blob: d75ebacb3c47f3e6669d36eacef8b9a2c764c81c [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2015 Xilinx, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>
*
*
******************************************************************************/
#include <xil_io.h>
#include <sleep.h>
#include "psu_init_gpl.h"
#define DPLL_CFG_LOCK_DLY 63
#define DPLL_CFG_LOCK_CNT 625
#define DPLL_CFG_LFHF 3
#define DPLL_CFG_CP 3
#define DPLL_CFG_RES 2
static int mask_pollOnValue(u32 add, u32 mask, u32 value);
static int mask_poll(u32 add, u32 mask);
static void mask_delay(u32 delay);
static u32 mask_read(u32 add, u32 mask);
static void dpll_prog(int ddr_pll_fbdiv, int d_lock_dly,
int d_lock_cnt, int d_lfhf, int d_cp, int d_res);
static
void PSU_Mask_Write(unsigned long offset, unsigned long mask,
unsigned long val)
{
unsigned long RegVal = 0x0;
RegVal = Xil_In32(offset);
RegVal &= ~(mask);
RegVal |= (val & mask);
Xil_Out32(offset, RegVal);
}
static
void prog_reg(unsigned long addr, unsigned long mask,
unsigned long shift,
unsigned long value)
{
int rdata = 0;
rdata = Xil_In32(addr);
rdata = rdata & (~mask);
rdata = rdata | (value << shift);
Xil_Out32(addr, rdata);
}
unsigned long psu_pll_init_data(void)
{
/*
* RPLL INIT
*/
/*
* Register : RPLL_CFG @ 0XFF5E0034
* PLL loop filter resistor control
* PSU_CRL_APB_RPLL_CFG_RES 0xc
* PLL charge pump control
* PSU_CRL_APB_RPLL_CFG_CP 0x3
* PLL loop filter high frequency capacitor control
* PSU_CRL_APB_RPLL_CFG_LFHF 0x3
* Lock circuit counter setting
* PSU_CRL_APB_RPLL_CFG_LOCK_CNT 0x339
* Lock circuit configuration settings for lock windowsize
* PSU_CRL_APB_RPLL_CFG_LOCK_DLY 0x3f
* Helper data. Values are to be looked up in a table from Data Sheet
* (OFFSET, MASK, VALUE) (0XFF5E0034, 0xFE7FEDEFU ,0x7E672C6CU)
*/
PSU_Mask_Write(CRL_APB_RPLL_CFG_OFFSET, 0xFE7FEDEFU, 0x7E672C6CU);
/*##################################################################### */
/*
* UPDATE FB_DIV
*/
/*
* Register : RPLL_CTRL @ 0XFF5E0030
* Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
* s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
* ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
* PSU_CRL_APB_RPLL_CTRL_PRE_SRC 0x0
* The integer portion of the feedback divider to the PLL
* PSU_CRL_APB_RPLL_CTRL_FBDIV 0x2d
* This turns on the divide by 2 that is inside of the PLL. This does not c
* hange the VCO frequency, just the output frequency
* PSU_CRL_APB_RPLL_CTRL_DIV2 0x1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0030, 0x00717F00U ,0x00012D00U)
*/
PSU_Mask_Write(CRL_APB_RPLL_CTRL_OFFSET, 0x00717F00U, 0x00012D00U);
/*##################################################################### */
/*
* BY PASS PLL
*/
/*
* Register : RPLL_CTRL @ 0XFF5E0030
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRL_APB_RPLL_CTRL_BYPASS 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000008U ,0x00000008U)
*/
PSU_Mask_Write(CRL_APB_RPLL_CTRL_OFFSET, 0x00000008U, 0x00000008U);
/*##################################################################### */
/*
* ASSERT RESET
*/
/*
* Register : RPLL_CTRL @ 0XFF5E0030
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRL_APB_RPLL_CTRL_RESET 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(CRL_APB_RPLL_CTRL_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* DEASSERT RESET
*/
/*
* Register : RPLL_CTRL @ 0XFF5E0030
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRL_APB_RPLL_CTRL_RESET 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RPLL_CTRL_OFFSET, 0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* CHECK PLL STATUS
*/
/*
* Register : PLL_STATUS @ 0XFF5E0040
* RPLL is locked
* PSU_CRL_APB_PLL_STATUS_RPLL_LOCK 1
* (OFFSET, MASK, VALUE) (0XFF5E0040, 0x00000002U ,0x00000002U)
*/
mask_poll(CRL_APB_PLL_STATUS_OFFSET, 0x00000002U);
/*##################################################################### */
/*
* REMOVE PLL BY PASS
*/
/*
* Register : RPLL_CTRL @ 0XFF5E0030
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRL_APB_RPLL_CTRL_BYPASS 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0030, 0x00000008U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RPLL_CTRL_OFFSET, 0x00000008U, 0x00000000U);
/*##################################################################### */
/*
* Register : RPLL_TO_FPD_CTRL @ 0XFF5E0048
* Divisor value for this clock.
* PSU_CRL_APB_RPLL_TO_FPD_CTRL_DIVISOR0 0x2
* Control for a clock that will be generated in the LPD, but used in the F
* PD as a clock source for the peripheral clock muxes.
* (OFFSET, MASK, VALUE) (0XFF5E0048, 0x00003F00U ,0x00000200U)
*/
PSU_Mask_Write(CRL_APB_RPLL_TO_FPD_CTRL_OFFSET,
0x00003F00U, 0x00000200U);
/*##################################################################### */
/*
* RPLL FRAC CFG
*/
/*
* IOPLL INIT
*/
/*
* Register : IOPLL_CFG @ 0XFF5E0024
* PLL loop filter resistor control
* PSU_CRL_APB_IOPLL_CFG_RES 0x2
* PLL charge pump control
* PSU_CRL_APB_IOPLL_CFG_CP 0x4
* PLL loop filter high frequency capacitor control
* PSU_CRL_APB_IOPLL_CFG_LFHF 0x3
* Lock circuit counter setting
* PSU_CRL_APB_IOPLL_CFG_LOCK_CNT 0x258
* Lock circuit configuration settings for lock windowsize
* PSU_CRL_APB_IOPLL_CFG_LOCK_DLY 0x3f
* Helper data. Values are to be looked up in a table from Data Sheet
* (OFFSET, MASK, VALUE) (0XFF5E0024, 0xFE7FEDEFU ,0x7E4B0C82U)
*/
PSU_Mask_Write(CRL_APB_IOPLL_CFG_OFFSET, 0xFE7FEDEFU, 0x7E4B0C82U);
/*##################################################################### */
/*
* UPDATE FB_DIV
*/
/*
* Register : IOPLL_CTRL @ 0XFF5E0020
* Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
* s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
* ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
* PSU_CRL_APB_IOPLL_CTRL_PRE_SRC 0x0
* The integer portion of the feedback divider to the PLL
* PSU_CRL_APB_IOPLL_CTRL_FBDIV 0x5a
* This turns on the divide by 2 that is inside of the PLL. This does not c
* hange the VCO frequency, just the output frequency
* PSU_CRL_APB_IOPLL_CTRL_DIV2 0x1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0020, 0x00717F00U ,0x00015A00U)
*/
PSU_Mask_Write(CRL_APB_IOPLL_CTRL_OFFSET, 0x00717F00U, 0x00015A00U);
/*##################################################################### */
/*
* BY PASS PLL
*/
/*
* Register : IOPLL_CTRL @ 0XFF5E0020
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRL_APB_IOPLL_CTRL_BYPASS 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000008U ,0x00000008U)
*/
PSU_Mask_Write(CRL_APB_IOPLL_CTRL_OFFSET, 0x00000008U, 0x00000008U);
/*##################################################################### */
/*
* ASSERT RESET
*/
/*
* Register : IOPLL_CTRL @ 0XFF5E0020
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRL_APB_IOPLL_CTRL_RESET 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(CRL_APB_IOPLL_CTRL_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* DEASSERT RESET
*/
/*
* Register : IOPLL_CTRL @ 0XFF5E0020
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRL_APB_IOPLL_CTRL_RESET 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_IOPLL_CTRL_OFFSET, 0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* CHECK PLL STATUS
*/
/*
* Register : PLL_STATUS @ 0XFF5E0040
* IOPLL is locked
* PSU_CRL_APB_PLL_STATUS_IOPLL_LOCK 1
* (OFFSET, MASK, VALUE) (0XFF5E0040, 0x00000001U ,0x00000001U)
*/
mask_poll(CRL_APB_PLL_STATUS_OFFSET, 0x00000001U);
/*##################################################################### */
/*
* REMOVE PLL BY PASS
*/
/*
* Register : IOPLL_CTRL @ 0XFF5E0020
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRL_APB_IOPLL_CTRL_BYPASS 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFF5E0020, 0x00000008U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_IOPLL_CTRL_OFFSET, 0x00000008U, 0x00000000U);
/*##################################################################### */
/*
* Register : IOPLL_TO_FPD_CTRL @ 0XFF5E0044
* Divisor value for this clock.
