XFF240000</p>
# AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
# 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
# ccess [2] = '1'' : Instruction access
# PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_NAND_AXI_AWPROT 2
# AXI write protection type selection
#(OFFSET, MASK, VALUE) (0XFF240000, 0x01C00000U ,0x00800000U) */
mask_write 0XFF240000 0x01C00000 0x00800000
# : DMA TZ
# Register : slcr_adma @ 0XFF4B0024</p>
# TrustZone Classification for ADMA
# PSU_LPD_SLCR_SECURE_SLCR_ADMA_TZ 0xFF
# RPU TrustZone settings
#(OFFSET, MASK, VALUE) (0XFF4B0024, 0x000000FFU ,0x000000FFU) */
mask_write 0XFF4B0024 0x000000FF 0x000000FF
# Register : slcr_gdma @ 0XFD690050</p>
# TrustZone Classification for GDMA
# PSU_FPD_SLCR_SECURE_SLCR_GDMA_TZ 0xFF
# GDMA Trustzone Settings
#(OFFSET, MASK, VALUE) (0XFD690050, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD690050 0x000000FF 0x000000FF
}
set psu_serdes_init_data {
# : SERDES INITIALIZATION
# : GT REFERENCE CLOCK SOURCE SELECTION
# Register : PLL_REF_SEL0 @ 0XFD410000</p>
# PLL0 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 1
# 2MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 - 24MHz, 0x8 - 26MHz,
# 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE
# - 108MHz, 0xF - 125MHz, 0x10 - 135MHz, 0x11 - 150 MHz. 0x12 to 0x1F - R
# eserved
# PSU_SERDES_PLL_REF_SEL0_PLLREFSEL0 0xD
# PLL0 Reference Selection Register
#(OFFSET, MASK, VALUE) (0XFD410000, 0x0000001FU ,0x0000000DU) */
mask_write 0XFD410000 0x0000001F 0x0000000D
# Register : PLL_REF_SEL1 @ 0XFD410004</p>
# PLL1 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 1
# 2MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 - 24MHz, 0x8 - 26MHz,
# 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE
# - 108MHz, 0xF - 125MHz, 0x10 - 135MHz, 0x11 - 150 MHz. 0x12 to 0x1F - R
# eserved
# PSU_SERDES_PLL_REF_SEL1_PLLREFSEL1 0x9
# PLL1 Reference Selection Register
#(OFFSET, MASK, VALUE) (0XFD410004, 0x0000001FU ,0x00000009U) */
mask_write 0XFD410004 0x0000001F 0x00000009
# Register : PLL_REF_SEL2 @ 0XFD410008</p>
# PLL2 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 1
# 2MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 - 24MHz, 0x8 - 26MHz,
# 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE
# - 108MHz, 0xF - 125MHz, 0x10 - 135MHz, 0x11 - 150 MHz. 0x12 to 0x1F - R
# eserved
# PSU_SERDES_PLL_REF_SEL2_PLLREFSEL2 0x8
# PLL2 Reference Selection Register
#(OFFSET, MASK, VALUE) (0XFD410008, 0x0000001FU ,0x00000008U) */
mask_write 0XFD410008 0x0000001F 0x00000008
# Register : PLL_REF_SEL3 @ 0XFD41000C</p>
# PLL3 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 1
# 2MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 - 24MHz, 0x8 - 26MHz,
# 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE
# - 108MHz, 0xF - 125MHz, 0x10 - 135MHz, 0x11 - 150 MHz. 0x12 to 0x1F - R
# eserved
# PSU_SERDES_PLL_REF_SEL3_PLLREFSEL3 0xF
# PLL3 Reference Selection Register
#(OFFSET, MASK, VALUE) (0XFD41000C, 0x0000001FU ,0x0000000FU) */
mask_write 0XFD41000C 0x0000001F 0x0000000F
# : GT REFERENCE CLOCK FREQUENCY SELECTION
# Register : L0_L0_REF_CLK_SEL @ 0XFD402860</p>
# Sel of lane 0 ref clock local mux. Set to 1 to select lane 0 slicer outp
# ut. Set to 0 to select lane0 ref clock mux output.
# PSU_SERDES_L0_L0_REF_CLK_SEL_L0_REF_CLK_LCL_SEL 0x1
# Lane0 Ref Clock Selection Register
#(OFFSET, MASK, VALUE) (0XFD402860, 0x00000080U ,0x00000080U) */
mask_write 0XFD402860 0x00000080 0x00000080
# Register : L0_L1_REF_CLK_SEL @ 0XFD402864</p>
# Sel of lane 1 ref clock local mux. Set to 1 to select lane 1 slicer outp
# ut. Set to 0 to select lane1 ref clock mux output.
# PSU_SERDES_L0_L1_REF_CLK_SEL_L1_REF_CLK_LCL_SEL 0x0
# Bit 3 of lane 1 ref clock mux one hot sel. Set to 1 to select lane 3 sli
# cer output from ref clock network
# PSU_SERDES_L0_L1_REF_CLK_SEL_L1_REF_CLK_SEL_3 0x1
# Lane1 Ref Clock Selection Register
#(OFFSET, MASK, VALUE) (0XFD402864, 0x00000088U ,0x00000008U) */
mask_write 0XFD402864 0x00000088 0x00000008
# Register : L0_L2_REF_CLK_SEL @ 0XFD402868</p>
# Sel of lane 2 ref clock local mux. Set to 1 to select lane 1 slicer outp
# ut. Set to 0 to select lane2 ref clock mux output.
# PSU_SERDES_L0_L2_REF_CLK_SEL_L2_REF_CLK_LCL_SEL 0x1
# Lane2 Ref Clock Selection Register
#(OFFSET, MASK, VALUE) (0XFD402868, 0x00000080U ,0x00000080U) */
mask_write 0XFD402868 0x00000080 0x00000080
# Register : L0_L3_REF_CLK_SEL @ 0XFD40286C</p>
# Sel of lane 3 ref clock local mux. Set to 1 to select lane 3 slicer outp
# ut. Set to 0 to select lane3 ref clock mux output.
# PSU_SERDES_L0_L3_REF_CLK_SEL_L3_REF_CLK_LCL_SEL 0x0
# Bit 1 of lane 3 ref clock mux one hot sel. Set to 1 to select lane 1 sli
# cer output from ref clock network
# PSU_SERDES_L0_L3_REF_CLK_SEL_L3_REF_CLK_SEL_1 0x1
# Lane3 Ref Clock Selection Register
#(OFFSET, MASK, VALUE) (0XFD40286C, 0x00000082U ,0x00000002U) */
mask_write 0XFD40286C 0x00000082 0x00000002
# : ENABLE SPREAD SPECTRUM
# Register : L2_TM_PLL_DIG_37 @ 0XFD40A094</p>
# Enable/Disable coarse code satureation limiting logic
# PSU_SERDES_L2_TM_PLL_DIG_37_TM_ENABLE_COARSE_SATURATION 0x1
# Test mode register 37
#(OFFSET, MASK, VALUE) (0XFD40A094, 0x00000010U ,0x00000010U) */
mask_write 0XFD40A094 0x00000010 0x00000010
# Register : L2_PLL_SS_STEPS_0_LSB @ 0XFD40A368</p>
# Spread Spectrum No of Steps [7:0]
# PSU_SERDES_L2_PLL_SS_STEPS_0_LSB_SS_NUM_OF_STEPS_0_LSB 0x38
# Spread Spectrum No of Steps bits 7:0
#(OFFSET, MASK, VALUE) (0XFD40A368, 0x000000FFU ,0x00000038U) */
mask_write 0XFD40A368 0x000000FF 0x00000038
# Register : L2_PLL_SS_STEPS_1_MSB @ 0XFD40A36C</p>
# Spread Spectrum No of Steps [10:8]
# PSU_SERDES_L2_PLL_SS_STEPS_1_MSB_SS_NUM_OF_STEPS_1_MSB 0x03
# Spread Spectrum No of Steps bits 10:8
#(OFFSET, MASK, VALUE) (0XFD40A36C, 0x00000007U ,0x00000003U) */
mask_write 0XFD40A36C 0x00000007 0x00000003
# Register : L3_PLL_SS_STEPS_0_LSB @ 0XFD40E368</p>
# Spread Spectrum No of Steps [7:0]
# PSU_SERDES_L3_PLL_SS_STEPS_0_LSB_SS_NUM_OF_STEPS_0_LSB 0xE0
# Spread Spectrum No of Steps bits 7:0
#(OFFSET, MASK, VALUE) (0XFD40E368, 0x000000FFU ,0x000000E0U) */
mask_write 0XFD40E368 0x000000FF 0x000000E0
# Register : L3_PLL_SS_STEPS_1_MSB @ 0XFD40E36C</p>
# Spread Spectrum No of Steps [10:8]
# PSU_SERDES_L3_PLL_SS_STEPS_1_MSB_SS_NUM_OF_STEPS_1_MSB 0x3
# Spread Spectrum No of Steps bits 10:8
#(OFFSET, MASK, VALUE) (0XFD40E36C, 0x00000007U ,0x00000003U) */
mask_write 0XFD40E36C 0x00000007 0x00000003
# Register : L1_PLL_SS_STEPS_0_LSB @ 0XFD406368</p>
# Spread Spectrum No of Steps [7:0]
# PSU_SERDES_L1_PLL_SS_STEPS_0_LSB_SS_NUM_OF_STEPS_0_LSB 0x58
# Spread Spectrum No of Steps bits 7:0
#(OFFSET, MASK, VALUE) (0XFD406368, 0x000000FFU ,0x00000058U) */
mask_write 0XFD406368 0x000000FF 0x00000058
# Register : L1_PLL_SS_STEPS_1_MSB @ 0XFD40636C</p>
# Spread Spectrum No of Steps [10:8]
# PSU_SERDES_L1_PLL_SS_STEPS_1_MSB_SS_NUM_OF_STEPS_1_MSB 0x3
# Spread Spectrum No of Steps bits 10:8
#(OFFSET, MASK, VALUE) (0XFD40636C, 0x00000007U ,0x00000003U) */
mask_write 0XFD40636C 0x00000007 0x00000003
# Register : L1_PLL_SS_STEP_SIZE_0_LSB @ 0XFD406370</p>
# Step Size for Spread Spectrum [7:0]
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_0_LSB_SS_STEP_SIZE_0_LSB 0x7C
# Step Size for Spread Spectrum LSB
#(OFFSET, MASK, VALUE) (0XFD406370, 0x000000FFU ,0x0000007CU) */
mask_write 0XFD406370 0x000000FF 0x0000007C
# Register : L1_PLL_SS_STEP_SIZE_1 @ 0XFD406374</p>
# Step Size for Spread Spectrum [15:8]
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_1_SS_STEP_SIZE_1 0x33
# Step Size for Spread Spectrum 1
#(OFFSET, MASK, VALUE) (0XFD406374, 0x000000FFU ,0x00000033U) */
mask_write 0XFD406374 0x000000FF 0x00000033
# Register : L1_PLL_SS_STEP_SIZE_2 @ 0XFD406378</p>
# Step Size for Spread Spectrum [23:16]
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_2_SS_STEP_SIZE_2 0x2
# Step Size for Spread Spectrum 2
#(OFFSET, MASK, VALUE) (0XFD406378, 0x000000FFU ,0x00000002U) */
mask_write 0XFD406378 0x000000FF 0x00000002
# Register : L1_PLL_SS_STEP_SIZE_3_MSB @ 0XFD40637C</p>
# Step Size for Spread Spectrum [25:24]
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_SS_STEP_SIZE_3_MSB 0x0
# Enable/Disable test mode force on SS step size
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_STEP_SIZE 0x1
# Enable/Disable test mode force on SS no of steps
# PSU_SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_NUM_OF_STEPS 0x1
# Enable force on enable Spread Spectrum
#(OFFSET, MASK, VALUE) (0XFD40637C, 0x00000033U ,0x00000030U) */
mask_write 0XFD40637C 0x00000033 0x00000030
# Register : L2_PLL_SS_STEP_SIZE_0_LSB @ 0XFD40A370</p>
# Step Size for Spread Spectrum [7:0]
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_0_LSB_SS_STEP_SIZE_0_LSB 0xF4
# Step Size for Spread Spectrum LSB
#(OFFSET, MASK, VALUE) (0XFD40A370, 0x000000FFU ,0x000000F4U) */
mask_write 0XFD40A370 0x000000FF 0x000000F4
# Register : L2_PLL_SS_STEP_SIZE_1 @ 0XFD40A374</p>
# Step Size for Spread Spectrum [15:8]
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_1_SS_STEP_SIZE_1 0x31
# Step Size for Spread Spectrum 1
#(OFFSET, MASK, VALUE) (0XFD40A374, 0x000000FFU ,0x00000031U) */
mask_write 0XFD40A374 0x000000FF 0x00000031
# Register : L2_PLL_SS_STEP_SIZE_2 @ 0XFD40A378</p>
# Step Size for Spread Spectrum [23:16]
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_2_SS_STEP_SIZE_2 0x2
# Step Size for Spread Spectrum 2
#(OFFSET, MASK, VALUE) (0XFD40A378, 0x000000FFU ,0x00000002U) */
mask_write 0XFD40A378 0x000000FF 0x00000002
# Register : L2_PLL_SS_STEP_SIZE_3_MSB @ 0XFD40A37C</p>
# Step Size for Spread Spectrum [25:24]
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_SS_STEP_SIZE_3_MSB 0x0
# Enable/Disable test mode force on SS step size
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_STEP_SIZE 0x1
# Enable/Disable test mode force on SS no of steps
# PSU_SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_NUM_OF_STEPS 0x1
# Enable force on enable Spread Spectrum
#(OFFSET, MASK, VALUE) (0XFD40A37C, 0x00000033U ,0x00000030U) */
mask_write 0XFD40A37C 0x00000033 0x00000030
# Register : L3_PLL_SS_STEP_SIZE_0_LSB @ 0XFD40E370</p>
# Step Size for Spread Spectrum [7:0]
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_0_LSB_SS_STEP_SIZE_0_LSB 0xC9
# Step Size for Spread Spectrum LSB
#(OFFSET, MASK, VALUE) (0XFD40E370, 0x000000FFU ,0x000000C9U) */
mask_write 0XFD40E370 0x000000FF 0x000000C9
# Register : L3_PLL_SS_STEP_SIZE_1 @ 0XFD40E374</p>
# Step Size for Spread Spectrum [15:8]
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_1_SS_STEP_SIZE_1 0xD2
# Step Size for Spread Spectrum 1
#(OFFSET, MASK, VALUE) (0XFD40E374, 0x000000FFU ,0x000000D2U) */
mask_write 0XFD40E374 0x000000FF 0x000000D2
# Register : L3_PLL_SS_STEP_SIZE_2 @ 0XFD40E378</p>
# Step Size for Spread Spectrum [23:16]
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_2_SS_STEP_SIZE_2 0x1
# Step Size for Spread Spectrum 2
#(OFFSET, MASK, VALUE) (0XFD40E378, 0x000000FFU ,0x00000001U) */
mask_write 0XFD40E378 0x000000FF 0x00000001
# Register : L3_PLL_SS_STEP_SIZE_3_MSB @ 0XFD40E37C</p>
# Step Size for Spread Spectrum [25:24]
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_SS_STEP_SIZE_3_MSB 0x0
# Enable/Disable test mode force on SS step size
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_STEP_SIZE 0x1
# Enable/Disable test mode force on SS no of steps
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_NUM_OF_STEPS 0x1
# Enable test mode forcing on enable Spread Spectrum
# PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_TM_FORCE_EN_SS 0x1
# Enable force on enable Spread Spectrum
#(OFFSET, MASK, VALUE) (0XFD40E37C, 0x000000B3U ,0x000000B0U) */
mask_write 0XFD40E37C 0x000000B3 0x000000B0
# Register : L2_TM_DIG_6 @ 0XFD40906C</p>
# Bypass Descrambler
# PSU_SERDES_L2_TM_DIG_6_BYPASS_DESCRAM 0x1
# Enable Bypass for <1> TM_DIG_CTRL_6
# PSU_SERDES_L2_TM_DIG_6_FORCE_BYPASS_DESCRAM 0x1
# Data path test modes in decoder and descram
#(OFFSET, MASK, VALUE) (0XFD40906C, 0x00000003U ,0x00000003U) */
mask_write 0XFD40906C 0x00000003 0x00000003
# Register : L2_TX_DIG_TM_61 @ 0XFD4080F4</p>
# Bypass scrambler signal
# PSU_SERDES_L2_TX_DIG_TM_61_BYPASS_SCRAM 0x1
# Enable/disable scrambler bypass signal
# PSU_SERDES_L2_TX_DIG_TM_61_FORCE_BYPASS_SCRAM 0x1
# MPHY PLL Gear and bypass scrambler
#(OFFSET, MASK, VALUE) (0XFD4080F4, 0x00000003U ,0x00000003U) */