* PSU_CRL_APB_IOPLL_TO_FPD_CTRL_DIVISOR0 0x3
* Control for a clock that will be generated in the LPD, but used in the F
* PD as a clock source for the peripheral clock muxes.
* (OFFSET, MASK, VALUE) (0XFF5E0044, 0x00003F00U ,0x00000300U)
*/
PSU_Mask_Write(CRL_APB_IOPLL_TO_FPD_CTRL_OFFSET,
0x00003F00U, 0x00000300U);
/*##################################################################### */
/*
* IOPLL FRAC CFG
*/
/*
* APU_PLL INIT
*/
/*
* Register : APLL_CFG @ 0XFD1A0024
* PLL loop filter resistor control
* PSU_CRF_APB_APLL_CFG_RES 0x2
* PLL charge pump control
* PSU_CRF_APB_APLL_CFG_CP 0x3
* PLL loop filter high frequency capacitor control
* PSU_CRF_APB_APLL_CFG_LFHF 0x3
* Lock circuit counter setting
* PSU_CRF_APB_APLL_CFG_LOCK_CNT 0x258
* Lock circuit configuration settings for lock windowsize
* PSU_CRF_APB_APLL_CFG_LOCK_DLY 0x3f
* Helper data. Values are to be looked up in a table from Data Sheet
* (OFFSET, MASK, VALUE) (0XFD1A0024, 0xFE7FEDEFU ,0x7E4B0C62U)
*/
PSU_Mask_Write(CRF_APB_APLL_CFG_OFFSET, 0xFE7FEDEFU, 0x7E4B0C62U);
/*##################################################################### */
/*
* UPDATE FB_DIV
*/
/*
* Register : APLL_CTRL @ 0XFD1A0020
* Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
* s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
* ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
* PSU_CRF_APB_APLL_CTRL_PRE_SRC 0x0
* The integer portion of the feedback divider to the PLL
* PSU_CRF_APB_APLL_CTRL_FBDIV 0x48
* This turns on the divide by 2 that is inside of the PLL. This does not c
* hange the VCO frequency, just the output frequency
* PSU_CRF_APB_APLL_CTRL_DIV2 0x1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0020, 0x00717F00U ,0x00014800U)
*/
PSU_Mask_Write(CRF_APB_APLL_CTRL_OFFSET, 0x00717F00U, 0x00014800U);
/*##################################################################### */
/*
* BY PASS PLL
*/
/*
* Register : APLL_CTRL @ 0XFD1A0020
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRF_APB_APLL_CTRL_BYPASS 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000008U ,0x00000008U)
*/
PSU_Mask_Write(CRF_APB_APLL_CTRL_OFFSET, 0x00000008U, 0x00000008U);
/*##################################################################### */
/*
* ASSERT RESET
*/
/*
* Register : APLL_CTRL @ 0XFD1A0020
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRF_APB_APLL_CTRL_RESET 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(CRF_APB_APLL_CTRL_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* DEASSERT RESET
*/
/*
* Register : APLL_CTRL @ 0XFD1A0020
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRF_APB_APLL_CTRL_RESET 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_APLL_CTRL_OFFSET, 0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* CHECK PLL STATUS
*/
/*
* Register : PLL_STATUS @ 0XFD1A0044
* APLL is locked
* PSU_CRF_APB_PLL_STATUS_APLL_LOCK 1
* (OFFSET, MASK, VALUE) (0XFD1A0044, 0x00000001U ,0x00000001U)
*/
mask_poll(CRF_APB_PLL_STATUS_OFFSET, 0x00000001U);
/*##################################################################### */
/*
* REMOVE PLL BY PASS
*/
/*
* Register : APLL_CTRL @ 0XFD1A0020
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRF_APB_APLL_CTRL_BYPASS 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0020, 0x00000008U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_APLL_CTRL_OFFSET, 0x00000008U, 0x00000000U);
/*##################################################################### */
/*
* Register : APLL_TO_LPD_CTRL @ 0XFD1A0048
* Divisor value for this clock.
* PSU_CRF_APB_APLL_TO_LPD_CTRL_DIVISOR0 0x3
* Control for a clock that will be generated in the FPD, but used in the L
* PD as a clock source for the peripheral clock muxes.
* (OFFSET, MASK, VALUE) (0XFD1A0048, 0x00003F00U ,0x00000300U)
*/
PSU_Mask_Write(CRF_APB_APLL_TO_LPD_CTRL_OFFSET,
0x00003F00U, 0x00000300U);
/*##################################################################### */
/*
* APLL FRAC CFG
*/
/*
* DDR_PLL INIT
*/
/*
* Register : DPLL_CFG @ 0XFD1A0030
* PLL loop filter resistor control
* PSU_CRF_APB_DPLL_CFG_RES 0x2
* PLL charge pump control
* PSU_CRF_APB_DPLL_CFG_CP 0x3
* PLL loop filter high frequency capacitor control
* PSU_CRF_APB_DPLL_CFG_LFHF 0x3
* Lock circuit counter setting
* PSU_CRF_APB_DPLL_CFG_LOCK_CNT 0x258
* Lock circuit configuration settings for lock windowsize
* PSU_CRF_APB_DPLL_CFG_LOCK_DLY 0x3f
* Helper data. Values are to be looked up in a table from Data Sheet
* (OFFSET, MASK, VALUE) (0XFD1A0030, 0xFE7FEDEFU ,0x7E4B0C62U)
*/
PSU_Mask_Write(CRF_APB_DPLL_CFG_OFFSET, 0xFE7FEDEFU, 0x7E4B0C62U);
/*##################################################################### */
/*
* UPDATE FB_DIV
*/
/*
* Register : DPLL_CTRL @ 0XFD1A002C
* Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
* s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
* ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
* PSU_CRF_APB_DPLL_CTRL_PRE_SRC 0x0
* The integer portion of the feedback divider to the PLL
* PSU_CRF_APB_DPLL_CTRL_FBDIV 0x40
* This turns on the divide by 2 that is inside of the PLL. This does not c
* hange the VCO frequency, just the output frequency
* PSU_CRF_APB_DPLL_CTRL_DIV2 0x1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A002C, 0x00717F00U ,0x00014000U)
*/
PSU_Mask_Write(CRF_APB_DPLL_CTRL_OFFSET, 0x00717F00U, 0x00014000U);
/*##################################################################### */
/*
* BY PASS PLL
*/
/*
* Register : DPLL_CTRL @ 0XFD1A002C
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRF_APB_DPLL_CTRL_BYPASS 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000008U ,0x00000008U)
*/
PSU_Mask_Write(CRF_APB_DPLL_CTRL_OFFSET, 0x00000008U, 0x00000008U);
/*##################################################################### */
/*
* ASSERT RESET
*/
/*
* Register : DPLL_CTRL @ 0XFD1A002C
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRF_APB_DPLL_CTRL_RESET 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(CRF_APB_DPLL_CTRL_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* DEASSERT RESET
*/
/*
* Register : DPLL_CTRL @ 0XFD1A002C
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRF_APB_DPLL_CTRL_RESET 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_DPLL_CTRL_OFFSET, 0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* CHECK PLL STATUS
*/
/*
* Register : PLL_STATUS @ 0XFD1A0044
* DPLL is locked
* PSU_CRF_APB_PLL_STATUS_DPLL_LOCK 1
* (OFFSET, MASK, VALUE) (0XFD1A0044, 0x00000002U ,0x00000002U)
*/
mask_poll(CRF_APB_PLL_STATUS_OFFSET, 0x00000002U);
/*##################################################################### */
/*
* REMOVE PLL BY PASS
*/
/*
* Register : DPLL_CTRL @ 0XFD1A002C
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRF_APB_DPLL_CTRL_BYPASS 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A002C, 0x00000008U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_DPLL_CTRL_OFFSET, 0x00000008U, 0x00000000U);
/*##################################################################### */
/*
* Register : DPLL_TO_LPD_CTRL @ 0XFD1A004C
* Divisor value for this clock.
* PSU_CRF_APB_DPLL_TO_LPD_CTRL_DIVISOR0 0x2
* Control for a clock that will be generated in the FPD, but used in the L
* PD as a clock source for the peripheral clock muxes.
* (OFFSET, MASK, VALUE) (0XFD1A004C, 0x00003F00U ,0x00000200U)
*/
PSU_Mask_Write(CRF_APB_DPLL_TO_LPD_CTRL_OFFSET,
0x00003F00U, 0x00000200U);
/*##################################################################### */
/*
* DPLL FRAC CFG
*/
/*
* VIDEO_PLL INIT
*/
/*
* Register : VPLL_CFG @ 0XFD1A003C
* PLL loop filter resistor control
* PSU_CRF_APB_VPLL_CFG_RES 0x2
* PLL charge pump control
* PSU_CRF_APB_VPLL_CFG_CP 0x4
* PLL loop filter high frequency capacitor control
* PSU_CRF_APB_VPLL_CFG_LFHF 0x3
* Lock circuit counter setting
* PSU_CRF_APB_VPLL_CFG_LOCK_CNT 0x258
* Lock circuit configuration settings for lock windowsize
* PSU_CRF_APB_VPLL_CFG_LOCK_DLY 0x3f
* Helper data. Values are to be looked up in a table from Data Sheet
* (OFFSET, MASK, VALUE) (0XFD1A003C, 0xFE7FEDEFU ,0x7E4B0C82U)
*/
PSU_Mask_Write(CRF_APB_VPLL_CFG_OFFSET, 0xFE7FEDEFU, 0x7E4B0C82U);
/*##################################################################### */
/*
* UPDATE FB_DIV
*/
/*
* Register : VPLL_CTRL @ 0XFD1A0038
* Mux select for determining which clock feeds this PLL. 0XX pss_ref_clk i
* s the source 100 video clk is the source 101 pss_alt_ref_clk is the sour
* ce 110 aux_refclk[X] is the source 111 gt_crx_ref_clk is the source
* PSU_CRF_APB_VPLL_CTRL_PRE_SRC 0x0
* The integer portion of the feedback divider to the PLL
* PSU_CRF_APB_VPLL_CTRL_FBDIV 0x5a
* This turns on the divide by 2 that is inside of the PLL. This does not c
* hange the VCO frequency, just the output frequency
* PSU_CRF_APB_VPLL_CTRL_DIV2 0x1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0038, 0x00717F00U ,0x00015A00U)
*/
PSU_Mask_Write(CRF_APB_VPLL_CTRL_OFFSET, 0x00717F00U, 0x00015A00U);
/*##################################################################### */
/*
* BY PASS PLL
*/
/*
* Register : VPLL_CTRL @ 0XFD1A0038
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRF_APB_VPLL_CTRL_BYPASS 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000008U ,0x00000008U)
*/
PSU_Mask_Write(CRF_APB_VPLL_CTRL_OFFSET, 0x00000008U, 0x00000008U);
/*##################################################################### */
/*
* ASSERT RESET
*/
/*
* Register : VPLL_CTRL @ 0XFD1A0038
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRF_APB_VPLL_CTRL_RESET 1
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(CRF_APB_VPLL_CTRL_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* DEASSERT RESET
*/
/*
* Register : VPLL_CTRL @ 0XFD1A0038
* Asserts Reset to the PLL. When asserting reset, the PLL must already be
* in BYPASS.
* PSU_CRF_APB_VPLL_CTRL_RESET 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_VPLL_CTRL_OFFSET, 0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* CHECK PLL STATUS
*/
/*
* Register : PLL_STATUS @ 0XFD1A0044
* VPLL is locked
* PSU_CRF_APB_PLL_STATUS_VPLL_LOCK 1
* (OFFSET, MASK, VALUE) (0XFD1A0044, 0x00000004U ,0x00000004U)
*/
mask_poll(CRF_APB_PLL_STATUS_OFFSET, 0x00000004U);
/*##################################################################### */
/*
* REMOVE PLL BY PASS
*/
/*
* Register : VPLL_CTRL @ 0XFD1A0038
* Bypasses the PLL clock. The usable clock will be determined from the POS
* T_SRC field. (This signal may only be toggled after 4 cycles of the old
* clock and 4 cycles of the new clock. This is not usually an issue, but d
* esigners must be aware.)
* PSU_CRF_APB_VPLL_CTRL_BYPASS 0
* PLL Basic Control
* (OFFSET, MASK, VALUE) (0XFD1A0038, 0x00000008U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_VPLL_CTRL_OFFSET, 0x00000008U, 0x00000000U);
/*##################################################################### */
/*
* Register : VPLL_TO_LPD_CTRL @ 0XFD1A0050
* Divisor value for this clock.
* PSU_CRF_APB_VPLL_TO_LPD_CTRL_DIVISOR0 0x3
* Control for a clock that will be generated in the FPD, but used in the L
* PD as a clock source for the peripheral clock muxes.
* (OFFSET, MASK, VALUE) (0XFD1A0050, 0x00003F00U ,0x00000300U)
*/
PSU_Mask_Write(CRF_APB_VPLL_TO_LPD_CTRL_OFFSET,
0x00003F00U, 0x00000300U);
/*##################################################################### */
/*
* VIDEO FRAC CFG
*/
return 1;
}
unsigned long psu_clock_init_data(void)
{
/*
* CLOCK CONTROL SLCR REGISTER
*/
/*
* Register : GEM3_REF_CTRL @ 0XFF5E005C
* Clock active for the RX channel
* PSU_CRL_APB_GEM3_REF_CTRL_RX_CLKACT 0x1
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_GEM3_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_GEM3_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_GEM3_REF_CTRL_DIVISOR0 0xc
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_GEM3_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E005C, 0x063F3F07U ,0x06010C00U)
*/
PSU_Mask_Write(CRL_APB_GEM3_REF_CTRL_OFFSET,
0x063F3F07U, 0x06010C00U);
/*##################################################################### */
/*
* Register : GEM_TSU_REF_CTRL @ 0XFF5E0100
* 6 bit divider
* PSU_CRL_APB_GEM_TSU_REF_CTRL_DIVISOR0 0x6
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_GEM_TSU_REF_CTRL_SRCSEL 0x0
* 6 bit divider
* PSU_CRL_APB_GEM_TSU_REF_CTRL_DIVISOR1 0x1
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_GEM_TSU_REF_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0100, 0x013F3F07U ,0x01010600U)
*/
PSU_Mask_Write(CRL_APB_GEM_TSU_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010600U);
/*##################################################################### */
/*
* Register : USB0_BUS_REF_CTRL @ 0XFF5E0060
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_USB0_BUS_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_USB0_BUS_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_USB0_BUS_REF_CTRL_DIVISOR0 0x6
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_USB0_BUS_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0060, 0x023F3F07U ,0x02010600U)
*/
PSU_Mask_Write(CRL_APB_USB0_BUS_REF_CTRL_OFFSET,
0x023F3F07U, 0x02010600U);
/*##################################################################### */
/*
* Register : USB3_DUAL_REF_CTRL @ 0XFF5E004C
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_USB3_DUAL_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_USB3_DUAL_REF_CTRL_DIVISOR1 0x3
* 6 bit divider
* PSU_CRL_APB_USB3_DUAL_REF_CTRL_DIVISOR0 0x19
* 000 = IOPLL; 010 = RPLL; 011 = DPLL. (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_USB3_DUAL_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E004C, 0x023F3F07U ,0x02031900U)
*/
PSU_Mask_Write(CRL_APB_USB3_DUAL_REF_CTRL_OFFSET,
0x023F3F07U, 0x02031900U);
/*##################################################################### */
/*
* Register : QSPI_REF_CTRL @ 0XFF5E0068
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_QSPI_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_QSPI_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_QSPI_REF_CTRL_DIVISOR0 0xc
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_QSPI_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0068, 0x013F3F07U ,0x01010C00U)
*/
PSU_Mask_Write(CRL_APB_QSPI_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010C00U);
/*##################################################################### */
/*
* Register : SDIO1_REF_CTRL @ 0XFF5E0070
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_SDIO1_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_SDIO1_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_SDIO1_REF_CTRL_DIVISOR0 0x8
* 000 = IOPLL; 010 = RPLL; 011 = VPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_SDIO1_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0070, 0x013F3F07U ,0x01010800U)
*/
PSU_Mask_Write(CRL_APB_SDIO1_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010800U);
/*##################################################################### */
/*
* Register : SDIO_CLK_CTRL @ 0XFF18030C
* MIO pad selection for sdio1_rx_clk (feedback clock from the PAD) 0: MIO
* [51] 1: MIO [76]
* PSU_IOU_SLCR_SDIO_CLK_CTRL_SDIO1_RX_SRC_SEL 0
* SoC Debug Clock Control
* (OFFSET, MASK, VALUE) (0XFF18030C, 0x00020000U ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_SDIO_CLK_CTRL_OFFSET,
0x00020000U, 0x00000000U);
/*##################################################################### */
/*
* Register : UART0_REF_CTRL @ 0XFF5E0074
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_UART0_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_UART0_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_UART0_REF_CTRL_DIVISOR0 0xf
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_UART0_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0074, 0x013F3F07U ,0x01010F00U)
*/
PSU_Mask_Write(CRL_APB_UART0_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010F00U);
/*##################################################################### */
/*
* Register : UART1_REF_CTRL @ 0XFF5E0078
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_UART1_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_UART1_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_UART1_REF_CTRL_DIVISOR0 0xf