mask_write 0XFD4080F4 0x00000003 0x00000003
# Register : L3_PLL_FBDIV_FRAC_3_MSB @ 0XFD40E360</p>
# Enable test mode force on fractional mode enable
# PSU_SERDES_L3_PLL_FBDIV_FRAC_3_MSB_TM_FORCE_EN_FRAC 0x1
# Fractional feedback division control and fractional value for feedback d
# ivision bits 26:24
#(OFFSET, MASK, VALUE) (0XFD40E360, 0x00000040U ,0x00000040U) */
mask_write 0XFD40E360 0x00000040 0x00000040
# Register : L3_TM_DIG_6 @ 0XFD40D06C</p>
# Bypass 8b10b decoder
# PSU_SERDES_L3_TM_DIG_6_BYPASS_DECODER 0x1
# Enable Bypass for <3> TM_DIG_CTRL_6
# PSU_SERDES_L3_TM_DIG_6_FORCE_BYPASS_DEC 0x1
# Bypass Descrambler
# PSU_SERDES_L3_TM_DIG_6_BYPASS_DESCRAM 0x1
# Enable Bypass for <1> TM_DIG_CTRL_6
# PSU_SERDES_L3_TM_DIG_6_FORCE_BYPASS_DESCRAM 0x1
# Data path test modes in decoder and descram
#(OFFSET, MASK, VALUE) (0XFD40D06C, 0x0000000FU ,0x0000000FU) */
mask_write 0XFD40D06C 0x0000000F 0x0000000F
# Register : L3_TX_DIG_TM_61 @ 0XFD40C0F4</p>
# Enable/disable encoder bypass signal
# PSU_SERDES_L3_TX_DIG_TM_61_BYPASS_ENC 0x1
# Bypass scrambler signal
# PSU_SERDES_L3_TX_DIG_TM_61_BYPASS_SCRAM 0x1
# Enable/disable scrambler bypass signal
# PSU_SERDES_L3_TX_DIG_TM_61_FORCE_BYPASS_SCRAM 0x1
# MPHY PLL Gear and bypass scrambler
#(OFFSET, MASK, VALUE) (0XFD40C0F4, 0x0000000BU ,0x0000000BU) */
mask_write 0XFD40C0F4 0x0000000B 0x0000000B
# : ENABLE CHICKEN BIT FOR PCIE AND USB
# Register : L0_TM_AUX_0 @ 0XFD4010CC</p>
# Spare- not used
# PSU_SERDES_L0_TM_AUX_0_BIT_2 1
# Spare registers
#(OFFSET, MASK, VALUE) (0XFD4010CC, 0x00000020U ,0x00000020U) */
mask_write 0XFD4010CC 0x00000020 0x00000020
# Register : L2_TM_AUX_0 @ 0XFD4090CC</p>
# Spare- not used
# PSU_SERDES_L2_TM_AUX_0_BIT_2 1
# Spare registers
#(OFFSET, MASK, VALUE) (0XFD4090CC, 0x00000020U ,0x00000020U) */
mask_write 0XFD4090CC 0x00000020 0x00000020
# : ENABLING EYE SURF
# Register : L0_TM_DIG_8 @ 0XFD401074</p>
# Enable Eye Surf
# PSU_SERDES_L0_TM_DIG_8_EYESURF_ENABLE 0x1
# Test modes for Elastic buffer and enabling Eye Surf
#(OFFSET, MASK, VALUE) (0XFD401074, 0x00000010U ,0x00000010U) */
mask_write 0XFD401074 0x00000010 0x00000010
# Register : L1_TM_DIG_8 @ 0XFD405074</p>
# Enable Eye Surf
# PSU_SERDES_L1_TM_DIG_8_EYESURF_ENABLE 0x1
# Test modes for Elastic buffer and enabling Eye Surf
#(OFFSET, MASK, VALUE) (0XFD405074, 0x00000010U ,0x00000010U) */
mask_write 0XFD405074 0x00000010 0x00000010
# Register : L2_TM_DIG_8 @ 0XFD409074</p>
# Enable Eye Surf
# PSU_SERDES_L2_TM_DIG_8_EYESURF_ENABLE 0x1
# Test modes for Elastic buffer and enabling Eye Surf
#(OFFSET, MASK, VALUE) (0XFD409074, 0x00000010U ,0x00000010U) */
mask_write 0XFD409074 0x00000010 0x00000010
# Register : L3_TM_DIG_8 @ 0XFD40D074</p>
# Enable Eye Surf
# PSU_SERDES_L3_TM_DIG_8_EYESURF_ENABLE 0x1
# Test modes for Elastic buffer and enabling Eye Surf
#(OFFSET, MASK, VALUE) (0XFD40D074, 0x00000010U ,0x00000010U) */
mask_write 0XFD40D074 0x00000010 0x00000010
# : ILL SETTINGS FOR GAIN AND LOCK SETTINGS
# Register : L0_TM_MISC2 @ 0XFD40189C</p>
# ILL calib counts BYPASSED with calcode bits
# PSU_SERDES_L0_TM_MISC2_ILL_CAL_BYPASS_COUNTS 0x1
# sampler cal
#(OFFSET, MASK, VALUE) (0XFD40189C, 0x00000080U ,0x00000080U) */
mask_write 0XFD40189C 0x00000080 0x00000080
# Register : L0_TM_IQ_ILL1 @ 0XFD4018F8</p>
# IQ ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 ,
# USB3 : SS
# PSU_SERDES_L0_TM_IQ_ILL1_ILL_BYPASS_IQ_CALCODE_F0 0x64
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD4018F8, 0x000000FFU ,0x00000064U) */
mask_write 0XFD4018F8 0x000000FF 0x00000064
# Register : L0_TM_IQ_ILL2 @ 0XFD4018FC</p>
# IQ ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L0_TM_IQ_ILL2_ILL_BYPASS_IQ_CALCODE_F1 0x64
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD4018FC, 0x000000FFU ,0x00000064U) */
mask_write 0XFD4018FC 0x000000FF 0x00000064
# Register : L0_TM_ILL12 @ 0XFD401990</p>
# G1A pll ctr bypass value
# PSU_SERDES_L0_TM_ILL12_G1A_PLL_CTR_BYP_VAL 0x11
# ill pll counter values
#(OFFSET, MASK, VALUE) (0XFD401990, 0x000000FFU ,0x00000011U) */
mask_write 0XFD401990 0x000000FF 0x00000011
# Register : L0_TM_E_ILL1 @ 0XFD401924</p>
# E ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , U
# SB3 : SS
# PSU_SERDES_L0_TM_E_ILL1_ILL_BYPASS_E_CALCODE_F0 0x4
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD401924, 0x000000FFU ,0x00000004U) */
mask_write 0XFD401924 0x000000FF 0x00000004
# Register : L0_TM_E_ILL2 @ 0XFD401928</p>
# E ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L0_TM_E_ILL2_ILL_BYPASS_E_CALCODE_F1 0xFE
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD401928, 0x000000FFU ,0x000000FEU) */
mask_write 0XFD401928 0x000000FF 0x000000FE
# Register : L0_TM_IQ_ILL3 @ 0XFD401900</p>
# IQ ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L0_TM_IQ_ILL3_ILL_BYPASS_IQ_CALCODE_F2 0x64
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD401900, 0x000000FFU ,0x00000064U) */
mask_write 0XFD401900 0x000000FF 0x00000064
# Register : L0_TM_E_ILL3 @ 0XFD40192C</p>
# E ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L0_TM_E_ILL3_ILL_BYPASS_E_CALCODE_F2 0x0
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40192C, 0x000000FFU ,0x00000000U) */
mask_write 0XFD40192C 0x000000FF 0x00000000
# Register : L0_TM_ILL8 @ 0XFD401980</p>
# ILL calibration code change wait time
# PSU_SERDES_L0_TM_ILL8_ILL_CAL_ITER_WAIT 0xFF
# ILL cal routine control
#(OFFSET, MASK, VALUE) (0XFD401980, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD401980 0x000000FF 0x000000FF
# Register : L0_TM_IQ_ILL8 @ 0XFD401914</p>
# IQ ILL polytrim bypass value
# PSU_SERDES_L0_TM_IQ_ILL8_ILL_BYPASS_IQ_POLYTRIM_VAL 0xF7
# iqpi polytrim
#(OFFSET, MASK, VALUE) (0XFD401914, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD401914 0x000000FF 0x000000F7
# Register : L0_TM_IQ_ILL9 @ 0XFD401918</p>
# bypass IQ polytrim
# PSU_SERDES_L0_TM_IQ_ILL9_ILL_BYPASS_IQ_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD401918, 0x00000001U ,0x00000001U) */
mask_write 0XFD401918 0x00000001 0x00000001
# Register : L0_TM_E_ILL8 @ 0XFD401940</p>
# E ILL polytrim bypass value
# PSU_SERDES_L0_TM_E_ILL8_ILL_BYPASS_E_POLYTRIM_VAL 0xF7
# epi polytrim
#(OFFSET, MASK, VALUE) (0XFD401940, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD401940 0x000000FF 0x000000F7
# Register : L0_TM_E_ILL9 @ 0XFD401944</p>
# bypass E polytrim
# PSU_SERDES_L0_TM_E_ILL9_ILL_BYPASS_E_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD401944, 0x00000001U ,0x00000001U) */
mask_write 0XFD401944 0x00000001 0x00000001
# Register : L0_TM_ILL13 @ 0XFD401994</p>
# ILL cal idle val refcnt
# PSU_SERDES_L0_TM_ILL13_ILL_CAL_IDLE_VAL_REFCNT 0x7
# ill cal idle value count
#(OFFSET, MASK, VALUE) (0XFD401994, 0x00000007U ,0x00000007U) */
mask_write 0XFD401994 0x00000007 0x00000007
# Register : L1_TM_ILL13 @ 0XFD405994</p>
# ILL cal idle val refcnt
# PSU_SERDES_L1_TM_ILL13_ILL_CAL_IDLE_VAL_REFCNT 0x7
# ill cal idle value count
#(OFFSET, MASK, VALUE) (0XFD405994, 0x00000007U ,0x00000007U) */
mask_write 0XFD405994 0x00000007 0x00000007
# Register : L2_TM_MISC2 @ 0XFD40989C</p>
# ILL calib counts BYPASSED with calcode bits
# PSU_SERDES_L2_TM_MISC2_ILL_CAL_BYPASS_COUNTS 0x1
# sampler cal
#(OFFSET, MASK, VALUE) (0XFD40989C, 0x00000080U ,0x00000080U) */
mask_write 0XFD40989C 0x00000080 0x00000080
# Register : L2_TM_IQ_ILL1 @ 0XFD4098F8</p>
# IQ ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 ,
# USB3 : SS
# PSU_SERDES_L2_TM_IQ_ILL1_ILL_BYPASS_IQ_CALCODE_F0 0x1A
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD4098F8, 0x000000FFU ,0x0000001AU) */
mask_write 0XFD4098F8 0x000000FF 0x0000001A
# Register : L2_TM_IQ_ILL2 @ 0XFD4098FC</p>
# IQ ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L2_TM_IQ_ILL2_ILL_BYPASS_IQ_CALCODE_F1 0x1A
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD4098FC, 0x000000FFU ,0x0000001AU) */
mask_write 0XFD4098FC 0x000000FF 0x0000001A
# Register : L2_TM_ILL12 @ 0XFD409990</p>
# G1A pll ctr bypass value
# PSU_SERDES_L2_TM_ILL12_G1A_PLL_CTR_BYP_VAL 0x10
# ill pll counter values
#(OFFSET, MASK, VALUE) (0XFD409990, 0x000000FFU ,0x00000010U) */
mask_write 0XFD409990 0x000000FF 0x00000010
# Register : L2_TM_E_ILL1 @ 0XFD409924</p>
# E ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , U
# SB3 : SS
# PSU_SERDES_L2_TM_E_ILL1_ILL_BYPASS_E_CALCODE_F0 0xFE
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD409924, 0x000000FFU ,0x000000FEU) */
mask_write 0XFD409924 0x000000FF 0x000000FE
# Register : L2_TM_E_ILL2 @ 0XFD409928</p>
# E ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L2_TM_E_ILL2_ILL_BYPASS_E_CALCODE_F1 0x0
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD409928, 0x000000FFU ,0x00000000U) */
mask_write 0XFD409928 0x000000FF 0x00000000
# Register : L2_TM_IQ_ILL3 @ 0XFD409900</p>
# IQ ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L2_TM_IQ_ILL3_ILL_BYPASS_IQ_CALCODE_F2 0x1A
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD409900, 0x000000FFU ,0x0000001AU) */
mask_write 0XFD409900 0x000000FF 0x0000001A
# Register : L2_TM_E_ILL3 @ 0XFD40992C</p>
# E ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L2_TM_E_ILL3_ILL_BYPASS_E_CALCODE_F2 0x0
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40992C, 0x000000FFU ,0x00000000U) */
mask_write 0XFD40992C 0x000000FF 0x00000000
# Register : L2_TM_ILL8 @ 0XFD409980</p>
# ILL calibration code change wait time
# PSU_SERDES_L2_TM_ILL8_ILL_CAL_ITER_WAIT 0xFF
# ILL cal routine control
#(OFFSET, MASK, VALUE) (0XFD409980, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD409980 0x000000FF 0x000000FF
# Register : L2_TM_IQ_ILL8 @ 0XFD409914</p>
# IQ ILL polytrim bypass value
# PSU_SERDES_L2_TM_IQ_ILL8_ILL_BYPASS_IQ_POLYTRIM_VAL 0xF7
# iqpi polytrim
#(OFFSET, MASK, VALUE) (0XFD409914, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD409914 0x000000FF 0x000000F7
# Register : L2_TM_IQ_ILL9 @ 0XFD409918</p>
# bypass IQ polytrim
# PSU_SERDES_L2_TM_IQ_ILL9_ILL_BYPASS_IQ_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD409918, 0x00000001U ,0x00000001U) */
mask_write 0XFD409918 0x00000001 0x00000001
# Register : L2_TM_E_ILL8 @ 0XFD409940</p>
# E ILL polytrim bypass value
# PSU_SERDES_L2_TM_E_ILL8_ILL_BYPASS_E_POLYTRIM_VAL 0xF7
# epi polytrim
#(OFFSET, MASK, VALUE) (0XFD409940, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD409940 0x000000FF 0x000000F7
# Register : L2_TM_E_ILL9 @ 0XFD409944</p>
# bypass E polytrim
# PSU_SERDES_L2_TM_E_ILL9_ILL_BYPASS_E_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD409944, 0x00000001U ,0x00000001U) */
mask_write 0XFD409944 0x00000001 0x00000001
# Register : L2_TM_ILL13 @ 0XFD409994</p>
# ILL cal idle val refcnt
# PSU_SERDES_L2_TM_ILL13_ILL_CAL_IDLE_VAL_REFCNT 0x7
# ill cal idle value count
#(OFFSET, MASK, VALUE) (0XFD409994, 0x00000007U ,0x00000007U) */
mask_write 0XFD409994 0x00000007 0x00000007
# Register : L3_TM_MISC2 @ 0XFD40D89C</p>
# ILL calib counts BYPASSED with calcode bits
# PSU_SERDES_L3_TM_MISC2_ILL_CAL_BYPASS_COUNTS 0x1
# sampler cal
#(OFFSET, MASK, VALUE) (0XFD40D89C, 0x00000080U ,0x00000080U) */
mask_write 0XFD40D89C 0x00000080 0x00000080
# Register : L3_TM_IQ_ILL1 @ 0XFD40D8F8</p>
# IQ ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 ,
# USB3 : SS
# PSU_SERDES_L3_TM_IQ_ILL1_ILL_BYPASS_IQ_CALCODE_F0 0x7D
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD40D8F8, 0x000000FFU ,0x0000007DU) */
mask_write 0XFD40D8F8 0x000000FF 0x0000007D
# Register : L3_TM_IQ_ILL2 @ 0XFD40D8FC</p>
# IQ ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L3_TM_IQ_ILL2_ILL_BYPASS_IQ_CALCODE_F1 0x7D
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD40D8FC, 0x000000FFU ,0x0000007DU) */
mask_write 0XFD40D8FC 0x000000FF 0x0000007D
# Register : L3_TM_ILL12 @ 0XFD40D990</p>
# G1A pll ctr bypass value
# PSU_SERDES_L3_TM_ILL12_G1A_PLL_CTR_BYP_VAL 0x1
# ill pll counter values
#(OFFSET, MASK, VALUE) (0XFD40D990, 0x000000FFU ,0x00000001U) */
mask_write 0XFD40D990 0x000000FF 0x00000001
# Register : L3_TM_E_ILL1 @ 0XFD40D924</p>
# E ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , U
# SB3 : SS
# PSU_SERDES_L3_TM_E_ILL1_ILL_BYPASS_E_CALCODE_F0 0x9C
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40D924, 0x000000FFU ,0x0000009CU) */
mask_write 0XFD40D924 0x000000FF 0x0000009C