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_UART1_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0078, 0x013F3F07U ,0x01010F00U)
*/
PSU_Mask_Write(CRL_APB_UART1_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010F00U);
/*##################################################################### */
/*
* Register : I2C0_REF_CTRL @ 0XFF5E0120
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_I2C0_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_I2C0_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_I2C0_REF_CTRL_DIVISOR0 0xf
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_I2C0_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0120, 0x013F3F07U ,0x01010F00U)
*/
PSU_Mask_Write(CRL_APB_I2C0_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010F00U);
/*##################################################################### */
/*
* Register : I2C1_REF_CTRL @ 0XFF5E0124
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_I2C1_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_I2C1_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_I2C1_REF_CTRL_DIVISOR0 0xf
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_I2C1_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0124, 0x013F3F07U ,0x01010F00U)
*/
PSU_Mask_Write(CRL_APB_I2C1_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010F00U);
/*##################################################################### */
/*
* Register : CAN1_REF_CTRL @ 0XFF5E0088
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_CAN1_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_CAN1_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_CAN1_REF_CTRL_DIVISOR0 0xf
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_CAN1_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0088, 0x013F3F07U ,0x01010F00U)
*/
PSU_Mask_Write(CRL_APB_CAN1_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010F00U);
/*##################################################################### */
/*
* Register : CPU_R5_CTRL @ 0XFF5E0090
* Turing this off will shut down the OCM, some parts of the APM, and preve
* nt transactions going from the FPD to the LPD and could lead to system h
* ang
* PSU_CRL_APB_CPU_R5_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_CPU_R5_CTRL_DIVISOR0 0x3
* 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_CPU_R5_CTRL_SRCSEL 0x2
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0090, 0x01003F07U ,0x01000302U)
*/
PSU_Mask_Write(CRL_APB_CPU_R5_CTRL_OFFSET, 0x01003F07U, 0x01000302U);
/*##################################################################### */
/*
* Register : IOU_SWITCH_CTRL @ 0XFF5E009C
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_IOU_SWITCH_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_IOU_SWITCH_CTRL_DIVISOR0 0x6
* 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_IOU_SWITCH_CTRL_SRCSEL 0x2
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E009C, 0x01003F07U ,0x01000602U)
*/
PSU_Mask_Write(CRL_APB_IOU_SWITCH_CTRL_OFFSET,
0x01003F07U, 0x01000602U);
/*##################################################################### */
/*
* Register : PCAP_CTRL @ 0XFF5E00A4
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_PCAP_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_PCAP_CTRL_DIVISOR0 0x8
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_PCAP_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E00A4, 0x01003F07U ,0x01000800U)
*/
PSU_Mask_Write(CRL_APB_PCAP_CTRL_OFFSET, 0x01003F07U, 0x01000800U);
/*##################################################################### */
/*
* Register : LPD_SWITCH_CTRL @ 0XFF5E00A8
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_LPD_SWITCH_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_LPD_SWITCH_CTRL_DIVISOR0 0x3
* 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_LPD_SWITCH_CTRL_SRCSEL 0x2
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E00A8, 0x01003F07U ,0x01000302U)
*/
PSU_Mask_Write(CRL_APB_LPD_SWITCH_CTRL_OFFSET,
0x01003F07U, 0x01000302U);
/*##################################################################### */
/*
* Register : LPD_LSBUS_CTRL @ 0XFF5E00AC
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_LPD_LSBUS_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_LPD_LSBUS_CTRL_DIVISOR0 0xf
* 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_LPD_LSBUS_CTRL_SRCSEL 0x2
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E00AC, 0x01003F07U ,0x01000F02U)
*/
PSU_Mask_Write(CRL_APB_LPD_LSBUS_CTRL_OFFSET,
0x01003F07U, 0x01000F02U);
/*##################################################################### */
/*
* Register : DBG_LPD_CTRL @ 0XFF5E00B0
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_DBG_LPD_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_DBG_LPD_CTRL_DIVISOR0 0x6
* 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_DBG_LPD_CTRL_SRCSEL 0x2
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E00B0, 0x01003F07U ,0x01000602U)
*/
PSU_Mask_Write(CRL_APB_DBG_LPD_CTRL_OFFSET,
0x01003F07U, 0x01000602U);
/*##################################################################### */
/*
* Register : ADMA_REF_CTRL @ 0XFF5E00B8
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_ADMA_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_ADMA_REF_CTRL_DIVISOR0 0x3
* 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_ADMA_REF_CTRL_SRCSEL 0x2
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E00B8, 0x01003F07U ,0x01000302U)
*/
PSU_Mask_Write(CRL_APB_ADMA_REF_CTRL_OFFSET,
0x01003F07U, 0x01000302U);
/*##################################################################### */
/*
* Register : PL0_REF_CTRL @ 0XFF5E00C0
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_PL0_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRL_APB_PL0_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_PL0_REF_CTRL_DIVISOR0 0xf
* 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_PL0_REF_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E00C0, 0x013F3F07U ,0x01010F00U)
*/
PSU_Mask_Write(CRL_APB_PL0_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010F00U);
/*##################################################################### */
/*
* Register : AMS_REF_CTRL @ 0XFF5E0108
* 6 bit divider
* PSU_CRL_APB_AMS_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRL_APB_AMS_REF_CTRL_DIVISOR0 0x1e
* 000 = RPLL; 010 = IOPLL; 011 = DPLL; (This signal may only be toggled af
* ter 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRL_APB_AMS_REF_CTRL_SRCSEL 0x2
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_AMS_REF_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0108, 0x013F3F07U ,0x01011E02U)
*/
PSU_Mask_Write(CRL_APB_AMS_REF_CTRL_OFFSET,
0x013F3F07U, 0x01011E02U);
/*##################################################################### */
/*
* Register : DLL_REF_CTRL @ 0XFF5E0104
* 000 = IOPLL; 001 = RPLL; (This signal may only be toggled after 4 cycles
* of the old clock and 4 cycles of the new clock. This is not usually an
* issue, but designers must be aware.)
* PSU_CRL_APB_DLL_REF_CTRL_SRCSEL 0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0104, 0x00000007U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_DLL_REF_CTRL_OFFSET,
0x00000007U, 0x00000000U);
/*##################################################################### */
/*
* Register : TIMESTAMP_REF_CTRL @ 0XFF5E0128
* 6 bit divider
* PSU_CRL_APB_TIMESTAMP_REF_CTRL_DIVISOR0 0xf
* 1XX = pss_ref_clk; 000 = IOPLL; 010 = RPLL; 011 = DPLL; (This signal may
* only be toggled after 4 cycles of the old clock and 4 cycles of the new
* clock. This is not usually an issue, but designers must be aware.)
* PSU_CRL_APB_TIMESTAMP_REF_CTRL_SRCSEL 0x0
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRL_APB_TIMESTAMP_REF_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFF5E0128, 0x01003F07U ,0x01000F00U)
*/
PSU_Mask_Write(CRL_APB_TIMESTAMP_REF_CTRL_OFFSET,
0x01003F07U, 0x01000F00U);
/*##################################################################### */
/*
* Register : SATA_REF_CTRL @ 0XFD1A00A0
* 000 = IOPLL_TO_FPD; 010 = APLL; 011 = DPLL; (This signal may only be tog
* gled after 4 cycles of the old clock and 4 cycles of the new clock. This
* is not usually an issue, but designers must be aware.)
* PSU_CRF_APB_SATA_REF_CTRL_SRCSEL 0x0
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_SATA_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRF_APB_SATA_REF_CTRL_DIVISOR0 0x2
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A00A0, 0x01003F07U ,0x01000200U)
*/
PSU_Mask_Write(CRF_APB_SATA_REF_CTRL_OFFSET,
0x01003F07U, 0x01000200U);
/*##################################################################### */
/*
* Register : PCIE_REF_CTRL @ 0XFD1A00B4
* 000 = IOPLL_TO_FPD; 010 = RPLL_TO_FPD; 011 = DPLL; (This signal may only
* be toggled after 4 cycles of the old clock and 4 cycles of the new cloc
* k. This is not usually an issue, but designers must be aware.)