# Register : L3_TM_E_ILL2 @ 0XFD40D928</p>
# E ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
# PSU_SERDES_L3_TM_E_ILL2_ILL_BYPASS_E_CALCODE_F1 0x39
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40D928, 0x000000FFU ,0x00000039U) */
mask_write 0XFD40D928 0x000000FF 0x00000039
# Register : L3_TM_ILL11 @ 0XFD40D98C</p>
# G2A_PCIe1 PLL ctr bypass value
# PSU_SERDES_L3_TM_ILL11_G2A_PCIEG1_PLL_CTR_11_8_BYP_VAL 0x2
# ill pll counter values
#(OFFSET, MASK, VALUE) (0XFD40D98C, 0x000000F0U ,0x00000020U) */
mask_write 0XFD40D98C 0x000000F0 0x00000020
# Register : L3_TM_IQ_ILL3 @ 0XFD40D900</p>
# IQ ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L3_TM_IQ_ILL3_ILL_BYPASS_IQ_CALCODE_F2 0x7D
# iqpi cal code
#(OFFSET, MASK, VALUE) (0XFD40D900, 0x000000FFU ,0x0000007DU) */
mask_write 0XFD40D900 0x000000FF 0x0000007D
# Register : L3_TM_E_ILL3 @ 0XFD40D92C</p>
# E ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
# PSU_SERDES_L3_TM_E_ILL3_ILL_BYPASS_E_CALCODE_F2 0x64
# epi cal code
#(OFFSET, MASK, VALUE) (0XFD40D92C, 0x000000FFU ,0x00000064U) */
mask_write 0XFD40D92C 0x000000FF 0x00000064
# Register : L3_TM_ILL8 @ 0XFD40D980</p>
# ILL calibration code change wait time
# PSU_SERDES_L3_TM_ILL8_ILL_CAL_ITER_WAIT 0xFF
# ILL cal routine control
#(OFFSET, MASK, VALUE) (0XFD40D980, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD40D980 0x000000FF 0x000000FF
# Register : L3_TM_IQ_ILL8 @ 0XFD40D914</p>
# IQ ILL polytrim bypass value
# PSU_SERDES_L3_TM_IQ_ILL8_ILL_BYPASS_IQ_POLYTRIM_VAL 0xF7
# iqpi polytrim
#(OFFSET, MASK, VALUE) (0XFD40D914, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD40D914 0x000000FF 0x000000F7
# Register : L3_TM_IQ_ILL9 @ 0XFD40D918</p>
# bypass IQ polytrim
# PSU_SERDES_L3_TM_IQ_ILL9_ILL_BYPASS_IQ_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD40D918, 0x00000001U ,0x00000001U) */
mask_write 0XFD40D918 0x00000001 0x00000001
# Register : L3_TM_E_ILL8 @ 0XFD40D940</p>
# E ILL polytrim bypass value
# PSU_SERDES_L3_TM_E_ILL8_ILL_BYPASS_E_POLYTRIM_VAL 0xF7
# epi polytrim
#(OFFSET, MASK, VALUE) (0XFD40D940, 0x000000FFU ,0x000000F7U) */
mask_write 0XFD40D940 0x000000FF 0x000000F7
# Register : L3_TM_E_ILL9 @ 0XFD40D944</p>
# bypass E polytrim
# PSU_SERDES_L3_TM_E_ILL9_ILL_BYPASS_E_POLYTIM 0x1
# enables for lf,constant gm trim and polytirm
#(OFFSET, MASK, VALUE) (0XFD40D944, 0x00000001U ,0x00000001U) */
mask_write 0XFD40D944 0x00000001 0x00000001
# Register : L3_TM_ILL13 @ 0XFD40D994</p>
# ILL cal idle val refcnt
# PSU_SERDES_L3_TM_ILL13_ILL_CAL_IDLE_VAL_REFCNT 0x7
# ill cal idle value count
#(OFFSET, MASK, VALUE) (0XFD40D994, 0x00000007U ,0x00000007U) */
mask_write 0XFD40D994 0x00000007 0x00000007
# : SYMBOL LOCK AND WAIT
# Register : L0_TM_DIG_10 @ 0XFD40107C</p>
# CDR lock wait time. (1-16 us). cdr_lock_wait_time = 4'b xxxx + 4'b 0001
# PSU_SERDES_L0_TM_DIG_10_CDR_BIT_LOCK_TIME 0x1
# test control for changing cdr lock wait time
#(OFFSET, MASK, VALUE) (0XFD40107C, 0x0000000FU ,0x00000001U) */
mask_write 0XFD40107C 0x0000000F 0x00000001
# Register : L1_TM_DIG_10 @ 0XFD40507C</p>
# CDR lock wait time. (1-16 us). cdr_lock_wait_time = 4'b xxxx + 4'b 0001
# PSU_SERDES_L1_TM_DIG_10_CDR_BIT_LOCK_TIME 0x1
# test control for changing cdr lock wait time
#(OFFSET, MASK, VALUE) (0XFD40507C, 0x0000000FU ,0x00000001U) */
mask_write 0XFD40507C 0x0000000F 0x00000001
# Register : L2_TM_DIG_10 @ 0XFD40907C</p>
# CDR lock wait time. (1-16 us). cdr_lock_wait_time = 4'b xxxx + 4'b 0001
# PSU_SERDES_L2_TM_DIG_10_CDR_BIT_LOCK_TIME 0x1
# test control for changing cdr lock wait time
#(OFFSET, MASK, VALUE) (0XFD40907C, 0x0000000FU ,0x00000001U) */
mask_write 0XFD40907C 0x0000000F 0x00000001
# Register : L3_TM_DIG_10 @ 0XFD40D07C</p>
# CDR lock wait time. (1-16 us). cdr_lock_wait_time = 4'b xxxx + 4'b 0001
# PSU_SERDES_L3_TM_DIG_10_CDR_BIT_LOCK_TIME 0x1
# test control for changing cdr lock wait time
#(OFFSET, MASK, VALUE) (0XFD40D07C, 0x0000000FU ,0x00000001U) */
mask_write 0XFD40D07C 0x0000000F 0x00000001
# : SIOU SETTINGS FOR BYPASS CONTROL,HSRX-DIG
# Register : L0_TM_RST_DLY @ 0XFD4019A4</p>
# Delay apb reset by specified amount
# PSU_SERDES_L0_TM_RST_DLY_APB_RST_DLY 0xFF
# reset delay for apb reset w.r.t pso of hsrx
#(OFFSET, MASK, VALUE) (0XFD4019A4, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD4019A4 0x000000FF 0x000000FF
# Register : L0_TM_ANA_BYP_15 @ 0XFD401038</p>
# Enable Bypass for <7> of TM_ANA_BYPS_15
# PSU_SERDES_L0_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
# Bypass control for pcs-pma interface. EQ supplies, main master supply an
# d ps for samp c2c
#(OFFSET, MASK, VALUE) (0XFD401038, 0x00000040U ,0x00000040U) */
mask_write 0XFD401038 0x00000040 0x00000040
# Register : L0_TM_ANA_BYP_12 @ 0XFD40102C</p>
# Enable Bypass for <7> of TM_ANA_BYPS_12
# PSU_SERDES_L0_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
# Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr ena
# ble controls
#(OFFSET, MASK, VALUE) (0XFD40102C, 0x00000040U ,0x00000040U) */
mask_write 0XFD40102C 0x00000040 0x00000040
# Register : L1_TM_RST_DLY @ 0XFD4059A4</p>
# Delay apb reset by specified amount
# PSU_SERDES_L1_TM_RST_DLY_APB_RST_DLY 0xFF
# reset delay for apb reset w.r.t pso of hsrx
#(OFFSET, MASK, VALUE) (0XFD4059A4, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD4059A4 0x000000FF 0x000000FF
# Register : L1_TM_ANA_BYP_15 @ 0XFD405038</p>
# Enable Bypass for <7> of TM_ANA_BYPS_15
# PSU_SERDES_L1_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
# Bypass control for pcs-pma interface. EQ supplies, main master supply an
# d ps for samp c2c
#(OFFSET, MASK, VALUE) (0XFD405038, 0x00000040U ,0x00000040U) */
mask_write 0XFD405038 0x00000040 0x00000040
# Register : L1_TM_ANA_BYP_12 @ 0XFD40502C</p>
# Enable Bypass for <7> of TM_ANA_BYPS_12
# PSU_SERDES_L1_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
# Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr ena
# ble controls
#(OFFSET, MASK, VALUE) (0XFD40502C, 0x00000040U ,0x00000040U) */
mask_write 0XFD40502C 0x00000040 0x00000040
# Register : L2_TM_RST_DLY @ 0XFD4099A4</p>
# Delay apb reset by specified amount
# PSU_SERDES_L2_TM_RST_DLY_APB_RST_DLY 0xFF
# reset delay for apb reset w.r.t pso of hsrx
#(OFFSET, MASK, VALUE) (0XFD4099A4, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD4099A4 0x000000FF 0x000000FF
# Register : L2_TM_ANA_BYP_15 @ 0XFD409038</p>
# Enable Bypass for <7> of TM_ANA_BYPS_15
# PSU_SERDES_L2_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
# Bypass control for pcs-pma interface. EQ supplies, main master supply an
# d ps for samp c2c
#(OFFSET, MASK, VALUE) (0XFD409038, 0x00000040U ,0x00000040U) */
mask_write 0XFD409038 0x00000040 0x00000040
# Register : L2_TM_ANA_BYP_12 @ 0XFD40902C</p>
# Enable Bypass for <7> of TM_ANA_BYPS_12
# PSU_SERDES_L2_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
# Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr ena
# ble controls
#(OFFSET, MASK, VALUE) (0XFD40902C, 0x00000040U ,0x00000040U) */
mask_write 0XFD40902C 0x00000040 0x00000040
# Register : L3_TM_RST_DLY @ 0XFD40D9A4</p>
# Delay apb reset by specified amount
# PSU_SERDES_L3_TM_RST_DLY_APB_RST_DLY 0xFF
# reset delay for apb reset w.r.t pso of hsrx
#(OFFSET, MASK, VALUE) (0XFD40D9A4, 0x000000FFU ,0x000000FFU) */
mask_write 0XFD40D9A4 0x000000FF 0x000000FF
# Register : L3_TM_ANA_BYP_15 @ 0XFD40D038</p>
# Enable Bypass for <7> of TM_ANA_BYPS_15
# PSU_SERDES_L3_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
# Bypass control for pcs-pma interface. EQ supplies, main master supply an
# d ps for samp c2c
#(OFFSET, MASK, VALUE) (0XFD40D038, 0x00000040U ,0x00000040U) */
mask_write 0XFD40D038 0x00000040 0x00000040
# Register : L3_TM_ANA_BYP_12 @ 0XFD40D02C</p>
# Enable Bypass for <7> of TM_ANA_BYPS_12
# PSU_SERDES_L3_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
# Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr ena
# ble controls
#(OFFSET, MASK, VALUE) (0XFD40D02C, 0x00000040U ,0x00000040U) */
mask_write 0XFD40D02C 0x00000040 0x00000040
# : DISABLE FPL/FFL
# Register : L0_TM_MISC3 @ 0XFD4019AC</p>
# CDR fast phase lock control
# PSU_SERDES_L0_TM_MISC3_CDR_EN_FPL 0x0
# CDR fast frequency lock control
# PSU_SERDES_L0_TM_MISC3_CDR_EN_FFL 0x0
# debug bus selection bit, cdr fast phase and freq controls
#(OFFSET, MASK, VALUE) (0XFD4019AC, 0x00000003U ,0x00000000U) */
mask_write 0XFD4019AC 0x00000003 0x00000000
# Register : L1_TM_MISC3 @ 0XFD4059AC</p>
# CDR fast phase lock control
# PSU_SERDES_L1_TM_MISC3_CDR_EN_FPL 0x0
# CDR fast frequency lock control
# PSU_SERDES_L1_TM_MISC3_CDR_EN_FFL 0x0
# debug bus selection bit, cdr fast phase and freq controls
#(OFFSET, MASK, VALUE) (0XFD4059AC, 0x00000003U ,0x00000000U) */
mask_write 0XFD4059AC 0x00000003 0x00000000
# Register : L2_TM_MISC3 @ 0XFD4099AC</p>
# CDR fast phase lock control
# PSU_SERDES_L2_TM_MISC3_CDR_EN_FPL 0x0
# CDR fast frequency lock control
# PSU_SERDES_L2_TM_MISC3_CDR_EN_FFL 0x0
# debug bus selection bit, cdr fast phase and freq controls
#(OFFSET, MASK, VALUE) (0XFD4099AC, 0x00000003U ,0x00000000U) */
mask_write 0XFD4099AC 0x00000003 0x00000000
# Register : L3_TM_MISC3 @ 0XFD40D9AC</p>
# CDR fast phase lock control
# PSU_SERDES_L3_TM_MISC3_CDR_EN_FPL 0x0
# CDR fast frequency lock control
# PSU_SERDES_L3_TM_MISC3_CDR_EN_FFL 0x0
# debug bus selection bit, cdr fast phase and freq controls
#(OFFSET, MASK, VALUE) (0XFD40D9AC, 0x00000003U ,0x00000000U) */
mask_write 0XFD40D9AC 0x00000003 0x00000000
# : DISABLE DYNAMIC OFFSET CALIBRATION
# Register : L0_TM_EQ11 @ 0XFD401978</p>
# Force EQ offset correction algo off if not forced on
# PSU_SERDES_L0_TM_EQ11_FORCE_EQ_OFFS_OFF 0x1
# eq dynamic offset correction
#(OFFSET, MASK, VALUE) (0XFD401978, 0x00000010U ,0x00000010U) */
mask_write 0XFD401978 0x00000010 0x00000010
# Register : L1_TM_EQ11 @ 0XFD405978</p>
# Force EQ offset correction algo off if not forced on
# PSU_SERDES_L1_TM_EQ11_FORCE_EQ_OFFS_OFF 0x1
# eq dynamic offset correction
#(OFFSET, MASK, VALUE) (0XFD405978, 0x00000010U ,0x00000010U) */
mask_write 0XFD405978 0x00000010 0x00000010
# Register : L2_TM_EQ11 @ 0XFD409978</p>
# Force EQ offset correction algo off if not forced on
# PSU_SERDES_L2_TM_EQ11_FORCE_EQ_OFFS_OFF 0x1
# eq dynamic offset correction
#(OFFSET, MASK, VALUE) (0XFD409978, 0x00000010U ,0x00000010U) */
mask_write 0XFD409978 0x00000010 0x00000010
# Register : L3_TM_EQ11 @ 0XFD40D978</p>
# Force EQ offset correction algo off if not forced on
# PSU_SERDES_L3_TM_EQ11_FORCE_EQ_OFFS_OFF 0x1
# eq dynamic offset correction
#(OFFSET, MASK, VALUE) (0XFD40D978, 0x00000010U ,0x00000010U) */
mask_write 0XFD40D978 0x00000010 0x00000010
# : DISABLE ECO FOR PCIE
# Register : eco_0 @ 0XFD3D001C</p>
# For future use
# PSU_SIOU_ECO_0_FIELD 0x1
# ECO Register for future use
#(OFFSET, MASK, VALUE) (0XFD3D001C, 0xFFFFFFFFU ,0x00000001U) */
mask_write 0XFD3D001C 0xFFFFFFFF 0x00000001
# : GT LANE SETTINGS
# Register : ICM_CFG0 @ 0XFD410010</p>
# Controls UPHY Lane 0 protocol configuration. 0 - PowerDown, 1 - PCIe .0,
# 2 - Sata0, 3 - USB0, 4 - DP.1, 5 - SGMII0, 6 - Unused, 7 - Unused
# PSU_SERDES_ICM_CFG0_L0_ICM_CFG 1
# Controls UPHY Lane 1 protocol configuration. 0 - PowerDown, 1 - PCIe.1,
# 2 - Sata1, 3 - USB0, 4 - DP.0, 5 - SGMII1, 6 - Unused, 7 - Unused
# PSU_SERDES_ICM_CFG0_L1_ICM_CFG 4
# ICM Configuration Register 0
#(OFFSET, MASK, VALUE) (0XFD410010, 0x00000077U ,0x00000041U) */
mask_write 0XFD410010 0x00000077 0x00000041
# Register : ICM_CFG1 @ 0XFD410014</p>
# Controls UPHY Lane 2 protocol configuration. 0 - PowerDown, 1 - PCIe.1,
# 2 - Sata0, 3 - USB0, 4 - DP.1, 5 - SGMII2, 6 - Unused, 7 - Unused
# PSU_SERDES_ICM_CFG1_L2_ICM_CFG 3
# Controls UPHY Lane 3 protocol configuration. 0 - PowerDown, 1 - PCIe.3,
# 2 - Sata1, 3 - USB1, 4 - DP.0, 5 - SGMII3, 6 - Unused, 7 - Unused
# PSU_SERDES_ICM_CFG1_L3_ICM_CFG 2
# ICM Configuration Register 1
#(OFFSET, MASK, VALUE) (0XFD410014, 0x00000077U ,0x00000023U) */
mask_write 0XFD410014 0x00000077 0x00000023
# : CHECKING PLL LOCK
# : ENABLE SERIAL DATA MUX DEEMPH
# Register : L1_TXPMD_TM_45 @ 0XFD404CB4</p>
# Enable/disable DP post2 path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_DP_ENABLE_POST2_PATH 0x1
# Override enable/disable of DP post2 path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_OVRD_DP_ENABLE_POST2_PATH 0x1
# Override enable/disable of DP post1 path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_OVRD_DP_ENABLE_POST1_PATH 0x1
# Enable/disable DP main path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_DP_ENABLE_MAIN_PATH 0x1
# Override enable/disable of DP main path
# PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_OVRD_DP_ENABLE_MAIN_PATH 0x1
# Post or pre or main DP path selection
#(OFFSET, MASK, VALUE) (0XFD404CB4, 0x00000037U ,0x00000037U) */
mask_write 0XFD404CB4 0x00000037 0x00000037
# Register : L1_TX_ANA_TM_118 @ 0XFD4041D8</p>
# Test register force for enabling/disablign TX deemphasis bits <17:0>
# PSU_SERDES_L1_TX_ANA_TM_118_FORCE_TX_DEEMPH_17_0 0x1
# Enable Override of TX deemphasis
#(OFFSET, MASK, VALUE) (0XFD4041D8, 0x00000001U ,0x00000001U) */
mask_write 0XFD4041D8 0x00000001 0x00000001
# Register : L3_TX_ANA_TM_118 @ 0XFD40C1D8</p>
# Test register force for enabling/disablign TX deemphasis bits <17:0>
# PSU_SERDES_L3_TX_ANA_TM_118_FORCE_TX_DEEMPH_17_0 0x1
# Enable Override of TX deemphasis
#(OFFSET, MASK, VALUE) (0XFD40C1D8, 0x00000001U ,0x00000001U) */
mask_write 0XFD40C1D8 0x00000001 0x00000001
# : CDR AND RX EQUALIZATION SETTINGS
# Register : L3_TM_CDR5 @ 0XFD40DC14</p>
# FPHL FSM accumulate cycles
# PSU_SERDES_L3_TM_CDR5_FPHL_FSM_ACC_CYCLES 0x7
# FFL Phase0 int gain aka 2ol SD update rate
# PSU_SERDES_L3_TM_CDR5_FFL_PH0_INT_GAIN 0x6
# Fast phase lock controls -- FSM accumulator cycle control and phase 0 in
# t gain control.
#(OFFSET, MASK, VALUE) (0XFD40DC14, 0x000000FFU ,0x000000E6U) */
mask_write 0XFD40DC14 0x000000FF 0x000000E6
# Register : L3_TM_CDR16 @ 0XFD40DC40</p>
# FFL Phase0 prop gain aka 1ol SD update rate
# PSU_SERDES_L3_TM_CDR16_FFL_PH0_PROP_GAIN 0xC
# Fast phase lock controls -- phase 0 prop gain
#(OFFSET, MASK, VALUE) (0XFD40DC40, 0x0000001FU ,0x0000000CU) */
mask_write 0XFD40DC40 0x0000001F 0x0000000C
# Register : L3_TM_EQ0 @ 0XFD40D94C</p>
# EQ stg 2 controls BYPASSED
# PSU_SERDES_L3_TM_EQ0_EQ_STG2_CTRL_BYP 1
# eq stg1 and stg2 controls
#(OFFSET, MASK, VALUE) (0XFD40D94C, 0x00000020U ,0x00000020U) */
mask_write 0XFD40D94C 0x00000020 0x00000020
# Register : L3_TM_EQ1 @ 0XFD40D950</p>
# EQ STG2 RL PROG
# PSU_SERDES_L3_TM_EQ1_EQ_STG2_RL_PROG 0x2
# EQ stg 2 preamp mode val
# PSU_SERDES_L3_TM_EQ1_EQ_STG2_PREAMP_MODE_VAL 0x1
# eq stg1 and stg2 controls
#(OFFSET, MASK, VALUE) (0XFD40D950, 0x00000007U ,0x00000006U) */
mask_write 0XFD40D950 0x00000007 0x00000006
# : GEM SERDES SETTINGS
# : ENABLE PRE EMPHAIS AND VOLTAGE SWING
# Register : L1_TXPMD_TM_48 @ 0XFD404CC0</p>
# Margining factor value
# PSU_SERDES_L1_TXPMD_TM_48_TM_RESULTANT_MARGINING_FACTOR 0
# Margining factor
#(OFFSET, MASK, VALUE) (0XFD404CC0, 0x0000001FU ,0x00000000U) */
mask_write 0XFD404CC0 0x0000001F 0x00000000
# Register : L1_TX_ANA_TM_18 @ 0XFD404048</p>
# pipe_TX_Deemph. 0: -6dB de-emphasis, 1: -3.5dB de-emphasis, 2 : No de-em
# phasis, Others: reserved
# PSU_SERDES_L1_TX_ANA_TM_18_PIPE_TX_DEEMPH_7_0 0
# Override for PIPE TX de-emphasis
#(OFFSET, MASK, VALUE) (0XFD404048, 0x000000FFU ,0x00000000U) */
mask_write 0XFD404048 0x000000FF 0x00000000
# Register : L3_TX_ANA_TM_18 @ 0XFD40C048</p>
# pipe_TX_Deemph. 0: -6dB de-emphasis, 1: -3.5dB de-emphasis, 2 : No de-em
# phasis, Others: reserved
# PSU_SERDES_L3_TX_ANA_TM_18_PIPE_TX_DEEMPH_7_0 0x1
# Override for PIPE TX de-emphasis
#(OFFSET, MASK, VALUE) (0XFD40C048, 0x000000FFU ,0x00000001U) */
mask_write 0XFD40C048 0x000000FF 0x00000001
}
set psu_resetout_init_data {
# : TAKING SERDES PERIPHERAL OUT OF RESET RESET
# : PUTTING USB0 IN RESET
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# USB 0 reset for control registers
# PSU_CRL_APB_RST_LPD_TOP_USB0_APB_RESET 0X0
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000400U ,0x00000000U) */
mask_write 0XFF5E023C 0x00000400 0x00000000
# : HIBERREST
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# USB 0 sleep circuit reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_HIBERRESET 0X0
# USB 0 reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_CORERESET 0X0
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000140U ,0x00000000U) */
mask_write 0XFF5E023C 0x00000140 0x00000000
# : PUTTING GEM0 IN RESET
# Register : RST_LPD_IOU0 @ 0XFF5E0230</p>
# GEM 3 reset
# PSU_CRL_APB_RST_LPD_IOU0_GEM3_RESET 0X0
# Software controlled reset for the GEMs
#(OFFSET, MASK, VALUE) (0XFF5E0230, 0x00000008U ,0x00000000U) */
mask_write 0XFF5E0230 0x00000008 0x00000000
# : PUTTING SATA IN RESET
# Register : sata_misc_ctrl @ 0XFD3D0100</p>
# Sata PM clock control select
# PSU_SIOU_SATA_MISC_CTRL_SATA_PM_CLK_SEL 0x3
# Misc Contorls for SATA.This register may only be modified during bootup
# (while SATA block is disabled)
#(OFFSET, MASK, VALUE) (0XFD3D0100, 0x00000003U ,0x00000003U) */
mask_write 0XFD3D0100 0x00000003 0x00000003
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# Sata block level reset
# PSU_CRF_APB_RST_FPD_TOP_SATA_RESET 0X0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00000002U ,0x00000000U) */
mask_write 0XFD1A0100 0x00000002 0x00000000
# : PUTTING PCIE CFG AND BRIDGE IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# PCIE config reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CFG_RESET 0X0
# PCIE bridge block level reset (AXI interface)
# PSU_CRF_APB_RST_FPD_TOP_PCIE_BRIDGE_RESET 0X0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x000C0000U ,0x00000000U) */
mask_write 0XFD1A0100 0x000C0000 0x00000000
# : PUTTING DP IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# Display Port block level reset (includes DPDMA)
# PSU_CRF_APB_RST_FPD_TOP_DP_RESET 0X0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00010000U ,0x00000000U) */
mask_write 0XFD1A0100 0x00010000 0x00000000
# Register : DP_PHY_RESET @ 0XFD4A0200</p>
# Set to '1' to hold the GT in reset. Clear to release.
# PSU_DP_DP_PHY_RESET_GT_RESET 0X0
# Reset the transmitter PHY.
#(OFFSET, MASK, VALUE) (0XFD4A0200, 0x00000002U ,0x00000000U) */
mask_write 0XFD4A0200 0x00000002 0x00000000
# Register : DP_TX_PHY_POWER_DOWN @ 0XFD4A0238</p>
# Two bits per lane. When set to 11, moves the GT to power down mode. When
# set to 00, GT will be in active state. bits [1:0] - lane0 Bits [3:2] -
# lane 1
# PSU_DP_DP_TX_PHY_POWER_DOWN_POWER_DWN 0X0
# Control PHY Power down
#(OFFSET, MASK, VALUE) (0XFD4A0238, 0x0000000FU ,0x00000000U) */
mask_write 0XFD4A0238 0x0000000F 0x00000000
# : USB0 GFLADJ
# Register : GUSB2PHYCFG @ 0XFE20C200</p>
# USB 2.0 Turnaround Time (USBTrdTim) Sets the turnaround time in PHY cloc
# ks. Specifies the response time for a MAC request to the Packet FIFO Con
# troller (PFC) to fetch data from the DFIFO (SPRAM). The following are th
# e required values for the minimum SoC bus frequency of 60 MHz. USB turna
# round time is a critical certification criteria when using long cables a
# nd five hub levels. The required values for this field: - 4'h5: When the
# MAC interface is 16-bit UTMI+. - 4'h9: When the MAC interface is 8-bit
# UTMI+/ULPI. If SoC bus clock is less than 60 MHz, and USB turnaround tim
# e is not critical, this field can be set to a larger value. Note: This f
# ield is valid only in device mode.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_USBTRDTIM 0x9
# Transceiver Delay: Enables a delay between the assertion of the UTMI/ULP
# I Transceiver Select signal (for HS) and the assertion of the TxValid si
# gnal during a HS Chirp. When this bit is set to 1, a delay (of approxima
# tely 2.5 us) is introduced from the time when the Transceiver Select is
# set to 2'b00 (HS) to the time the TxValid is driven to 0 for sending the
# chirp-K. This delay is required for some UTMI/ULPI PHYs. Note: - If you
# enable the hibernation feature when the device core comes out of power-
# off, you must re-initialize this bit with the appropriate value because
# the core does not save and restore this bit value during hibernation. -
# This bit is valid only in device mode.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_XCVRDLY 0x0
# Enable utmi_sleep_n and utmi_l1_suspend_n (EnblSlpM) The application use
# s this bit to control utmi_sleep_n and utmi_l1_suspend_n assertion to th
# e PHY in the L1 state. - 1'b0: utmi_sleep_n and utmi_l1_suspend_n assert
# ion from the core is not transferred to the external PHY. - 1'b1: utmi_s
# leep_n and utmi_l1_suspend_n assertion from the core is transferred to t
# he external PHY. Note: This bit must be set high for Port0 if PHY is use
# d. Note: In Device mode - Before issuing any device endpoint command whe
# n operating in 2.0 speeds, disable this bit and enable it after the comm
# and completes. Without disabling this bit, if a command is issued when t
# he device is in L1 state and if mac2_clk (utmi_clk/ulpi_clk) is gated of
# f, the command will not get completed.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_ENBLSLPM 0x0
# USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial Transceiver Select T
# he application uses this bit to select a high-speed PHY or a full-speed
# transceiver. - 1'b0: USB 2.0 high-speed UTMI+ or ULPI PHY. This bit is a
# lways 0, with Write Only access. - 1'b1: USB 1.1 full-speed serial trans
# ceiver. This bit is always 1, with Write Only access. If both interface
# types are selected in coreConsultant (that is, parameters' values are no
# t zero), the application uses this bit to select the active interface is
# active, with Read-Write bit access. Note: USB 1.1 full-serial transceiv
# er is not supported. This bit always reads as 1'b0.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_PHYSEL 0x0
# Suspend USB2.0 HS/FS/LS PHY (SusPHY) When set, USB2.0 PHY enters Suspend
# mode if Suspend conditions are valid. For DRD/OTG configurations, it is
# recommended that this bit is set to 0 during coreConsultant configurati
# on. If it is set to 1, then the application must clear this bit after po
# wer-on reset. Application needs to set it to 1 after the core initializa
# tion completes. For all other configurations, this bit can be set to 1 d
# uring core configuration. Note: - In host mode, on reset, this bit is se
# t to 1. Software can override this bit after reset. - In device mode, be
# fore issuing any device endpoint command when operating in 2.0 speeds, d
# isable this bit and enable it after the command completes. If you issue
# a command without disabling this bit when the device is in L2 state and
# if mac2_clk (utmi_clk/ulpi_clk) is gated off, the command will not get c
# ompleted.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_SUSPENDUSB20 0x1
# Full-Speed Serial Interface Select (FSIntf) The application uses this bi
# t to select a unidirectional or bidirectional USB 1.1 full-speed serial
# transceiver interface. - 1'b0: 6-pin unidirectional full-speed serial in
# terface. This bit is set to 0 with Read Only access. - 1'b1: 3-pin bidir
# ectional full-speed serial interface. This bit is set to 0 with Read Onl
# y access. Note: USB 1.1 full-speed serial interface is not supported. Th
# is bit always reads as 1'b0.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_FSINTF 0x0
# ULPI or UTMI+ Select (ULPI_UTMI_Sel) The application uses this bit to se
# lect a UTMI+ or ULPI Interface. - 1'b0: UTMI+ Interface - 1'b1: ULPI Int
# erface This bit is writable only if UTMI+ and ULPI is specified for High
# -Speed PHY Interface(s) in coreConsultant configuration (DWC_USB3_HSPHY_
# INTERFACE = 3). Otherwise, this bit is read-only and the value depends o
# n the interface selected through DWC_USB3_HSPHY_INTERFACE.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_ULPI_UTMI_SEL 0x1