* PSU_CRF_APB_PCIE_REF_CTRL_SRCSEL 0x0
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_PCIE_REF_CTRL_CLKACT 0x1
* 6 bit divider
* PSU_CRF_APB_PCIE_REF_CTRL_DIVISOR0 0x2
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A00B4, 0x01003F07U ,0x01000200U)
*/
PSU_Mask_Write(CRF_APB_PCIE_REF_CTRL_OFFSET,
0x01003F07U, 0x01000200U);
/*##################################################################### */
/*
* Register : DP_VIDEO_REF_CTRL @ 0XFD1A0070
* 6 bit divider
* PSU_CRF_APB_DP_VIDEO_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRF_APB_DP_VIDEO_REF_CTRL_DIVISOR0 0x5
* 000 = VPLL; 010 = DPLL; 011 = RPLL_TO_FPD - might be using extra mux; (T
* his signal may only be toggled after 4 cycles of the old clock and 4 cyc
* les of the new clock. This is not usually an issue, but designers must b
* e aware.)
* PSU_CRF_APB_DP_VIDEO_REF_CTRL_SRCSEL 0x0
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_DP_VIDEO_REF_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A0070, 0x013F3F07U ,0x01010500U)
*/
PSU_Mask_Write(CRF_APB_DP_VIDEO_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010500U);
/*##################################################################### */
/*
* Register : DP_AUDIO_REF_CTRL @ 0XFD1A0074
* 6 bit divider
* PSU_CRF_APB_DP_AUDIO_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRF_APB_DP_AUDIO_REF_CTRL_DIVISOR0 0xf
* 000 = VPLL; 010 = DPLL; 011 = RPLL_TO_FPD - might be using extra mux; (T
* his signal may only be toggled after 4 cycles of the old clock and 4 cyc
* les of the new clock. This is not usually an issue, but designers must b
* e aware.)
* PSU_CRF_APB_DP_AUDIO_REF_CTRL_SRCSEL 0x3
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_DP_AUDIO_REF_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A0074, 0x013F3F07U ,0x01010F03U)
*/
PSU_Mask_Write(CRF_APB_DP_AUDIO_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010F03U);
/*##################################################################### */
/*
* Register : DP_STC_REF_CTRL @ 0XFD1A007C
* 6 bit divider
* PSU_CRF_APB_DP_STC_REF_CTRL_DIVISOR1 0x1
* 6 bit divider
* PSU_CRF_APB_DP_STC_REF_CTRL_DIVISOR0 0xe
* 000 = VPLL; 010 = DPLL; 011 = RPLL_TO_FPD; (This signal may only be togg
* led after 4 cycles of the old clock and 4 cycles of the new clock. This
* is not usually an issue, but designers must be aware.)
* PSU_CRF_APB_DP_STC_REF_CTRL_SRCSEL 0x3
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_DP_STC_REF_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A007C, 0x013F3F07U ,0x01010E03U)
*/
PSU_Mask_Write(CRF_APB_DP_STC_REF_CTRL_OFFSET,
0x013F3F07U, 0x01010E03U);
/*##################################################################### */
/*
* Register : ACPU_CTRL @ 0XFD1A0060
* 6 bit divider
* PSU_CRF_APB_ACPU_CTRL_DIVISOR0 0x1
* 000 = APLL; 010 = DPLL; 011 = VPLL; (This signal may only be toggled aft
* er 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRF_APB_ACPU_CTRL_SRCSEL 0x0
* Clock active signal. Switch to 0 to disable the clock. For the half spee
* d APU Clock
* PSU_CRF_APB_ACPU_CTRL_CLKACT_HALF 0x1
* Clock active signal. Switch to 0 to disable the clock. For the full spee
* d ACPUX Clock. This will shut off the high speed clock to the entire APU
* PSU_CRF_APB_ACPU_CTRL_CLKACT_FULL 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A0060, 0x03003F07U ,0x03000100U)
*/
PSU_Mask_Write(CRF_APB_ACPU_CTRL_OFFSET, 0x03003F07U, 0x03000100U);
/*##################################################################### */
/*
* Register : DBG_FPD_CTRL @ 0XFD1A0068
* 6 bit divider
* PSU_CRF_APB_DBG_FPD_CTRL_DIVISOR0 0x2
* 000 = IOPLL_TO_FPD; 010 = DPLL; 011 = APLL; (This signal may only be tog
* gled after 4 cycles of the old clock and 4 cycles of the new clock. This
* is not usually an issue, but designers must be aware.)
* PSU_CRF_APB_DBG_FPD_CTRL_SRCSEL 0x0
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_DBG_FPD_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A0068, 0x01003F07U ,0x01000200U)
*/
PSU_Mask_Write(CRF_APB_DBG_FPD_CTRL_OFFSET,
0x01003F07U, 0x01000200U);
/*##################################################################### */
/*
* Register : DDR_CTRL @ 0XFD1A0080
* 6 bit divider
* PSU_CRF_APB_DDR_CTRL_DIVISOR0 0x2
* 000 = DPLL; 001 = VPLL; (This signal may only be toggled after 4 cycles
* of the old clock and 4 cycles of the new clock. This is not usually an i
* ssue, but designers must be aware.)
* PSU_CRF_APB_DDR_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A0080, 0x00003F07U ,0x00000200U)
*/
PSU_Mask_Write(CRF_APB_DDR_CTRL_OFFSET, 0x00003F07U, 0x00000200U);
/*##################################################################### */
/*
* Register : GPU_REF_CTRL @ 0XFD1A0084
* 6 bit divider
* PSU_CRF_APB_GPU_REF_CTRL_DIVISOR0 0x1
* 000 = IOPLL_TO_FPD; 010 = VPLL; 011 = DPLL; (This signal may only be tog
* gled after 4 cycles of the old clock and 4 cycles of the new clock. This
* is not usually an issue, but designers must be aware.)
* PSU_CRF_APB_GPU_REF_CTRL_SRCSEL 0x0
* Clock active signal. Switch to 0 to disable the clock, which will stop c
* lock for GPU (and both Pixel Processors).
* PSU_CRF_APB_GPU_REF_CTRL_CLKACT 0x1
* Clock active signal for Pixel Processor. Switch to 0 to disable the cloc
* k only to this Pixel Processor
* PSU_CRF_APB_GPU_REF_CTRL_PP0_CLKACT 0x1
* Clock active signal for Pixel Processor. Switch to 0 to disable the cloc
* k only to this Pixel Processor
* PSU_CRF_APB_GPU_REF_CTRL_PP1_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A0084, 0x07003F07U ,0x07000100U)
*/
PSU_Mask_Write(CRF_APB_GPU_REF_CTRL_OFFSET,
0x07003F07U, 0x07000100U);
/*##################################################################### */
/*
* Register : GDMA_REF_CTRL @ 0XFD1A00B8
* 6 bit divider
* PSU_CRF_APB_GDMA_REF_CTRL_DIVISOR0 0x2
* 000 = APLL; 010 = VPLL; 011 = DPLL; (This signal may only be toggled aft
* er 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRF_APB_GDMA_REF_CTRL_SRCSEL 0x0
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_GDMA_REF_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A00B8, 0x01003F07U ,0x01000200U)
*/
PSU_Mask_Write(CRF_APB_GDMA_REF_CTRL_OFFSET,
0x01003F07U, 0x01000200U);
/*##################################################################### */
/*
* Register : DPDMA_REF_CTRL @ 0XFD1A00BC
* 6 bit divider
* PSU_CRF_APB_DPDMA_REF_CTRL_DIVISOR0 0x2
* 000 = APLL; 010 = VPLL; 011 = DPLL; (This signal may only be toggled aft
* er 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRF_APB_DPDMA_REF_CTRL_SRCSEL 0x0
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_DPDMA_REF_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A00BC, 0x01003F07U ,0x01000200U)
*/
PSU_Mask_Write(CRF_APB_DPDMA_REF_CTRL_OFFSET,
0x01003F07U, 0x01000200U);
/*##################################################################### */
/*
* Register : TOPSW_MAIN_CTRL @ 0XFD1A00C0
* 6 bit divider
* PSU_CRF_APB_TOPSW_MAIN_CTRL_DIVISOR0 0x2
* 000 = APLL; 010 = VPLL; 011 = DPLL; (This signal may only be toggled aft
* er 4 cycles of the old clock and 4 cycles of the new clock. This is not
* usually an issue, but designers must be aware.)