# PHY Interface (PHYIf) If UTMI+ is selected, the application uses this bi
# t to configure the core to support a UTMI+ PHY with an 8- or 16-bit inte
# rface. - 1'b0: 8 bits - 1'b1: 16 bits ULPI Mode: 1'b0 Note: - All the en
# abled 2.0 ports must have the same clock frequency as Port0 clock freque
# ncy (utmi_clk[0]). - The UTMI 8-bit and 16-bit modes cannot be used toge
# ther for different ports at the same time (that is, all the ports must b
# e in 8-bit mode, or all of them must be in 16-bit mode, at a time). - If
# any of the USB 2.0 ports is selected as ULPI port for operation, then a
# ll the USB 2.0 ports must be operating at 60 MHz.
# PSU_USB3_0_XHCI_GUSB2PHYCFG_PHYIF 0x0
# HS/FS Timeout Calibration (TOutCal) The number of PHY clocks, as indicat
# ed by the application in this field, is multiplied by a bit-time factor;
# this factor is added to the high-speed/full-speed interpacket timeout d
# uration in the core to account for additional delays introduced by the P
# HY. This may be required, since the delay introduced by the PHY in gener
# ating the linestate condition may vary among PHYs. The USB standard time
# out value for high-speed operation is 736 to 816 (inclusive) bit times.
# The USB standard timeout value for full-speed operation is 16 to 18 (inc
# lusive) bit times. The application must program this field based on the
# speed of connection. The number of bit times added per PHY clock are: Hi
# gh-speed operation: - One 30-MHz PHY clock = 16 bit times - One 60-MHz P
# HY clock = 8 bit times Full-speed operation: - One 30-MHz PHY clock = 0.
# 4 bit times - One 60-MHz PHY clock = 0.2 bit times - One 48-MHz PHY cloc
# k = 0.25 bit times
# PSU_USB3_0_XHCI_GUSB2PHYCFG_TOUTCAL 0x7
# ULPI External VBUS Drive (ULPIExtVbusDrv) Selects supply source to drive
# 5V on VBUS, in the ULPI PHY. - 1'b0: PHY drives VBUS with internal char
# ge pump (default). - 1'b1: PHY drives VBUS with an external supply. (Onl
# y when RTL parameter DWC_USB3_HSPHY_INTERFACE = 2 or 3)
# PSU_USB3_0_XHCI_GUSB2PHYCFG_ULPIEXTVBUSDRV 0x1
# Global USB2 PHY Configuration Register The application must program this
# register before starting any transactions on either the SoC bus or the
# USB. In Device-only configurations, only one register is needed. In Host
# mode, per-port registers are implemented.
#(OFFSET, MASK, VALUE) (0XFE20C200, 0x00023FFFU ,0x00022457U) */
mask_write 0XFE20C200 0x00023FFF 0x00022457
# Register : GFLADJ @ 0XFE20C630</p>
# This field indicates the frame length adjustment to be applied when SOF/
# ITP counter is running on the ref_clk. This register value is used to ad
# just the ITP interval when GCTL[SOFITPSYNC] is set to '1'; SOF and ITP i
# nterval when GLADJ.GFLADJ_REFCLK_LPM_SEL is set to '1'. This field must
# be programmed to a non-zero value only if GFLADJ_REFCLK_LPM_SEL is set t
# o '1' or GCTL.SOFITPSYNC is set to '1'. The value is derived as follows:
# FLADJ_REF_CLK_FLADJ=((125000/ref_clk_period_integer)-(125000/ref_clk_pe
# riod)) * ref_clk_period where - the ref_clk_period_integer is the intege
# r value of the ref_clk period got by truncating the decimal (fractional)
# value that is programmed in the GUCTL.REF_CLK_PERIOD field. - the ref_c
# lk_period is the ref_clk period including the fractional value. Examples
# : If the ref_clk is 24 MHz then - GUCTL.REF_CLK_PERIOD = 41 - GFLADJ.GLA
# DJ_REFCLK_FLADJ = ((125000/41)-(125000/41.6666))*41.6666 = 2032 (ignorin
# g the fractional value) If the ref_clk is 48 MHz then - GUCTL.REF_CLK_PE
# RIOD = 20 - GFLADJ.GLADJ_REFCLK_FLADJ = ((125000/20)-(125000/20.8333))*2
# 0.8333 = 5208 (ignoring the fractional value)
# PSU_USB3_0_XHCI_GFLADJ_GFLADJ_REFCLK_FLADJ 0x0
# Global Frame Length Adjustment Register This register provides options f
# or the software to control the core behavior with respect to SOF (Start
# of Frame) and ITP (Isochronous Timestamp Packet) timers and frame timer
# functionality. It provides an option to override the fladj_30mhz_reg sid
# eband signal. In addition, it enables running SOF or ITP frame timer cou
# nters completely from the ref_clk. This facilitates hardware LPM in host
# mode with the SOF or ITP counters being run from the ref_clk signal.
#(OFFSET, MASK, VALUE) (0XFE20C630, 0x003FFF00U ,0x00000000U) */
mask_write 0XFE20C630 0x003FFF00 0x00000000
# Register : GUCTL1 @ 0XFE20C11C</p>
# When this bit is set to '0', termsel, xcvrsel will become 0 during end o
# f resume while the opmode will become 0 once controller completes end of
# resume and enters U0 state (2 separate commandswill be issued). When th
# is bit is set to '1', all the termsel, xcvrsel, opmode becomes 0 during
# end of resume itself (only 1 command will be issued)
# PSU_USB3_0_XHCI_GUCTL1_RESUME_TERMSEL_XCVRSEL_UNIFY 0x1
# Reserved
# PSU_USB3_0_XHCI_GUCTL1_RESERVED_9 0x1
# Global User Control Register 1
#(OFFSET, MASK, VALUE) (0XFE20C11C, 0x00000600U ,0x00000600U) */
mask_write 0XFE20C11C 0x00000600 0x00000600
# Register : GUCTL @ 0XFE20C12C</p>
# Host IN Auto Retry (USBHstInAutoRetryEn) When set, this field enables th
# e Auto Retry feature. For IN transfers (non-isochronous) that encounter
# data packets with CRC errors or internal overrun scenarios, the auto ret
# ry feature causes the Host core to reply to the device with a non-termin
# ating retry ACK (that is, an ACK transaction packet with Retry = 1 and N
# umP != 0). If the Auto Retry feature is disabled (default), the core wil
# l respond with a terminating retry ACK (that is, an ACK transaction pack
# et with Retry = 1 and NumP = 0). - 1'b0: Auto Retry Disabled - 1'b1: Aut
# o Retry Enabled Note: This bit is also applicable to the device mode.
# PSU_USB3_0_XHCI_GUCTL_USBHSTINAUTORETRYEN 0x1
# Global User Control Register: This register provides a few options for t
# he software to control the core behavior in the Host mode. Most of the o
# ptions are used to improve host inter-operability with different devices
# .
#(OFFSET, MASK, VALUE) (0XFE20C12C, 0x00004000U ,0x00004000U) */
mask_write 0XFE20C12C 0x00004000 0x00004000
# : UPDATING TWO PCIE REGISTERS DEFAULT VALUES, AS THESE REGISTERS HAVE INCORRECT RESET VALUES IN SILICON.
# Register : ATTR_25 @ 0XFD480064</p>
# If TRUE Completion Timeout Disable is supported. This is required to be
# TRUE for Endpoint and either setting allowed for Root ports. Drives Devi
# ce Capability 2 [4]; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_25_ATTR_CPL_TIMEOUT_DISABLE_SUPPORTED 0X1
# ATTR_25
#(OFFSET, MASK, VALUE) (0XFD480064, 0x00000200U ,0x00000200U) */
mask_write 0XFD480064 0x00000200 0x00000200
# : PCIE SETTINGS
# Register : ATTR_7 @ 0XFD48001C</p>
# Specifies mask/settings for Base Address Register (BAR) 0. If BAR is not
# to be implemented, set to 32'h00000000. Bits are defined as follows: Me
# mory Space BAR [0] = Mem Space Indicator (set to 0) [2:1] = Type field (
# 10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask
# for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to 1, w
# here 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:
# n bits of \'7bBAR1,BAR0\'7d to 1. IO Space BAR 0] = IO Space Indicator (
# set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of B
# AR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in bytes.;
# EP=0x0004; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_7_ATTR_BAR0 0x0
# ATTR_7
#(OFFSET, MASK, VALUE) (0XFD48001C, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD48001C 0x0000FFFF 0x00000000
# Register : ATTR_8 @ 0XFD480020</p>
# Specifies mask/settings for Base Address Register (BAR) 0. If BAR is not
# to be implemented, set to 32'h00000000. Bits are defined as follows: Me
# mory Space BAR [0] = Mem Space Indicator (set to 0) [2:1] = Type field (
# 10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask
# for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to 1, w
# here 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:
# n bits of \'7bBAR1,BAR0\'7d to 1. IO Space BAR 0] = IO Space Indicator (
# set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of B
# AR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in bytes.;
# EP=0xFFF0; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_8_ATTR_BAR0 0x0
# ATTR_8
#(OFFSET, MASK, VALUE) (0XFD480020, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD480020 0x0000FFFF 0x00000000
# Register : ATTR_9 @ 0XFD480024</p>
# Specifies mask/settings for Base Address Register (BAR) 1 if BAR0 is a 3
# 2-bit BAR, or the upper bits of \'7bBAR1,BAR0\'7d if BAR0 is a 64-bit BA
# R. If BAR is not to be implemented, set to 32'h00000000. See BAR0 descri
# ption if this functions as the upper bits of a 64-bit BAR. Bits are defi
# ned as follows: Memory Space BAR (not upper bits of BAR0) [0] = Mem Spac
# e Indicator (set to 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit)
# [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if
# 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory aperture size
# in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR2,BAR1\'7d t
# o 1. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set
# to 0) [31:2] = Mask for writable bits of BAR; set uppermost 31:n bits t
# o 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_9_ATTR_BAR1 0x0
# ATTR_9
#(OFFSET, MASK, VALUE) (0XFD480024, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD480024 0x0000FFFF 0x00000000
# Register : ATTR_10 @ 0XFD480028</p>
# Specifies mask/settings for Base Address Register (BAR) 1 if BAR0 is a 3
# 2-bit BAR, or the upper bits of \'7bBAR1,BAR0\'7d if BAR0 is a 64-bit BA
# R. If BAR is not to be implemented, set to 32'h00000000. See BAR0 descri
# ption if this functions as the upper bits of a 64-bit BAR. Bits are defi
# ned as follows: Memory Space BAR (not upper bits of BAR0) [0] = Mem Spac
# e Indicator (set to 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit)
# [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if
# 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory aperture size
# in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR2,BAR1\'7d t
# o 1. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set
# to 0) [31:2] = Mask for writable bits of BAR; set uppermost 31:n bits t
# o 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_10_ATTR_BAR1 0x0
# ATTR_10
#(OFFSET, MASK, VALUE) (0XFD480028, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD480028 0x0000FFFF 0x00000000
# Register : ATTR_11 @ 0XFD48002C</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR)
# 2 if BAR1 is a 32-bit BAR, or the upper bits of \'7bBAR2,BAR1\'7d if BA
# R1 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
# et to 32'h00000000. See BAR1 description if this functions as the upper
# bits of a 64-bit BAR. For a switch or root: This must be set to 00FF_FFF
# F. For an endpoint, bits are defined as follows: Memory Space BAR (not u
# pper bits of BAR1) [0] = Mem Space Indicator (set to 0) [2:1] = Type fie
# ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = M
# ask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to
# 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost
# 63:n bits of \'7bBAR3,BAR2\'7d to 1. IO Space BAR 0] = IO Space Indicat
# or (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits
# of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in byt
# es.; EP=0x0004; RP=0xFFFF
# PSU_PCIE_ATTRIB_ATTR_11_ATTR_BAR2 0xFFFF
# ATTR_11
#(OFFSET, MASK, VALUE) (0XFD48002C, 0x0000FFFFU ,0x0000FFFFU) */
mask_write 0XFD48002C 0x0000FFFF 0x0000FFFF
# Register : ATTR_12 @ 0XFD480030</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR)
# 2 if BAR1 is a 32-bit BAR, or the upper bits of \'7bBAR2,BAR1\'7d if BA
# R1 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
# et to 32'h00000000. See BAR1 description if this functions as the upper
# bits of a 64-bit BAR. For a switch or root: This must be set to 00FF_FFF
# F. For an endpoint, bits are defined as follows: Memory Space BAR (not u
# pper bits of BAR1) [0] = Mem Space Indicator (set to 0) [2:1] = Type fie
# ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = M
# ask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to
# 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost
# 63:n bits of \'7bBAR3,BAR2\'7d to 1. IO Space BAR 0] = IO Space Indicat
# or (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits
# of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in byt
# es.; EP=0xFFF0; RP=0x00FF
# PSU_PCIE_ATTRIB_ATTR_12_ATTR_BAR2 0xFF
# ATTR_12
#(OFFSET, MASK, VALUE) (0XFD480030, 0x0000FFFFU ,0x000000FFU) */
mask_write 0XFD480030 0x0000FFFF 0x000000FF
# Register : ATTR_13 @ 0XFD480034</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR)
# 3 if BAR2 is a 32-bit BAR, or the upper bits of \'7bBAR3,BAR2\'7d if BA
# R2 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
# et to 32'h00000000. See BAR2 description if this functions as the upper
# bits of a 64-bit BAR. For a switch or root, this must be set to: FFFF_00
# 00 = IO Limit/Base Registers not implemented FFFF_F0F0 = IO Limit/Base R
# egisters use 16-bit decode FFFF_F1F1 = IO Limit/Base Registers use 32-bi
# t decode For an endpoint, bits are defined as follows: Memory Space BAR
# (not upper bits of BAR2) [0] = Mem Space Indicator (set to 0) [2:1] = Ty
# pe field (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:
# 4] = Mask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bi
# ts to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set upp
# ermost 63:n bits of \'7bBAR4,BAR3\'7d to 1. IO Space BAR 0] = IO Space I
# ndicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable
# bits of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size
# in bytes.; EP=0xFFFF; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_13_ATTR_BAR3 0x0
# ATTR_13
#(OFFSET, MASK, VALUE) (0XFD480034, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD480034 0x0000FFFF 0x00000000