* PSU_CRF_APB_TOPSW_MAIN_CTRL_SRCSEL 0x3
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_TOPSW_MAIN_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A00C0, 0x01003F07U ,0x01000203U)
*/
PSU_Mask_Write(CRF_APB_TOPSW_MAIN_CTRL_OFFSET,
0x01003F07U, 0x01000203U);
/*##################################################################### */
/*
* Register : TOPSW_LSBUS_CTRL @ 0XFD1A00C4
* 6 bit divider
* PSU_CRF_APB_TOPSW_LSBUS_CTRL_DIVISOR0 0x5
* 000 = APLL; 010 = IOPLL_TO_FPD; 011 = DPLL; (This signal may only be tog
* gled after 4 cycles of the old clock and 4 cycles of the new clock. This
* is not usually an issue, but designers must be aware.)
* PSU_CRF_APB_TOPSW_LSBUS_CTRL_SRCSEL 0x2
* Clock active signal. Switch to 0 to disable the clock
* PSU_CRF_APB_TOPSW_LSBUS_CTRL_CLKACT 0x1
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A00C4, 0x01003F07U ,0x01000502U)
*/
PSU_Mask_Write(CRF_APB_TOPSW_LSBUS_CTRL_OFFSET,
0x01003F07U, 0x01000502U);
/*##################################################################### */
/*
* Register : DBG_TSTMP_CTRL @ 0XFD1A00F8
* 6 bit divider
* PSU_CRF_APB_DBG_TSTMP_CTRL_DIVISOR0 0x2
* 000 = IOPLL_TO_FPD; 010 = DPLL; 011 = APLL; (This signal may only be tog
* gled after 4 cycles of the old clock and 4 cycles of the new clock. This
* is not usually an issue, but designers must be aware.)
* PSU_CRF_APB_DBG_TSTMP_CTRL_SRCSEL 0x0
* This register controls this reference clock
* (OFFSET, MASK, VALUE) (0XFD1A00F8, 0x00003F07U ,0x00000200U)
*/
PSU_Mask_Write(CRF_APB_DBG_TSTMP_CTRL_OFFSET,
0x00003F07U, 0x00000200U);
/*##################################################################### */
/*
* Register : IOU_TTC_APB_CLK @ 0XFF180380
* 00" = Select the APB switch clock for the APB interface of TTC0'01" = Se
* lect the PLL ref clock for the APB interface of TTC0'10" = Select the R5
* clock for the APB interface of TTC0
* PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC0_SEL 0
* 00" = Select the APB switch clock for the APB interface of TTC1'01" = Se
* lect the PLL ref clock for the APB interface of TTC1'10" = Select the R5
* clock for the APB interface of TTC1
* PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC1_SEL 0
* 00" = Select the APB switch clock for the APB interface of TTC2'01" = Se
* lect the PLL ref clock for the APB interface of TTC2'10" = Select the R5
* clock for the APB interface of TTC2
* PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC2_SEL 0
* 00" = Select the APB switch clock for the APB interface of TTC3'01" = Se
* lect the PLL ref clock for the APB interface of TTC3'10" = Select the R5
* clock for the APB interface of TTC3
* PSU_IOU_SLCR_IOU_TTC_APB_CLK_TTC3_SEL 0
* TTC APB clock select
* (OFFSET, MASK, VALUE) (0XFF180380, 0x000000FFU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_IOU_TTC_APB_CLK_OFFSET,
0x000000FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : WDT_CLK_SEL @ 0XFD610100
* System watchdog timer clock source selection: 0: Internal APB clock 1: E
* xternal (PL clock via EMIO or Pinout clock via MIO)
* PSU_FPD_SLCR_WDT_CLK_SEL_SELECT 0
* SWDT clock source select
* (OFFSET, MASK, VALUE) (0XFD610100, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(FPD_SLCR_WDT_CLK_SEL_OFFSET,
0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* Register : WDT_CLK_SEL @ 0XFF180300
* System watchdog timer clock source selection: 0: internal clock APB cloc
* k 1: external clock from PL via EMIO, or from pinout via MIO
* PSU_IOU_SLCR_WDT_CLK_SEL_SELECT 0
* SWDT clock source select
* (OFFSET, MASK, VALUE) (0XFF180300, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_WDT_CLK_SEL_OFFSET,
0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* Register : CSUPMU_WDT_CLK_SEL @ 0XFF410050
* System watchdog timer clock source selection: 0: internal clock APB cloc
* k 1: external clock pss_ref_clk
* PSU_LPD_SLCR_CSUPMU_WDT_CLK_SEL_SELECT 0
* SWDT clock source select
* (OFFSET, MASK, VALUE) (0XFF410050, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(LPD_SLCR_CSUPMU_WDT_CLK_SEL_OFFSET,
0x00000001U, 0x00000000U);
/*##################################################################### */
return 1;
}
unsigned long psu_ddr_init_data(void)
{
/*
* DDR INITIALIZATION
*/
/*
* DDR CONTROLLER RESET
*/
/*
* Register : RST_DDR_SS @ 0XFD1A0108
* DDR block level reset inside of the DDR Sub System
* PSU_CRF_APB_RST_DDR_SS_DDR_RESET 0X1
* DDR sub system block level reset
* (OFFSET, MASK, VALUE) (0XFD1A0108, 0x00000008U ,0x00000008U)
*/
PSU_Mask_Write(CRF_APB_RST_DDR_SS_OFFSET, 0x00000008U, 0x00000008U);
/*##################################################################### */
/*
* Register : MSTR @ 0XFD070000
* Indicates the configuration of the device used in the system. - 00 - x4
* device - 01 - x8 device - 10 - x16 device - 11 - x32 device
* PSU_DDRC_MSTR_DEVICE_CONFIG 0x1
* Choose which registers are used. - 0 - Original registers - 1 - Shadow r
* egisters
* PSU_DDRC_MSTR_FREQUENCY_MODE 0x0
* Only present for multi-rank configurations. Each bit represents one rank
* . For two-rank configurations, only bits[25:24] are present. - 1 - popul
* ated - 0 - unpopulated LSB is the lowest rank number. For 2 ranks follow
* ing combinations are legal: - 01 - One rank - 11 - Two ranks - Others -
* Reserved. For 4 ranks following combinations are legal: - 0001 - One ran
* k - 0011 - Two ranks - 1111 - Four ranks
* PSU_DDRC_MSTR_ACTIVE_RANKS 0x1
* SDRAM burst length used: - 0001 - Burst length of 2 (only supported for
* mDDR) - 0010 - Burst length of 4 - 0100 - Burst length of 8 - 1000 - Bur
* st length of 16 (only supported for mDDR, LPDDR2, and LPDDR4) All other
* values are reserved. This controls the burst size used to access the SDR
* AM. This must match the burst length mode register setting in the SDRAM.
* (For BC4/8 on-the-fly mode of DDR3 and DDR4, set this field to 0x0100)
* Burst length of 2 is not supported with AXI ports when MEMC_BURST_LENGTH
* is 8. Burst length of 2 is only supported with MEMC_FREQ_RATIO = 1
* PSU_DDRC_MSTR_BURST_RDWR 0x4
* Set to 1 when the uMCTL2 and DRAM has to be put in DLL-off mode for low
* frequency operation. Set to 0 to put uMCTL2 and DRAM in DLL-on mode for
* normal frequency operation. If DDR4 CRC/parity retry is enabled (CRCPARC
* TL1.crc_parity_retry_enable = 1), dll_off_mode is not supported, and thi
* s bit must be set to '0'.
* PSU_DDRC_MSTR_DLL_OFF_MODE 0x0
* Selects proportion of DQ bus width that is used by the SDRAM - 00 - Full
* DQ bus width to SDRAM - 01 - Half DQ bus width to SDRAM - 10 - Quarter
* DQ bus width to SDRAM - 11 - Reserved. Note that half bus width mode is
* only supported when the SDRAM bus width is a multiple of 16, and quarter
* bus width mode is only supported when the SDRAM bus width is a multiple
* of 32 and the configuration parameter MEMC_QBUS_SUPPORT is set. Bus wid
* th refers to DQ bus width (excluding any ECC width).