# Register : ATTR_14 @ 0XFD480038</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR)
# 3 if BAR2 is a 32-bit BAR, or the upper bits of \'7bBAR3,BAR2\'7d if BA
# R2 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
# et to 32'h00000000. See BAR2 description if this functions as the upper
# bits of a 64-bit BAR. For a switch or root, this must be set to: FFFF_00
# 00 = IO Limit/Base Registers not implemented FFFF_F0F0 = IO Limit/Base R
# egisters use 16-bit decode FFFF_F1F1 = IO Limit/Base Registers use 32-bi
# t decode For an endpoint, bits are defined as follows: Memory Space BAR
# (not upper bits of BAR2) [0] = Mem Space Indicator (set to 0) [2:1] = Ty
# pe field (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:
# 4] = Mask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bi
# ts to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set upp
# ermost 63:n bits of \'7bBAR4,BAR3\'7d to 1. IO Space BAR 0] = IO Space I
# ndicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable
# bits of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size
# in bytes.; EP=0xFFFF; RP=0xFFFF
# PSU_PCIE_ATTRIB_ATTR_14_ATTR_BAR3 0xFFFF
# ATTR_14
#(OFFSET, MASK, VALUE) (0XFD480038, 0x0000FFFFU ,0x0000FFFFU) */
mask_write 0XFD480038 0x0000FFFF 0x0000FFFF
# Register : ATTR_15 @ 0XFD48003C</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR)
# 4 if BAR3 is a 32-bit BAR, or the upper bits of \'7bBAR4,BAR3\'7d if BA
# R3 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
# et to 32'h00000000. See BAR3 description if this functions as the upper
# bits of a 64-bit BAR. For a switch or root: This must be set to FFF0_FFF
# 0. For an endpoint, bits are defined as follows: Memory Space BAR (not u
# pper bits of BAR3) [0] = Mem Space Indicator (set to 0) [2:1] = Type fie
# ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = M
# ask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to
# 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost
# 63:n bits of \'7bBAR5,BAR4\'7d to 1. IO Space BAR 0] = IO Space Indicat
# or (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits
# of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in byt
# es.; EP=0x0004; RP=0xFFF0
# PSU_PCIE_ATTRIB_ATTR_15_ATTR_BAR4 0xFFF0
# ATTR_15
#(OFFSET, MASK, VALUE) (0XFD48003C, 0x0000FFFFU ,0x0000FFF0U) */
mask_write 0XFD48003C 0x0000FFFF 0x0000FFF0
# Register : ATTR_16 @ 0XFD480040</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR)
# 4 if BAR3 is a 32-bit BAR, or the upper bits of \'7bBAR4,BAR3\'7d if BA
# R3 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
# et to 32'h00000000. See BAR3 description if this functions as the upper
# bits of a 64-bit BAR. For a switch or root: This must be set to FFF0_FFF
# 0. For an endpoint, bits are defined as follows: Memory Space BAR (not u
# pper bits of BAR3) [0] = Mem Space Indicator (set to 0) [2:1] = Type fie
# ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = M
# ask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to
# 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost
# 63:n bits of \'7bBAR5,BAR4\'7d to 1. IO Space BAR 0] = IO Space Indicat
# or (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits
# of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in byt
# es.; EP=0xFFF0; RP=0xFFF0
# PSU_PCIE_ATTRIB_ATTR_16_ATTR_BAR4 0xFFF0
# ATTR_16
#(OFFSET, MASK, VALUE) (0XFD480040, 0x0000FFFFU ,0x0000FFF0U) */
mask_write 0XFD480040 0x0000FFFF 0x0000FFF0
# Register : ATTR_17 @ 0XFD480044</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR)
# 5 if BAR4 is a 32-bit BAR, or the upper bits of \'7bBAR5,BAR4\'7d if BA
# R4 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
# et to 32'h00000000. See BAR4 description if this functions as the upper
# bits of a 64-bit BAR. For a switch or root, this must be set to: 0000_00
# 00 = Prefetchable Memory Limit/Base Registers not implemented FFF0_FFF0
# = 32-bit Prefetchable Memory Limit/Base implemented FFF1_FFF1 = 64-bit P
# refetchable Memory Limit/Base implemented For an endpoint, bits are defi
# ned as follows: Memory Space BAR (not upper bits of BAR4) [0] = Mem Spac
# e Indicator (set to 0) [2:1] = Type field (00 for 32-bit; BAR5 cannot be
# lower part of a 64-bit BAR) [3] = Prefetchable (0 or 1) [31:4] = Mask f
# or writable bits of BAR; set uppermost 31:n bits to 1, where 2^n=memory
# aperture size in bytes. IO Space BAR 0] = IO Space Indicator (set to 1)
# [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set up
# permost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF
# ; RP=0xFFF1
# PSU_PCIE_ATTRIB_ATTR_17_ATTR_BAR5 0xFFF1
# ATTR_17
#(OFFSET, MASK, VALUE) (0XFD480044, 0x0000FFFFU ,0x0000FFF1U) */
mask_write 0XFD480044 0x0000FFFF 0x0000FFF1
# Register : ATTR_18 @ 0XFD480048</p>
# For an endpoint, specifies mask/settings for Base Address Register (BAR)
# 5 if BAR4 is a 32-bit BAR, or the upper bits of \'7bBAR5,BAR4\'7d if BA
# R4 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
# et to 32'h00000000. See BAR4 description if this functions as the upper
# bits of a 64-bit BAR. For a switch or root, this must be set to: 0000_00
# 00 = Prefetchable Memory Limit/Base Registers not implemented FFF0_FFF0
# = 32-bit Prefetchable Memory Limit/Base implemented FFF1_FFF1 = 64-bit P
# refetchable Memory Limit/Base implemented For an endpoint, bits are defi
# ned as follows: Memory Space BAR (not upper bits of BAR4) [0] = Mem Spac
# e Indicator (set to 0) [2:1] = Type field (00 for 32-bit; BAR5 cannot be
# lower part of a 64-bit BAR) [3] = Prefetchable (0 or 1) [31:4] = Mask f
# or writable bits of BAR; set uppermost 31:n bits to 1, where 2^n=memory
# aperture size in bytes. IO Space BAR 0] = IO Space Indicator (set to 1)
# [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set up
# permost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF
# ; RP=0xFFF1
# PSU_PCIE_ATTRIB_ATTR_18_ATTR_BAR5 0xFFF1
# ATTR_18
#(OFFSET, MASK, VALUE) (0XFD480048, 0x0000FFFFU ,0x0000FFF1U) */
mask_write 0XFD480048 0x0000FFFF 0x0000FFF1
# Register : ATTR_27 @ 0XFD48006C</p>
# Specifies maximum payload supported. Valid settings are: 0- 128 bytes, 1
# - 256 bytes, 2- 512 bytes, 3- 1024 bytes. Transferred to the Device Capa
# bilities register. The values: 4-2048 bytes, 5- 4096 bytes are not suppo
# rted; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_27_ATTR_DEV_CAP_MAX_PAYLOAD_SUPPORTED 1
# Endpoint L1 Acceptable Latency. Records the latency that the endpoint ca
# n withstand on transitions from L1 state to L0 (if L1 state supported).
# Valid settings are: 0h less than 1us, 1h 1 to 2us, 2h 2 to 4us, 3h 4 to
# 8us, 4h 8 to 16us, 5h 16 to 32us, 6h 32 to 64us, 7h more than 64us. For
# Endpoints only. Must be 0h for other devices.; EP=0x0007; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_27_ATTR_DEV_CAP_ENDPOINT_L1_LATENCY 0x0
# ATTR_27
#(OFFSET, MASK, VALUE) (0XFD48006C, 0x00000738U ,0x00000100U) */
mask_write 0XFD48006C 0x00000738 0x00000100
# Register : ATTR_50 @ 0XFD4800C8</p>
# Identifies the type of device/port as follows: 0000b PCI Express Endpoin
# t device, 0001b Legacy PCI Express Endpoint device, 0100b Root Port of P
# CI Express Root Complex, 0101b Upstream Port of PCI Express Switch, 0110
# b Downstream Port of PCI Express Switch, 0111b PCIE Express to PCI/PCI-X
# Bridge, 1000b PCI/PCI-X to PCI Express Bridge. Transferred to PCI Expre
# ss Capabilities register. Must be consistent with IS_SWITCH and UPSTREAM
# _FACING settings.; EP=0x0000; RP=0x0004
# PSU_PCIE_ATTRIB_ATTR_50_ATTR_PCIE_CAP_DEVICE_PORT_TYPE 4
# PCIe Capability's Next Capability Offset pointer to the next item in the
# capabilities list, or 00h if this is the final capability.; EP=0x009C;
# RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_50_ATTR_PCIE_CAP_NEXTPTR 0
# ATTR_50
#(OFFSET, MASK, VALUE) (0XFD4800C8, 0x0000FFF0U ,0x00000040U) */
mask_write 0XFD4800C8 0x0000FFF0 0x00000040
# Register : ATTR_105 @ 0XFD4801A4</p>
# Number of credits that should be advertised for Completion data received
# on Virtual Channel 0. The bytes advertised must be less than or equal t
# o the bram bytes available. See VC0_RX_RAM_LIMIT; EP=0x0172; RP=0x00CD
# PSU_PCIE_ATTRIB_ATTR_105_ATTR_VC0_TOTAL_CREDITS_CD 0xCD
# ATTR_105
#(OFFSET, MASK, VALUE) (0XFD4801A4, 0x000007FFU ,0x000000CDU) */
mask_write 0XFD4801A4 0x000007FF 0x000000CD
# Register : ATTR_106 @ 0XFD4801A8</p>
# Number of credits that should be advertised for Completion headers recei
# ved on Virtual Channel 0. The sum of the posted, non posted, and complet
# ion header credits must be <= 80; EP=0x0048; RP=0x0024
# PSU_PCIE_ATTRIB_ATTR_106_ATTR_VC0_TOTAL_CREDITS_CH 0x24
# Number of credits that should be advertised for Non-Posted headers recei
# ved on Virtual Channel 0. The number of non posted data credits advertis
# ed by the block is equal to the number of non posted header credits. The
# sum of the posted, non posted, and completion header credits must be <=
# 80; EP=0x0004; RP=0x000C
# PSU_PCIE_ATTRIB_ATTR_106_ATTR_VC0_TOTAL_CREDITS_NPH 0xC
# ATTR_106
#(OFFSET, MASK, VALUE) (0XFD4801A8, 0x00003FFFU ,0x00000624U) */
mask_write 0XFD4801A8 0x00003FFF 0x00000624
# Register : ATTR_107 @ 0XFD4801AC</p>
# Number of credits that should be advertised for Non-Posted data received
# on Virtual Channel 0. The number of non posted data credits advertised
# by the block is equal to two times the number of non posted header credi
# ts if atomic operations are supported or is equal to the number of non p
# osted header credits if atomic operations are not supported. The bytes a
# dvertised must be less than or equal to the bram bytes available. See VC
# 0_RX_RAM_LIMIT; EP=0x0008; RP=0x0018
# PSU_PCIE_ATTRIB_ATTR_107_ATTR_VC0_TOTAL_CREDITS_NPD 0x18
# ATTR_107
#(OFFSET, MASK, VALUE) (0XFD4801AC, 0x000007FFU ,0x00000018U) */
mask_write 0XFD4801AC 0x000007FF 0x00000018
# Register : ATTR_108 @ 0XFD4801B0</p>
# Number of credits that should be advertised for Posted data received on
# Virtual Channel 0. The bytes advertised must be less than or equal to th
# e bram bytes available. See VC0_RX_RAM_LIMIT; EP=0x0020; RP=0x00B5
# PSU_PCIE_ATTRIB_ATTR_108_ATTR_VC0_TOTAL_CREDITS_PD 0xB5
# ATTR_108
#(OFFSET, MASK, VALUE) (0XFD4801B0, 0x000007FFU ,0x000000B5U) */
mask_write 0XFD4801B0 0x000007FF 0x000000B5
# Register : ATTR_109 @ 0XFD4801B4</p>
# Not currently in use. Invert ECRC generated by block when trn_tecrc_gen_
# n and trn_terrfwd_n are asserted.; EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_TECRC_EP_INV 0x0
# Enables td bit clear and ECRC trim on received TLP's FALSE == don't trim
# TRUE == trim.; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_RECRC_CHK_TRIM 0x1
# Enables ECRC check on received TLP's 0 == don't check 1 == always check
# 3 == check if enabled by ECRC check enable bit of AER cap structure; EP=
# 0x0003; RP=0x0003
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_RECRC_CHK 0x3
# Index of last packet buffer used by TX TLM (i.e. number of buffers - 1).
# Calculated from max payload size supported and the number of brams conf
# igured for transmit; EP=0x001C; RP=0x001C
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_VC0_TX_LASTPACKET 0x1c
# Number of credits that should be advertised for Posted headers received
# on Virtual Channel 0. The sum of the posted, non posted, and completion
# header credits must be <= 80; EP=0x0004; RP=0x0020
# PSU_PCIE_ATTRIB_ATTR_109_ATTR_VC0_TOTAL_CREDITS_PH 0x20
# ATTR_109
#(OFFSET, MASK, VALUE) (0XFD4801B4, 0x0000FFFFU ,0x00007E20U) */
mask_write 0XFD4801B4 0x0000FFFF 0x00007E20
# Register : ATTR_34 @ 0XFD480088</p>
# Specifies values to be transferred to Header Type register. Bit 7 should
# be set to '0' indicating single-function device. Bit 0 identifies heade
# r as Type 0 or Type 1, with '0' indicating a Type 0 header.; EP=0x0000;
# RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_34_ATTR_HEADER_TYPE 0x1
# ATTR_34
#(OFFSET, MASK, VALUE) (0XFD480088, 0x000000FFU ,0x00000001U) */
mask_write 0XFD480088 0x000000FF 0x00000001
# Register : ATTR_53 @ 0XFD4800D4</p>
# PM Capability's Next Capability Offset pointer to the next item in the c
# apabilities list, or 00h if this is the final capability.; EP=0x0048; RP
# =0x0060
# PSU_PCIE_ATTRIB_ATTR_53_ATTR_PM_CAP_NEXTPTR 0x60
# ATTR_53
#(OFFSET, MASK, VALUE) (0XFD4800D4, 0x000000FFU ,0x00000060U) */
mask_write 0XFD4800D4 0x000000FF 0x00000060
# Register : ATTR_41 @ 0XFD4800A4</p>
# MSI Per-Vector Masking Capable. The value is transferred to the MSI Cont
# rol Register[8]. When set, adds Mask and Pending Dword to Cap structure;
# EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_PER_VECTOR_MASKING_CAPABLE 0x0
# Indicates that the MSI structures exists. If this is FALSE, then the MSI
# structure cannot be accessed via either the link or the management port
# .; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_ON 0
# MSI Capability's Next Capability Offset pointer to the next item in the
# capabilities list, or 00h if this is the final capability.; EP=0x0060; R
# P=0x0000
# PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_NEXTPTR 0x0
# Indicates that the MSI structures exists. If this is FALSE, then the MSI
# structure cannot be accessed via either the link or the management port
# .; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_ON 0
# ATTR_41
#(OFFSET, MASK, VALUE) (0XFD4800A4, 0x000003FFU ,0x00000000U) */
mask_write 0XFD4800A4 0x000003FF 0x00000000
# Register : ATTR_97 @ 0XFD480184</p>
# Maximum Link Width. Valid settings are: 000001b x1, 000010b x2, 000100b
# x4, 001000b x8.; EP=0x0004; RP=0x0004
# PSU_PCIE_ATTRIB_ATTR_97_ATTR_LINK_CAP_MAX_LINK_WIDTH 0x1
# Used by LTSSM to set Maximum Link Width. Valid settings are: 000001b [x1
# ], 000010b [x2], 000100b [x4], 001000b [x8].; EP=0x0004; RP=0x0004
# PSU_PCIE_ATTRIB_ATTR_97_ATTR_LTSSM_MAX_LINK_WIDTH 0x1
# ATTR_97
#(OFFSET, MASK, VALUE) (0XFD480184, 0x00000FFFU ,0x00000041U) */
mask_write 0XFD480184 0x00000FFF 0x00000041
# Register : ATTR_100 @ 0XFD480190</p>
# TRUE specifies upstream-facing port. FALSE specifies downstream-facing p
# ort.; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_100_ATTR_UPSTREAM_FACING 0x0
# ATTR_100
#(OFFSET, MASK, VALUE) (0XFD480190, 0x00000040U ,0x00000000U) */
mask_write 0XFD480190 0x00000040 0x00000000
# Register : ATTR_101 @ 0XFD480194</p>
# Enable the routing of message TLPs to the user through the TRN RX interf
# ace. A bit value of 1 enables routing of the message TLP to the user. Me
# ssages are always decoded by the message decoder. Bit 0 - ERR COR, Bit 1
# - ERR NONFATAL, Bit 2 - ERR FATAL, Bit 3 - INTA Bit 4 - INTB, Bit 5 - I
# NTC, Bit 6 - INTD, Bit 7 PM_PME, Bit 8 - PME_TO_ACK, Bit 9 - unlock, Bit
# 10 PME_Turn_Off; EP=0x0000; RP=0x07FF
# PSU_PCIE_ATTRIB_ATTR_101_ATTR_ENABLE_MSG_ROUTE 0x7FF
# Disable BAR filtering. Does not change the behavior of the bar hit outpu
# ts; EP=0x0000; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_101_ATTR_DISABLE_BAR_FILTERING 0x1
# ATTR_101
#(OFFSET, MASK, VALUE) (0XFD480194, 0x0000FFE2U ,0x0000FFE2U) */
mask_write 0XFD480194 0x0000FFE2 0x0000FFE2
# Register : ATTR_37 @ 0XFD480094</p>
# Link Bandwidth notification capability. Indicates support for the link b
# andwidth notification status and interrupt mechanism. Required for Root.
# ; EP=0x0000; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_37_ATTR_LINK_CAP_LINK_BANDWIDTH_NOTIFICATION_CAP 0x1
# Sets the ASPM Optionality Compliance bit, to comply with the 2.1 ASPM Op
# tionality ECN. Transferred to the Link Capabilities register.; EP=0x0001
# ; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_37_ATTR_LINK_CAP_ASPM_OPTIONALITY 0x1
# ATTR_37
#(OFFSET, MASK, VALUE) (0XFD480094, 0x00004200U ,0x00004200U) */
mask_write 0XFD480094 0x00004200 0x00004200
# Register : ATTR_93 @ 0XFD480174</p>
# Enables the Replay Timer to use the user-defined LL_REPLAY_TIMEOUT value
# (or combined with the built-in value, depending on LL_REPLAY_TIMEOUT_FU
# NC). If FALSE, the built-in value is used.; EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_93_ATTR_LL_REPLAY_TIMEOUT_EN 0x1
# Sets a user-defined timeout for the Replay Timer to force cause the retr
# ansmission of unacknowledged TLPs; refer to LL_REPLAY_TIMEOUT_EN and LL_
# REPLAY_TIMEOUT_FUNC to see how this value is used. The unit for this att
# ribute is in symbol times, which is 4ns at GEN1 speeds and 2ns at GEN2.;
# EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_93_ATTR_LL_REPLAY_TIMEOUT 0x1000
# ATTR_93
#(OFFSET, MASK, VALUE) (0XFD480174, 0x0000FFFFU ,0x00009000U) */
mask_write 0XFD480174 0x0000FFFF 0x00009000
# Register : ID @ 0XFD480200</p>
# Device ID for the the PCIe Cap Structure Device ID field
# PSU_PCIE_ATTRIB_ID_CFG_DEV_ID 0xd021
# Vendor ID for the PCIe Cap Structure Vendor ID field
# PSU_PCIE_ATTRIB_ID_CFG_VEND_ID 0x10ee
# ID
#(OFFSET, MASK, VALUE) (0XFD480200, 0xFFFFFFFFU ,0x10EED021U) */
mask_write 0XFD480200 0xFFFFFFFF 0x10EED021
# Register : SUBSYS_ID @ 0XFD480204</p>
# Subsystem ID for the the PCIe Cap Structure Subsystem ID field
# PSU_PCIE_ATTRIB_SUBSYS_ID_CFG_SUBSYS_ID 0x7
# Subsystem Vendor ID for the PCIe Cap Structure Subsystem Vendor ID field
# PSU_PCIE_ATTRIB_SUBSYS_ID_CFG_SUBSYS_VEND_ID 0x10ee
# SUBSYS_ID
#(OFFSET, MASK, VALUE) (0XFD480204, 0xFFFFFFFFU ,0x10EE0007U) */
mask_write 0XFD480204 0xFFFFFFFF 0x10EE0007
# Register : REV_ID @ 0XFD480208</p>
# Revision ID for the the PCIe Cap Structure
# PSU_PCIE_ATTRIB_REV_ID_CFG_REV_ID 0x0
# REV_ID
#(OFFSET, MASK, VALUE) (0XFD480208, 0x000000FFU ,0x00000000U) */
mask_write 0XFD480208 0x000000FF 0x00000000
# Register : ATTR_24 @ 0XFD480060</p>
# Code identifying basic function, subclass and applicable programming int
# erface. Transferred to the Class Code register.; EP=0x8000; RP=0x8000
# PSU_PCIE_ATTRIB_ATTR_24_ATTR_CLASS_CODE 0x400
# ATTR_24
#(OFFSET, MASK, VALUE) (0XFD480060, 0x0000FFFFU ,0x00000400U) */
mask_write 0XFD480060 0x0000FFFF 0x00000400
# Register : ATTR_25 @ 0XFD480064</p>
# Code identifying basic function, subclass and applicable programming int
# erface. Transferred to the Class Code register.; EP=0x0005; RP=0x0006
# PSU_PCIE_ATTRIB_ATTR_25_ATTR_CLASS_CODE 0x6
# INTX Interrupt Generation Capable. If FALSE, this will cause Command[10]
# to be hardwired to 0.; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_25_ATTR_CMD_INTX_IMPLEMENTED 0
# ATTR_25
#(OFFSET, MASK, VALUE) (0XFD480064, 0x000001FFU ,0x00000006U) */
mask_write 0XFD480064 0x000001FF 0x00000006
# Register : ATTR_4 @ 0XFD480010</p>
# Indicates that the AER structures exists. If this is FALSE, then the AER
# structure cannot be accessed via either the link or the management port
# , and AER will be considered to not be present for error management task
# s (such as what types of error messages are sent if an error is detected
# ).; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_4_ATTR_AER_CAP_ON 0
# Indicates that the AER structures exists. If this is FALSE, then the AER
# structure cannot be accessed via either the link or the management port
# , and AER will be considered to not be present for error management task
# s (such as what types of error messages are sent if an error is detected
# ).; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_4_ATTR_AER_CAP_ON 0
# ATTR_4
#(OFFSET, MASK, VALUE) (0XFD480010, 0x00001000U ,0x00000000U) */
mask_write 0XFD480010 0x00001000 0x00000000
# Register : ATTR_89 @ 0XFD480164</p>
# VSEC's Next Capability Offset pointer to the next item in the capabiliti
# es list, or 000h if this is the final capability.; EP=0x0140; RP=0x0140
# PSU_PCIE_ATTRIB_ATTR_89_ATTR_VSEC_CAP_NEXTPTR 0
# ATTR_89
#(OFFSET, MASK, VALUE) (0XFD480164, 0x00001FFEU ,0x00000000U) */
mask_write 0XFD480164 0x00001FFE 0x00000000
# Register : ATTR_79 @ 0XFD48013C</p>
# CRS SW Visibility. Indicates RC can return CRS to SW. Transferred to the
# Root Capabilities register.; EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_79_ATTR_ROOT_CAP_CRS_SW_VISIBILITY 1
# ATTR_79
#(OFFSET, MASK, VALUE) (0XFD48013C, 0x00000020U ,0x00000020U) */
mask_write 0XFD48013C 0x00000020 0x00000020
# Register : ATTR_43 @ 0XFD4800AC</p>
# Indicates that the MSIX structures exists. If this is FALSE, then the MS
# IX structure cannot be accessed via either the link or the management po
# rt.; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_43_ATTR_MSIX_CAP_ON 0
# ATTR_43
#(OFFSET, MASK, VALUE) (0XFD4800AC, 0x00000100U ,0x00000000U) */
mask_write 0XFD4800AC 0x00000100 0x00000000
# Register : ATTR_48 @ 0XFD4800C0</p>
# MSI-X Table Size. This value is transferred to the MSI-X Message Control
# [10:0] field. Set to 0 if MSI-X is not enabled. Note that the core does
# not implement the table; that must be implemented in user logic.; EP=0x0
# 003; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_48_ATTR_MSIX_CAP_TABLE_SIZE 0
# ATTR_48
#(OFFSET, MASK, VALUE) (0XFD4800C0, 0x000007FFU ,0x00000000U) */
mask_write 0XFD4800C0 0x000007FF 0x00000000
# Register : ATTR_46 @ 0XFD4800B8</p>
# MSI-X Table Offset. This value is transferred to the MSI-X Table Offset
# field. Set to 0 if MSI-X is not enabled.; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_46_ATTR_MSIX_CAP_TABLE_OFFSET 0
# ATTR_46
#(OFFSET, MASK, VALUE) (0XFD4800B8, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD4800B8 0x0000FFFF 0x00000000
# Register : ATTR_47 @ 0XFD4800BC</p>
# MSI-X Table Offset. This value is transferred to the MSI-X Table Offset
# field. Set to 0 if MSI-X is not enabled.; EP=0x0000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_47_ATTR_MSIX_CAP_TABLE_OFFSET 0
# ATTR_47
#(OFFSET, MASK, VALUE) (0XFD4800BC, 0x00001FFFU ,0x00000000U) */
mask_write 0XFD4800BC 0x00001FFF 0x00000000
# Register : ATTR_44 @ 0XFD4800B0</p>
# MSI-X Pending Bit Array Offset This value is transferred to the MSI-X PB
# A Offset field. Set to 0 if MSI-X is not enabled.; EP=0x0001; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_44_ATTR_MSIX_CAP_PBA_OFFSET 0
# ATTR_44
#(OFFSET, MASK, VALUE) (0XFD4800B0, 0x0000FFFFU ,0x00000000U) */
mask_write 0XFD4800B0 0x0000FFFF 0x00000000
# Register : ATTR_45 @ 0XFD4800B4</p>
# MSI-X Pending Bit Array Offset This value is transferred to the MSI-X PB
# A Offset field. Set to 0 if MSI-X is not enabled.; EP=0x1000; RP=0x0000
# PSU_PCIE_ATTRIB_ATTR_45_ATTR_MSIX_CAP_PBA_OFFSET 0
# ATTR_45
#(OFFSET, MASK, VALUE) (0XFD4800B4, 0x0000FFF8U ,0x00000000U) */
mask_write 0XFD4800B4 0x0000FFF8 0x00000000
# Register : CB @ 0XFD48031C</p>
# DT837748 Enable
# PSU_PCIE_ATTRIB_CB_CB1 0x0
# ECO Register 1
#(OFFSET, MASK, VALUE) (0XFD48031C, 0x00000002U ,0x00000000U) */
mask_write 0XFD48031C 0x00000002 0x00000000
# Register : ATTR_35 @ 0XFD48008C</p>
# Active State PM Support. Indicates the level of active state power manag
# ement supported by the selected PCI Express Link, encoded as follows: 0
# Reserved, 1 L0s entry supported, 2 Reserved, 3 L0s and L1 entry supporte
# d.; EP=0x0001; RP=0x0001
# PSU_PCIE_ATTRIB_ATTR_35_ATTR_LINK_CAP_ASPM_SUPPORT 0x0
# ATTR_35
#(OFFSET, MASK, VALUE) (0XFD48008C, 0x00003000U ,0x00000000U) */
mask_write 0XFD48008C 0x00003000 0x00000000
# : PUTTING PCIE CONTROL IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# PCIE control block level reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CTRL_RESET 0X0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00020000U ,0x00000000U) */
mask_write 0XFD1A0100 0x00020000 0x00000000
# : PCIE GPIO RESET
# : MASK_DATA_0_LSW LOW BANK [15:0]
# : MASK_DATA_0_MSW LOW BANK [25:16]
# : MASK_DATA_1_LSW LOW BANK [41:26]
# Register : MASK_DATA_1_LSW @ 0XFF0A0008</p>
# Operation is the same as MASK_DATA_0_LSW[MASK_0_LSW]
# PSU_GPIO_MASK_DATA_1_LSW_MASK_1_LSW 0xffdf
# Operation is the same as MASK_DATA_0_LSW[DATA_0_LSW]
# PSU_GPIO_MASK_DATA_1_LSW_DATA_1_LSW 0x20
# Maskable Output Data (GPIO Bank1, MIO, Lower 16bits)
#(OFFSET, MASK, VALUE) (0XFF0A0008, 0xFFFFFFFFU ,0xFFDF0020U) */
mask_write 0XFF0A0008 0xFFFFFFFF 0xFFDF0020
# : MASK_DATA_1_MSW HIGH BANK [51:42]
# : MASK_DATA_1_LSW HIGH BANK [67:52]
# : MASK_DATA_1_LSW HIGH BANK [77:68]
# : CHECK PLL LOCK FOR LANE0
# Register : L0_PLL_STATUS_READ_1 @ 0XFD4023E4</p>
# Status Read value of PLL Lock
# PSU_SERDES_L0_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
mask_poll 0XFD4023E4 0x00000010
# : CHECK PLL LOCK FOR LANE1
# Register : L1_PLL_STATUS_READ_1 @ 0XFD4063E4</p>
# Status Read value of PLL Lock
# PSU_SERDES_L1_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
mask_poll 0XFD4063E4 0x00000010
# : CHECK PLL LOCK FOR LANE2
# Register : L2_PLL_STATUS_READ_1 @ 0XFD40A3E4</p>
# Status Read value of PLL Lock
# PSU_SERDES_L2_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
mask_poll 0XFD40A3E4 0x00000010
# : CHECK PLL LOCK FOR LANE3
# Register : L3_PLL_STATUS_READ_1 @ 0XFD40E3E4</p>
# Status Read value of PLL Lock
# PSU_SERDES_L3_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
mask_poll 0XFD40E3E4 0x00000010
# : SATA AHCI VENDOR SETTING
# Register : PP2C @ 0XFD0C00AC</p>
# CIBGMN: COMINIT Burst Gap Minimum.
# PSU_SATA_AHCI_VENDOR_PP2C_CIBGMN 0x18
# CIBGMX: COMINIT Burst Gap Maximum.
# PSU_SATA_AHCI_VENDOR_PP2C_CIBGMX 0x40
# CIBGN: COMINIT Burst Gap Nominal.
# PSU_SATA_AHCI_VENDOR_PP2C_CIBGN 0x18
# CINMP: COMINIT Negate Minimum Period.
# PSU_SATA_AHCI_VENDOR_PP2C_CINMP 0x28
# PP2C - Port Phy2Cfg Register. This register controls the configuration o
# f the Phy Control OOB timing for the COMINIT parameters for either Port
# 0 or Port 1. The Port configured is controlled by the value programmed i
# nto the Port Config Register.
#(OFFSET, MASK, VALUE) (0XFD0C00AC, 0xFFFFFFFFU ,0x28184018U) */
mask_write 0XFD0C00AC 0xFFFFFFFF 0x28184018
# Register : PP3C @ 0XFD0C00B0</p>
# CWBGMN: COMWAKE Burst Gap Minimum.
# PSU_SATA_AHCI_VENDOR_PP3C_CWBGMN 0x06
# CWBGMX: COMWAKE Burst Gap Maximum.
# PSU_SATA_AHCI_VENDOR_PP3C_CWBGMX 0x14
# CWBGN: COMWAKE Burst Gap Nominal.
# PSU_SATA_AHCI_VENDOR_PP3C_CWBGN 0x08
# CWNMP: COMWAKE Negate Minimum Period.
# PSU_SATA_AHCI_VENDOR_PP3C_CWNMP 0x0E
# PP3C - Port Phy3CfgRegister. This register controls the configuration of
# the Phy Control OOB timing for the COMWAKE parameters for either Port 0
# or Port 1. The Port configured is controlled by the value programmed in
# to the Port Config Register.
#(OFFSET, MASK, VALUE) (0XFD0C00B0, 0xFFFFFFFFU ,0x0E081406U) */
mask_write 0XFD0C00B0 0xFFFFFFFF 0x0E081406
# Register : PP4C @ 0XFD0C00B4</p>
# BMX: COM Burst Maximum.
# PSU_SATA_AHCI_VENDOR_PP4C_BMX 0x13
# BNM: COM Burst Nominal.
# PSU_SATA_AHCI_VENDOR_PP4C_BNM 0x08
# SFD: Signal Failure Detection, if the signal detection de-asserts for a
# time greater than this then the OOB detector will determine this is a li
# ne idle and cause the PhyInit state machine to exit the Phy Ready State.
# A value of zero disables the Signal Failure Detector. The value is base
# d on the OOB Detector Clock typically (PMCLK Clock Period) * SFD giving
# a nominal time of 500ns based on a 150MHz PMCLK.
# PSU_SATA_AHCI_VENDOR_PP4C_SFD 0x4A
# PTST: Partial to Slumber timer value, specific delay the controller shou
# ld apply while in partial before entering slumber. The value is bases on
# the system clock divided by 128, total delay = (Sys Clock Period) * PTS
# T * 128
# PSU_SATA_AHCI_VENDOR_PP4C_PTST 0x06
# PP4C - Port Phy4Cfg Register. This register controls the configuration o
# f the Phy Control Burst timing for the COM parameters for either Port 0
# or Port 1. The Port configured is controlled by the value programmed int
# o the Port Config Register.
#(OFFSET, MASK, VALUE) (0XFD0C00B4, 0xFFFFFFFFU ,0x064A0813U) */
mask_write 0XFD0C00B4 0xFFFFFFFF 0x064A0813
# Register : PP5C @ 0XFD0C00B8</p>
# RIT: Retry Interval Timer. The calculated value divided by two, the lowe
# r digit of precision is not needed.
# PSU_SATA_AHCI_VENDOR_PP5C_RIT 0xC96A4
# RCT: Rate Change Timer, a value based on the 54.2us for which a SATA dev
# ice will transmit at a fixed rate ALIGNp after OOB has completed, for a
# fast SERDES it is suggested that this value be 54.2us / 4
# PSU_SATA_AHCI_VENDOR_PP5C_RCT 0x3FF
# PP5C - Port Phy5Cfg Register. This register controls the configuration o
# f the Phy Control Retry Interval timing for either Port 0 or Port 1. The
# Port configured is controlled by the value programmed into the Port Con
# fig Register.
#(OFFSET, MASK, VALUE) (0XFD0C00B8, 0xFFFFFFFFU ,0x3FFC96A4U) */
mask_write 0XFD0C00B8 0xFFFFFFFF 0x3FFC96A4
}
set psu_resetin_init_data {
# : PUTTING SERDES PERIPHERAL IN RESET
# : PUTTING USB0 IN RESET
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# USB 0 reset for control registers
# PSU_CRL_APB_RST_LPD_TOP_USB0_APB_RESET 0X1
# USB 0 sleep circuit reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_HIBERRESET 0X1
# USB 0 reset
# PSU_CRL_APB_RST_LPD_TOP_USB0_CORERESET 0X1
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000540U ,0x00000540U) */
mask_write 0XFF5E023C 0x00000540 0x00000540
# : PUTTING GEM0 IN RESET
# Register : RST_LPD_IOU0 @ 0XFF5E0230</p>
# GEM 3 reset
# PSU_CRL_APB_RST_LPD_IOU0_GEM3_RESET 0X1
# Software controlled reset for the GEMs
#(OFFSET, MASK, VALUE) (0XFF5E0230, 0x00000008U ,0x00000008U) */
mask_write 0XFF5E0230 0x00000008 0x00000008
# : PUTTING SATA IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# Sata block level reset
# PSU_CRF_APB_RST_FPD_TOP_SATA_RESET 0X1
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00000002U ,0x00000002U) */
mask_write 0XFD1A0100 0x00000002 0x00000002
# : PUTTING PCIE IN RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# PCIE config reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CFG_RESET 0X1
# PCIE control block level reset
# PSU_CRF_APB_RST_FPD_TOP_PCIE_CTRL_RESET 0X1
# PCIE bridge block level reset (AXI interface)
# PSU_CRF_APB_RST_FPD_TOP_PCIE_BRIDGE_RESET 0X1
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x000E0000U ,0x000E0000U) */
mask_write 0XFD1A0100 0x000E0000 0x000E0000
# : PUTTING DP IN RESET
# Register : DP_TX_PHY_POWER_DOWN @ 0XFD4A0238</p>
# Two bits per lane. When set to 11, moves the GT to power down mode. When
# set to 00, GT will be in active state. bits [1:0] - lane0 Bits [3:2] -
# lane 1
# PSU_DP_DP_TX_PHY_POWER_DOWN_POWER_DWN 0XA
# Control PHY Power down
#(OFFSET, MASK, VALUE) (0XFD4A0238, 0x0000000FU ,0x0000000AU) */
mask_write 0XFD4A0238 0x0000000F 0x0000000A
# Register : DP_PHY_RESET @ 0XFD4A0200</p>
# Set to '1' to hold the GT in reset. Clear to release.
# PSU_DP_DP_PHY_RESET_GT_RESET 0X1
# Reset the transmitter PHY.
#(OFFSET, MASK, VALUE) (0XFD4A0200, 0x00000002U ,0x00000002U) */
mask_write 0XFD4A0200 0x00000002 0x00000002
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# Display Port block level reset (includes DPDMA)