* PSU_DDRC_MSTR_DATA_BUS_WIDTH 0x0
* 1 indicates put the DRAM in geardown mode (2N) and 0 indicates put the D
* RAM in normal mode (1N). This register can be changed, only when the Con
* troller is in self-refresh mode. This signal must be set the same value
* as MR3 bit A3. Note: Geardown mode is not supported if the configuration
* parameter MEMC_CMD_RTN2IDLE is set
* PSU_DDRC_MSTR_GEARDOWN_MODE 0x0
* If 1, then uMCTL2 uses 2T timing. Otherwise, uses 1T timing. In 2T timin
* g, all command signals (except chip select) are held for 2 clocks on the
* SDRAM bus. Chip select is asserted on the second cycle of the command N
* ote: 2T timing is not supported in LPDDR2/LPDDR3/LPDDR4 mode Note: 2T ti
* ming is not supported if the configuration parameter MEMC_CMD_RTN2IDLE i
* s set Note: 2T timing is not supported in DDR4 geardown mode.
* PSU_DDRC_MSTR_EN_2T_TIMING_MODE 0x0
* When set, enable burst-chop in DDR3/DDR4. Burst Chop for Reads is exerci
* sed only in HIF configurations (UMCTL2_INCL_ARB not set) and if in full
* bus width mode (MSTR.data_bus_width = 00). Burst Chop for Writes is exer
* cised only if Partial Writes enabled (UMCTL2_PARTIAL_WR=1) and if CRC is
* disabled (CRCPARCTL1.crc_enable = 0). If DDR4 CRC/parity retry is enabl
* ed (CRCPARCTL1.crc_parity_retry_enable = 1), burst chop is not supported
* , and this bit must be set to '0'
* PSU_DDRC_MSTR_BURSTCHOP 0x0
* Select LPDDR4 SDRAM - 1 - LPDDR4 SDRAM device in use. - 0 - non-LPDDR4 d
* evice in use Present only in designs configured to support LPDDR4.
* PSU_DDRC_MSTR_LPDDR4 0x0
* Select DDR4 SDRAM - 1 - DDR4 SDRAM device in use. - 0 - non-DDR4 device
* in use Present only in designs configured to support DDR4.
* PSU_DDRC_MSTR_DDR4 0x1
* Select LPDDR3 SDRAM - 1 - LPDDR3 SDRAM device in use. - 0 - non-LPDDR3 d
* evice in use Present only in designs configured to support LPDDR3.
* PSU_DDRC_MSTR_LPDDR3 0x0
* Select LPDDR2 SDRAM - 1 - LPDDR2 SDRAM device in use. - 0 - non-LPDDR2 d
* evice in use Present only in designs configured to support LPDDR2.
* PSU_DDRC_MSTR_LPDDR2 0x0
* Select DDR3 SDRAM - 1 - DDR3 SDRAM device in use - 0 - non-DDR3 SDRAM de
* vice in use Only present in designs that support DDR3.
* PSU_DDRC_MSTR_DDR3 0x0
* Master Register
* (OFFSET, MASK, VALUE) (0XFD070000, 0xE30FBE3DU ,0x41040010U)
*/
PSU_Mask_Write(DDRC_MSTR_OFFSET, 0xE30FBE3DU, 0x41040010U);
/*##################################################################### */
/*
* Register : MRCTRL0 @ 0XFD070010
* Setting this register bit to 1 triggers a mode register read or write op
* eration. When the MR operation is complete, the uMCTL2 automatically cle
* ars this bit. The other register fields of this register must be written
* in a separate APB transaction, before setting this mr_wr bit. It is rec
* ommended NOT to set this signal if in Init, Deep power-down or MPSM oper
* ating modes.
* PSU_DDRC_MRCTRL0_MR_WR 0x0
* Address of the mode register that is to be written to. - 0000 - MR0 - 00
* 01 - MR1 - 0010 - MR2 - 0011 - MR3 - 0100 - MR4 - 0101 - MR5 - 0110 - MR
* 6 - 0111 - MR7 Don't Care for LPDDR2/LPDDR3/LPDDR4 (see MRCTRL1.mr_data
* for mode register addressing in LPDDR2/LPDDR3/LPDDR4) This signal is als
* o used for writing to control words of RDIMMs. In that case, it correspo
* nds to the bank address bits sent to the RDIMM In case of DDR4, the bit[
* 3:2] corresponds to the bank group bits. Therefore, the bit[3] as well a
* s the bit[2:0] must be set to an appropriate value which is considered b
* oth the Address Mirroring of UDIMMs/RDIMMs and the Output Inversion of R
* DIMMs.
* PSU_DDRC_MRCTRL0_MR_ADDR 0x0
* Controls which rank is accessed by MRCTRL0.mr_wr. Normally, it is desire
* d to access all ranks, so all bits should be set to 1. However, for mult
* i-rank UDIMMs/RDIMMs which implement address mirroring, it may be necess
* ary to access ranks individually. Examples (assume uMCTL2 is configured
* for 4 ranks): - 0x1 - select rank 0 only - 0x2 - select rank 1 only - 0x
* 5 - select ranks 0 and 2 - 0xA - select ranks 1 and 3 - 0xF - select ran
* ks 0, 1, 2 and 3
* PSU_DDRC_MRCTRL0_MR_RANK 0x3
* Indicates whether Software intervention is allowed via MRCTRL0/MRCTRL1 b
* efore automatic SDRAM initialization routine or not. For DDR4, this bit
* can be used to initialize the DDR4 RCD (MR7) before automatic SDRAM init
* ialization. For LPDDR4, this bit can be used to program additional mode
* registers before automatic SDRAM initialization if necessary. Note: This
* must be cleared to 0 after completing Software operation. Otherwise, SD
* RAM initialization routine will not re-start. - 0 - Software interventio
* n is not allowed - 1 - Software intervention is allowed
* PSU_DDRC_MRCTRL0_SW_INIT_INT 0x0
* Indicates whether the mode register operation is MRS in PDA mode or not
* - 0 - MRS - 1 - MRS in Per DRAM Addressability mode
* PSU_DDRC_MRCTRL0_PDA_EN 0x0
* Indicates whether the mode register operation is MRS or WR/RD for MPR (o
* nly supported for DDR4) - 0 - MRS - 1 - WR/RD for MPR
* PSU_DDRC_MRCTRL0_MPR_EN 0x0
* Indicates whether the mode register operation is read or write. Only use
* d for LPDDR2/LPDDR3/LPDDR4/DDR4. - 0 - Write - 1 - Read
* PSU_DDRC_MRCTRL0_MR_TYPE 0x0
* Mode Register Read/Write Control Register 0. Note: Do not enable more th
* an one of the following fields simultaneously: - sw_init_int - pda_en -
* mpr_en
* (OFFSET, MASK, VALUE) (0XFD070010, 0x8000F03FU ,0x00000030U)
*/
PSU_Mask_Write(DDRC_MRCTRL0_OFFSET, 0x8000F03FU, 0x00000030U);
/*##################################################################### */
/*
* Register : DERATEEN @ 0XFD070020
* Derate value of tRC for LPDDR4 - 0 - Derating uses +1. - 1 - Derating us
* es +2. - 2 - Derating uses +3. - 3 - Derating uses +4. Present only in d
* esigns configured to support LPDDR4. The required number of cycles for d
* erating can be determined by dividing 3.75ns by the core_ddrc_core_clk p
* eriod, and rounding up the next integer.
* PSU_DDRC_DERATEEN_RC_DERATE_VALUE 0x2
* Derate byte Present only in designs configured to support LPDDR2/LPDDR3/
* LPDDR4 Indicates which byte of the MRR data is used for derating. The ma
* ximum valid value depends on MEMC_DRAM_TOTAL_DATA_WIDTH.
* PSU_DDRC_DERATEEN_DERATE_BYTE 0x0
* Derate value - 0 - Derating uses +1. - 1 - Derating uses +2. Present onl
* y in designs configured to support LPDDR2/LPDDR3/LPDDR4 Set to 0 for all
* LPDDR2 speed grades as derating value of +1.875 ns is less than a core_
* ddrc_core_clk period. Can be 0 or 1 for LPDDR3/LPDDR4, depending if +1.8
* 75 ns is less than a core_ddrc_core_clk period or not.
* PSU_DDRC_DERATEEN_DERATE_VALUE 0x0
* Enables derating - 0 - Timing parameter derating is disabled - 1 - Timin
* g parameter derating is enabled using MR4 read value. Present only in de
* signs configured to support LPDDR2/LPDDR3/LPDDR4 This field must be set
* to '0' for non-LPDDR2/LPDDR3/LPDDR4 mode.