# PSU_CRF_APB_RST_FPD_TOP_DP_RESET 0X1
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00010000U ,0x00010000U) */
mask_write 0XFD1A0100 0x00010000 0x00010000
}
set psu_ps_pl_isolation_removal_data {
# : PS-PL POWER UP REQUEST
# Register : REQ_PWRUP_INT_EN @ 0XFFD80118</p>
# Power-up Request Interrupt Enable for PL
# PSU_PMU_GLOBAL_REQ_PWRUP_INT_EN_PL 1
# Power-up Request Interrupt Enable Register. Writing a 1 to this location
# will unmask the interrupt.
#(OFFSET, MASK, VALUE) (0XFFD80118, 0x00800000U ,0x00800000U) */
mask_write 0XFFD80118 0x00800000 0x00800000
# Register : REQ_PWRUP_TRIG @ 0XFFD80120</p>
# Power-up Request Trigger for PL
# PSU_PMU_GLOBAL_REQ_PWRUP_TRIG_PL 1
# Power-up Request Trigger Register. A write of one to this location will
# generate a power-up request to the PMU.
#(OFFSET, MASK, VALUE) (0XFFD80120, 0x00800000U ,0x00800000U) */
mask_write 0XFFD80120 0x00800000 0x00800000
# : POLL ON PL POWER STATUS
# Register : REQ_PWRUP_STATUS @ 0XFFD80110</p>
# Power-up Request Status for PL
# PSU_PMU_GLOBAL_REQ_PWRUP_STATUS_PL 1
mask_poll 0XFFD80110 0x00800000 0x00000000
}
set psu_afi_config {
# : AFI RESET
# Register : RST_FPD_TOP @ 0XFD1A0100</p>
# AF_FM0 block level reset
# PSU_CRF_APB_RST_FPD_TOP_AFI_FM0_RESET 0
# AF_FM1 block level reset
# PSU_CRF_APB_RST_FPD_TOP_AFI_FM1_RESET 0
# AF_FM2 block level reset
# PSU_CRF_APB_RST_FPD_TOP_AFI_FM2_RESET 0
# AF_FM3 block level reset
# PSU_CRF_APB_RST_FPD_TOP_AFI_FM3_RESET 0
# AF_FM4 block level reset
# PSU_CRF_APB_RST_FPD_TOP_AFI_FM4_RESET 0
# AF_FM5 block level reset
# PSU_CRF_APB_RST_FPD_TOP_AFI_FM5_RESET 0
# FPD Block level software controlled reset
#(OFFSET, MASK, VALUE) (0XFD1A0100, 0x00001F80U ,0x00000000U) */
mask_write 0XFD1A0100 0x00001F80 0x00000000
# Register : RST_LPD_TOP @ 0XFF5E023C</p>
# AFI FM 6
# PSU_CRL_APB_RST_LPD_TOP_AFI_FM6_RESET 0
# Software control register for the LPD block.
#(OFFSET, MASK, VALUE) (0XFF5E023C, 0x00080000U ,0x00000000U) */
mask_write 0XFF5E023C 0x00080000 0x00000000
# : AFIFM INTERFACE WIDTH
# Register : afi_fs @ 0XFD615000</p>
# Select the 32/64/128-bit data width selection for the Slave 0 00: 32-bit
# AXI data width (default) 01: 64-bit AXI data width 10: 128-bit AXI data
# width 11: reserved
# PSU_FPD_SLCR_AFI_FS_DW_SS0_SEL 0x2
# Select the 32/64/128-bit data width selection for the Slave 1 00: 32-bit
# AXI data width (default) 01: 64-bit AXI data width 10: 128-bit AXI data
# width 11: reserved
# PSU_FPD_SLCR_AFI_FS_DW_SS1_SEL 0x2
# afi fs SLCR control register. This register is static and should not be
# modified during operation.
#(OFFSET, MASK, VALUE) (0XFD615000, 0x00000F00U ,0x00000A00U) */
mask_write 0XFD615000 0x00000F00 0x00000A00
}
set psu_ps_pl_reset_config_data {
# : PS PL RESET SEQUENCE
# : FABRIC RESET USING EMIO
# Register : MASK_DATA_5_MSW @ 0XFF0A002C</p>
# Operation is the same as MASK_DATA_0_LSW[MASK_0_LSW]
# PSU_GPIO_MASK_DATA_5_MSW_MASK_5_MSW 0x8000
# Maskable Output Data (GPIO Bank5, EMIO, Upper 16bits)
#(OFFSET, MASK, VALUE) (0XFF0A002C, 0xFFFF0000U ,0x80000000U) */
mask_write 0XFF0A002C 0xFFFF0000 0x80000000
# Register : DIRM_5 @ 0XFF0A0344</p>
# Operation is the same as DIRM_0[DIRECTION_0]
# PSU_GPIO_DIRM_5_DIRECTION_5 0x80000000
# Direction mode (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0344, 0xFFFFFFFFU ,0x80000000U) */
mask_write 0XFF0A0344 0xFFFFFFFF 0x80000000
# Register : OEN_5 @ 0XFF0A0348</p>
# Operation is the same as OEN_0[OP_ENABLE_0]
# PSU_GPIO_OEN_5_OP_ENABLE_5 0x80000000
# Output enable (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0348, 0xFFFFFFFFU ,0x80000000U) */
mask_write 0XFF0A0348 0xFFFFFFFF 0x80000000
# Register : DATA_5 @ 0XFF0A0054</p>
# Output Data
# PSU_GPIO_DATA_5_DATA_5 0x80000000
# Output Data (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0054, 0xFFFFFFFFU ,0x80000000U) */
mask_write 0XFF0A0054 0xFFFFFFFF 0x80000000
mask_delay 0x00000000 1
# : FABRIC RESET USING DATA_5 TOGGLE
# Register : DATA_5 @ 0XFF0A0054</p>
# Output Data
# PSU_GPIO_DATA_5_DATA_5 0X00000000
# Output Data (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0054, 0xFFFFFFFFU ,0x00000000U) */
mask_write 0XFF0A0054 0xFFFFFFFF 0x00000000
mask_delay 0x00000000 1
# : FABRIC RESET USING DATA_5 TOGGLE
# Register : DATA_5 @ 0XFF0A0054</p>
# Output Data
# PSU_GPIO_DATA_5_DATA_5 0x80000000
# Output Data (GPIO Bank5, EMIO)
#(OFFSET, MASK, VALUE) (0XFF0A0054, 0xFFFFFFFFU ,0x80000000U) */
mask_write 0XFF0A0054 0xFFFFFFFF 0x80000000
}
proc psu_init {} {
# save current mode
set saved_mode [configparams force-mem-accesses]
# force accesses
configparams force-mem-accesses 1
variable psu_mio_init_data
variable psu_pll_init_data
variable psu_clock_init_data
variable psu_ddr_init_data
variable psu_peripherals_init_data
variable psu_resetin_init_data
variable psu_resetout_init_data
variable psu_serdes_init_data
variable psu_resetin_init_data
variable psu_peripherals_powerdwn_data
variable psu_afi_config
init_ps [subst {$psu_mio_init_data $psu_pll_init_data $psu_clock_init_data $psu_ddr_init_data }]
psu_ddr_phybringup_data
init_ps [subst {$psu_peripherals_init_data $psu_resetin_init_data }]
init_serdes
init_ps [subst {$psu_serdes_init_data $psu_resetout_init_data }]
init_peripheral
init_ps [subst {$psu_peripherals_powerdwn_data }]
init_ps [subst {$psu_afi_config }]
# restore original mode
configparams force-mem-accesses $saved_mode
}
proc psu_post_config {} {
variable psu_post_config_data
init_ps [subst {$psu_post_config_data}]
}
proc psu_ps_pl_reset_config {} {
variable psu_ps_pl_reset_config_data
init_ps [subst {$psu_ps_pl_reset_config_data}]
}
proc psu_ps_pl_isolation_removal {} {
variable psu_ps_pl_isolation_removal_data
init_ps [subst {$psu_ps_pl_isolation_removal_data}]
}
proc mask_read { addr mask } {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
return $maskedval
}
proc mask_poll { addr mask } {
set count 1
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
while { $maskedval == 0 } {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
set count [ expr { $count + 1 } ]
if { $count == 1000 } {
puts "Timeout Reached. Mask poll failed at ADDRESS: $addr MASK: $mask"
break
}
}
}
proc psu_mask_write { addr mask value } {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set curval [expr {$curval & ~($mask)}]
set maskedval [expr {$value & $mask}]
set maskedval [expr {$curval | $maskedval}]
mwr -force $addr $maskedval
}
proc serdes_fixcal_code {} {
set MaskStatus 1
array set match_pmos_code {}
array set match_nmos_code {}
array set match_ical_code {}
array set match_rcal_code {}
set p_code 0
set n_code 0
set i_code 0
set r_code 0
set repeat_count 0
set L3_TM_CALIB_DIG20 0
set L3_TM_CALIB_DIG19 0
set L3_TM_CALIB_DIG18 0
set L3_TM_CALIB_DIG16 0
set L3_TM_CALIB_DIG15 0
set L3_TM_CALIB_DIG14 0
set rdata 0
set rdata [mask_read 0XFD40289C 0xFFFFFFFF]
set rdata [expr $rdata & ~0x03 ]
set rdata [expr $rdata | 0x1]
mask_write 0XFD40289C 0xFFFFFFFF $rdata
#check supply good status before starting AFE sequencing
set count 1
while 1 {
set rdata [mask_read 0xFD402B1C 0xFFFFFFFF]
set count [ expr { $count + 1 } ]
if { [expr $rdata & 0x0000000E] == 0x0000000E } {
break;
}
if { $count == 1000 } {
break;
}
}
for {set i 0} {$i<23 } {incr i } {
set match_pmos_code($i) 0;
set match_nmos_code($i) 0;
}
for {set i 0} {$i<7} {incr i} {
set match_ical_code($i) 0;
set match_rcal_code($i) 0;
}
while 1 {
#Clear ICM_CFG value
mask_write 0xFD410010 0xFFFFFFFF 0x00000000
mask_write 0xFD410014 0xFFFFFFFF 0x00000000
#Set ICM_CFG value
#This will trigger recalibration of all stages
mask_write 0xFD410010 0xFFFFFFFF 0x00000001
mask_write 0xFD410014 0xFFFFFFFF 0x00000000;
#is calibration done? polling on L3_CALIB_DONE_STATUS
mask_poll 0xFD40EF14 0x2;
#PMOS code
set p_code [mask_read 0xFD40EF18 0xFFFFFFFF];
#NMOS code
set n_code [mask_read 0xFD40EF1C 0xFFFFFFFF];
#ICAL code
set i_code [mask_read 0xFD40EF24 0xFFFFFFFF];
#RX code
set r_code [mask_read 0xFD40EF28 0xFFFFFFFF];
#xil_printf("#SERDES initialization VALUES NMOS = 0x%x, PMOS = 0x%x, ICAL = 0x%x, RCAL = 0x%x\n\r", p_code, n_code, i_code, r_code);
#PMOS code in acceptable range
if {($p_code >= 0x26) && ($p_code <= 0x3C)} {
set index [expr $p_code - 0x26]
set value $match_pmos_code($index)
incr value
set match_pmos_code($index) $value;
}
#NMOS code in acceptable range
if {($n_code >= 0x26) && ($n_code <= 0x3C)} {
set index [expr $n_code - 0x26]
set value $match_nmos_code($index)
incr value
set match_nmos_code($index) $value;
}
#PMOS code in acceptable range
if {($i_code >= 0xC) && ($i_code <= 0x12)} {
set index [expr $i_code - 0xC]
set value $match_ical_code($index)
incr value
set match_ical_code($index) $value;
}
#NMOS code in acceptable range
if {($r_code >= 0x6) && ($r_code <= 0xC)} {
set index [expr $r_code - 0x6]
set value $match_rcal_code($index)
incr value
set match_rcal_code($index) $value;
}
incr repeat_count
if {$repeat_count > 10} {
break
}
}
#find the valid code which resulted in maximum times in 10 iterations
for {set i 0 } {$i < 23} {incr i} {
if {$match_pmos_code($i) >= $match_pmos_code(0) } {
set match_pmos_code(0) $match_pmos_code($i)
set p_code [expr 0x26 + $i]
}
if {$match_nmos_code($i) >= $match_nmos_code(0)} {
set match_nmos_code(0) $match_nmos_code($i)
set n_code [expr 0x26 + $i];
}
}
for {set $i 0} {$i<7} {incr i} {
if {$match_ical_code($i) >= $match_ical_code(0)} {
set match_ical_code(0) $match_ical_code($i)
set i_code [expr 0xC + $i]
}
if {$match_rcal_code($i) >= $match_rcal_code(0)} {
set match_rcal_code(0) $match_rcal_code($i)
set r_code [expr 0x6 + $i]
}
}
#xil_printf("#SERDES initialization PASSED NMOS = 0x%x, PMOS = 0x%x, ICAL = 0x%x, RCAL = 0x%x\n\r", p_code, n_code, i_code, r_code);
#L3_TM_CALIB_DIG20[3] PSW MSB Override
#L3_TM_CALIB_DIG20[2:0] PSW Code [4:2]
#read DIG20
set L3_TM_CALIB_DIG20 [mask_read 0xFD40EC50 0xFFFFFFF0];
set L3_TM_CALIB_DIG20 [expr $L3_TM_CALIB_DIG20 | 0x8 | (($p_code>>2)&0x7)]
#L3_TM_CALIB_DIG19[7:6] PSW Code [1:0]
#L3_TM_CALIB_DIG19[5] PSW Override
#L3_TM_CALIB_DIG19[2] NSW MSB Override
#L3_TM_CALIB_DIG19[1:0] NSW Code [4:3]
#read DIG19
set L3_TM_CALIB_DIG19 [mask_read 0xFD40EC4C 0xFFFFFF18]
set L3_TM_CALIB_DIG19 [expr $L3_TM_CALIB_DIG19 | (($p_code&0x3)<<6) | 0x20 | 0x4 | (($n_code>>3)&0x3)]
#L3_TM_CALIB_DIG18[7:5] NSW Code [2:0]
#L3_TM_CALIB_DIG18[4] NSW Override
#read DIG18
set L3_TM_CALIB_DIG18 [mask_read 0xFD40EC48 0xFFFFFF0F]
set L3_TM_CALIB_DIG18 [expr $L3_TM_CALIB_DIG18 | (($n_code&0x7)<<5) | 0x10]
#L3_TM_CALIB_DIG16[2:0] RX Code [3:1]
#read DIG16
set L3_TM_CALIB_DIG16 [mask_read 0xFD40EC40 0xFFFFFFF8]
set L3_TM_CALIB_DIG16 [expr $L3_TM_CALIB_DIG16 | (($r_code>>1)&0x7)]
#L3_TM_CALIB_DIG15[7] RX Code [0]
#L3_TM_CALIB_DIG15[6] RX CODE Override
#L3_TM_CALIB_DIG15[3] ICAL MSB Override
#L3_TM_CALIB_DIG15[2:0] ICAL Code [3:1]
#read DIG15
set L3_TM_CALIB_DIG15 [mask_read 0xFD40EC3C 0xFFFFFF30]
set L3_TM_CALIB_DIG15 [expr $L3_TM_CALIB_DIG15 | (($r_code&0x1)<<7) | 0x40 | 0x8 | (($i_code>>1)&0x7)]
#L3_TM_CALIB_DIG14[7] ICAL Code [0]
#L3_TM_CALIB_DIG14[6] ICAL Override
#read DIG14
set L3_TM_CALIB_DIG14 [mask_read 0xFD40EC38 0xFFFFFF3F]
set L3_TM_CALIB_DIG14 [expr $L3_TM_CALIB_DIG14 | (($i_code&0x1)<<7) | 0x40]
#Forces the calibration values
mask_write 0xFD40EC50 0xFFFFFFFF $L3_TM_CALIB_DIG20
mask_write 0xFD40EC4C 0xFFFFFFFF $L3_TM_CALIB_DIG19
mask_write 0xFD40EC48 0xFFFFFFFF $L3_TM_CALIB_DIG18
mask_write 0xFD40EC40 0xFFFFFFFF $L3_TM_CALIB_DIG16
mask_write 0xFD40EC3C 0xFFFFFFFF $L3_TM_CALIB_DIG15
mask_write 0xFD40EC38 0xFFFFFFFF $L3_TM_CALIB_DIG14
return $MaskStatus;
}
proc serdes_enb_coarse_saturation {} {
#/*
# * Enable PLL Coarse Code saturation Logic
# */
mask_write 0xFD402094 0xFFFFFFFF 0x00000010
mask_write 0xFD406094 0xFFFFFFFF 0x00000010
mask_write 0xFD40A094 0xFFFFFFFF 0x00000010
mask_write 0xFD40E094 0xFFFFFFFF 0x00000010
}
proc init_serdes {} {
serdes_fixcal_code
serdes_enb_coarse_saturation
}
proc poll { addr mask data} {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
set count 1
while { $maskedval != $data } {
set curval "0x[string range [mrd -force $addr] end-8 end]"
set maskedval [expr {$curval & $mask}]
set count [ expr { $count + 1 } ]
if { $count == 100000000 } {
puts "Timeout Reached. Mask poll failed at ADDRESS: $addr MASK: $mask"
break
}
}
}
proc init_peripheral {} {
#SMMU_REG Interrrupt Enable: Followig register need to be written all the time to properly catch SMMU messages.
mask_write 0xFD5F0018 0x8000001F 0x8000001F
}
proc psu_init_xppu_aper_ram {} {
}
proc psu_lpd_protection {} {
}
proc psu_ddr_protection {} {
set saved_mode [configparams force-mem-accesses]
configparams force-mem-accesses 1
variable psu_ddr_xmpu0_data
variable psu_ddr_xmpu1_data
variable psu_ddr_xmpu2_data
variable psu_ddr_xmpu3_data
variable psu_ddr_xmpu4_data
variable psu_ddr_xmpu5_data
init_ps [subst {$psu_ddr_xmpu0_data $psu_ddr_xmpu1_data $psu_ddr_xmpu2_data $psu_ddr_xmpu3_data $psu_ddr_xmpu4_data $psu_ddr_xmpu5_data}]
configparams force-mem-accesses $saved_mode
}
proc psu_ocm_protection {} {
set saved_mode [configparams force-mem-accesses]
configparams force-mem-accesses 1
variable psu_ocm_xmpu_data
init_ps [subst {$psu_ocm_xmpu_data }]
configparams force-mem-accesses $saved_mode
}
proc psu_fpd_protection {} {
set saved_mode [configparams force-mem-accesses]
configparams force-mem-accesses 1
variable psu_fpd_xmpu_data
init_ps [subst {$psu_fpd_xmpu_data }]
configparams force-mem-accesses $saved_mode
}
proc psu_protection_lock {} {
set saved_mode [configparams force-mem-accesses]
configparams force-mem-accesses 1
variable psu_protection_lock_data
init_ps [subst {$psu_protection_lock_data }]
configparams force-mem-accesses $saved_mode
}
proc psu_protection {} {
variable psu_apply_master_tz
init_ps [subst {$psu_apply_master_tz }]
psu_ddr_protection
psu_ocm_protection
psu_fpd_protection
psu_lpd_protection
}
proc psu_ddr_phybringup_data {} {
mwr -force 0xFD080004 0x00040073
poll 0xFD080030 0x0000000F 0x0000000F
psu_mask_write 0xFD080004 0x00000001 0x00000001
#poll for PHY initialization to complete
poll 0xFD080030 0x000000FF 0x0000001F
psu_mask_write 0xFD070010 0x00000008 0x00000008
psu_mask_write 0xFD0701B0 0x00000001 0x00000001
psu_mask_write 0xFD070010 0x00000030 0x00000010
psu_mask_write 0xFD070010 0x00000001 0x00000000
psu_mask_write 0xFD070010 0x0000F000 0x00006000
psu_mask_write 0xFD070014 0x0003FFFF 0x00000819
psu_mask_write 0xFD070010 0x80000000 0x80000000
poll 0xFD070018 0x00000001 0
psu_mask_write 0xFD070010 0x00000030 0x00000010
psu_mask_write 0xFD070010 0x00000001 0x00000000
psu_mask_write 0xFD070010 0x0000F000 0x00006000
psu_mask_write 0xFD070014 0x0003FFFF 0x00000899
psu_mask_write 0xFD070010 0x80000000 0x80000000
poll 0xFD070018 0x00000001 0
psu_mask_write 0xFD070010 0x00000030 0x00000010
psu_mask_write 0xFD070010 0x00000001 0x00000000
psu_mask_write 0xFD070010 0x0000F000 0x00006000
psu_mask_write 0xFD070014 0x0003FFFF 0x00000819
psu_mask_write 0xFD070010 0x80000000 0x80000000
poll 0xFD070018 0x00000001 0
psu_mask_write 0xFD070010 0x00000008 0x00000000
mwr -force 0xFD0701B0 0x00000001
mwr -force 0xFD070320 0x00000001
#//poll for DDR initialization to complete
poll 0xFD070004 0x0000000F 0x00000001
psu_mask_write 0xFD080014 0x00000040 0x00000040
#Dummy reads before PHY training starts
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
mrd -force 0xFD070004
#//dummy reads
psu_mask_write 0xFD080004 0xFFFFFFFF 0x0004FE01
#trigger PHY training
poll 0xFD080030 0x00000FFF 0x00000FFF
#Poll PUB_PGSR0 for Trng complete
# Run Vref training in static read mode
mwr -force 0xFD080200 0x100091C7
mwr -force 0xFD080018 0x00F01EEF
psu_mask_write 0xFD08142C 0x00000030 0x00000030
psu_mask_write 0xFD08146C 0x00000030 0x00000030
psu_mask_write 0xFD0814AC 0x00000030 0x00000030
psu_mask_write 0xFD0814EC 0x00000030 0x00000030
psu_mask_write 0xFD08152C 0x00000030 0x00000030
psu_mask_write 0xFD080004 0xFFFFFFFF 0x00060001
#trigger VreFPHY training
poll 0xFD080030 0x00004001 0x00004001
#//Poll PUB_PGSR0 for Trng complete
mwr -force 0xFD080200 0x800091C7
mwr -force 0xFD080018 0x00F122E7
psu_mask_write 0xFD08142C 0x00000030 0x00000000
psu_mask_write 0xFD08146C 0x00000030 0x00000000
psu_mask_write 0xFD0814AC 0x00000030 0x00000000
psu_mask_write 0xFD0814EC 0x00000030 0x00000000
psu_mask_write 0xFD08152C 0x00000030 0x00000000
psu_mask_write 0xFD080004 0xFFFFFFFF 0x0000C001
#trigger VreFPHY training
poll 0xFD080030 0x00000C01 0x00000C01
#//Poll PUB_PGSR0 for Trng complete
mwr -force 0xFD070180 0x01000040
mwr -force 0xFD070060 0x00000000
psu_mask_write 0xFD080014 0x00000040 0x00000000
}