* PSU_DDRC_DERATEEN_DERATE_ENABLE 0x0
* Temperature Derate Enable Register
* (OFFSET, MASK, VALUE) (0XFD070020, 0x000003F3U ,0x00000200U)
*/
PSU_Mask_Write(DDRC_DERATEEN_OFFSET, 0x000003F3U, 0x00000200U);
/*##################################################################### */
/*
* Register : DERATEINT @ 0XFD070024
* Interval between two MR4 reads, used to derate the timing parameters. Pr
* esent only in designs configured to support LPDDR2/LPDDR3/LPDDR4. This r
* egister must not be set to zero
* PSU_DDRC_DERATEINT_MR4_READ_INTERVAL 0x800000
* Temperature Derate Interval Register
* (OFFSET, MASK, VALUE) (0XFD070024, 0xFFFFFFFFU ,0x00800000U)
*/
PSU_Mask_Write(DDRC_DERATEINT_OFFSET, 0xFFFFFFFFU, 0x00800000U);
/*##################################################################### */
/*
* Register : PWRCTL @ 0XFD070030
* Self refresh state is an intermediate state to enter to Self refresh pow
* er down state or exit Self refresh power down state for LPDDR4. This reg
* ister controls transition from the Self refresh state. - 1 - Prohibit tr
* ansition from Self refresh state - 0 - Allow transition from Self refres
* h state
* PSU_DDRC_PWRCTL_STAY_IN_SELFREF 0x0
* A value of 1 to this register causes system to move to Self Refresh stat
* e immediately, as long as it is not in INIT or DPD/MPSM operating_mode.
* This is referred to as Software Entry/Exit to Self Refresh. - 1 - Softwa
* re Entry to Self Refresh - 0 - Software Exit from Self Refresh
* PSU_DDRC_PWRCTL_SELFREF_SW 0x0
* When this is 1, the uMCTL2 puts the SDRAM into maximum power saving mode
* when the transaction store is empty. This register must be reset to '0'
* to bring uMCTL2 out of maximum power saving mode. Present only in desig
* ns configured to support DDR4. For non-DDR4, this register should not be
* set to 1. Note that MPSM is not supported when using a DWC DDR PHY, if
* the PHY parameter DWC_AC_CS_USE is disabled, as the MPSM exit sequence r
* equires the chip-select signal to toggle. FOR PERFORMANCE ONLY.
* PSU_DDRC_PWRCTL_MPSM_EN 0x0
* Enable the assertion of dfi_dram_clk_disable whenever a clock is not req
* uired by the SDRAM. If set to 0, dfi_dram_clk_disable is never asserted.
* Assertion of dfi_dram_clk_disable is as follows: In DDR2/DDR3, can only
* be asserted in Self Refresh. In DDR4, can be asserted in following: - i
* n Self Refresh. - in Maximum Power Saving Mode In mDDR/LPDDR2/LPDDR3, ca
* n be asserted in following: - in Self Refresh - in Power Down - in Deep
* Power Down - during Normal operation (Clock Stop) In LPDDR4, can be asse
* rted in following: - in Self Refresh Power Down - in Power Down - during
* Normal operation (Clock Stop)
* PSU_DDRC_PWRCTL_EN_DFI_DRAM_CLK_DISABLE 0x0
* When this is 1, uMCTL2 puts the SDRAM into deep power-down mode when the
* transaction store is empty. This register must be reset to '0' to bring
* uMCTL2 out of deep power-down mode. Controller performs automatic SDRAM
* initialization on deep power-down exit. Present only in designs configu
* red to support mDDR or LPDDR2 or LPDDR3. For non-mDDR/non-LPDDR2/non-LPD
* DR3, this register should not be set to 1. FOR PERFORMANCE ONLY.
* PSU_DDRC_PWRCTL_DEEPPOWERDOWN_EN 0x0
* If true then the uMCTL2 goes into power-down after a programmable number
* of cycles 'maximum idle clocks before power down' (PWRTMG.powerdown_to_
* x32). This register bit may be re-programmed during the course of normal
* operation.
* PSU_DDRC_PWRCTL_POWERDOWN_EN 0x0
* If true then the uMCTL2 puts the SDRAM into Self Refresh after a program
* mable number of cycles 'maximum idle clocks before Self Refresh (PWRTMG.
* selfref_to_x32)'. This register bit may be re-programmed during the cour
* se of normal operation.
* PSU_DDRC_PWRCTL_SELFREF_EN 0x0
* Low Power Control Register
* (OFFSET, MASK, VALUE) (0XFD070030, 0x0000007FU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_PWRCTL_OFFSET, 0x0000007FU, 0x00000000U);
/*##################################################################### */
/*
* Register : PWRTMG @ 0XFD070034
* After this many clocks of NOP or deselect the uMCTL2 automatically puts
* the SDRAM into Self Refresh. This must be enabled in the PWRCTL.selfref_
* en. Unit: Multiples of 32 clocks. FOR PERFORMANCE ONLY.
* PSU_DDRC_PWRTMG_SELFREF_TO_X32 0x40
* Minimum deep power-down time. For mDDR, value from the JEDEC specificati
* on is 0 as mDDR exits from deep power-down mode immediately after PWRCTL
* .deeppowerdown_en is de-asserted. For LPDDR2/LPDDR3, value from the JEDE
* C specification is 500us. Unit: Multiples of 4096 clocks. Present only i
* n designs configured to support mDDR, LPDDR2 or LPDDR3. FOR PERFORMANCE
* ONLY.
* PSU_DDRC_PWRTMG_T_DPD_X4096 0x84
* After this many clocks of NOP or deselect the uMCTL2 automatically puts
* the SDRAM into power-down. This must be enabled in the PWRCTL.powerdown_
* en. Unit: Multiples of 32 clocks FOR PERFORMANCE ONLY.
* PSU_DDRC_PWRTMG_POWERDOWN_TO_X32 0x10
* Low Power Timing Register
* (OFFSET, MASK, VALUE) (0XFD070034, 0x00FFFF1FU ,0x00408410U)
*/
PSU_Mask_Write(DDRC_PWRTMG_OFFSET, 0x00FFFF1FU, 0x00408410U);
/*##################################################################### */
/*
* Register : RFSHCTL0 @ 0XFD070050
* Threshold value in number of clock cycles before the critical refresh or
* page timer expires. A critical refresh is to be issued before this thre
* shold is reached. It is recommended that this not be changed from the de
* fault value, currently shown as 0x2. It must always be less than interna
* lly used t_rfc_nom_x32. Note that, in LPDDR2/LPDDR3/LPDDR4, internally u
* sed t_rfc_nom_x32 may be equal to RFSHTMG.t_rfc_nom_x32>>2 if derating i
* s enabled (DERATEEN.derate_enable=1). Otherwise, internally used t_rfc_n
* om_x32 will be equal to RFSHTMG.t_rfc_nom_x32. Unit: Multiples of 32 clo
* cks.
* PSU_DDRC_RFSHCTL0_REFRESH_MARGIN 0x2
* If the refresh timer (tRFCnom, also known as tREFI) has expired at least
* once, but it has not expired (RFSHCTL0.refresh_burst+1) times yet, then
* a speculative refresh may be performed. A speculative refresh is a refr
* esh performed at a time when refresh would be useful, but before it is a
* bsolutely required. When the SDRAM bus is idle for a period of time dete
* rmined by this RFSHCTL0.refresh_to_x32 and the refresh timer has expired
* at least once since the last refresh, then a speculative refresh is per
* formed. Speculative refreshes continues successively until there are no
* refreshes pending or until new reads or writes are issued to the uMCTL2.
* FOR PERFORMANCE ONLY.
* PSU_DDRC_RFSHCTL0_REFRESH_TO_X32 0x10
* The programmed value + 1 is the number of refresh timeouts that is allow
* ed to accumulate before traffic is blocked and the refreshes are forced
* to execute. Closing pages to perform a refresh is a one-time penalty tha
* t must be paid for each group of refreshes. Therefore, performing refres
* hes in a burst reduces the per-refresh penalty of these page closings. H
* igher numbers for RFSHCTL.refresh_burst slightly increases utilization;
* lower numbers decreases the worst-case latency associated with refreshes
* . - 0 - single refresh - 1 - burst-of-2 refresh - 7 - burst-of-8 refresh
* For information on burst refresh feature refer to section 3.9 of DDR2 J
* EDEC specification - JESD79-2F.pdf. For DDR2/3, the refresh is always pe
* r-rank and not per-bank. The rank refresh can be accumulated over 8*tREF
* I cycles using the burst refresh feature. In DDR4 mode, according to Fin
* e Granularity feature, 8 refreshes can be postponed in 1X mode, 16 refre
* shes in 2X mode and 32 refreshes in 4X mode. If using PHY-initiated upda
* tes, care must be taken in the setting of RFSHCTL0.refresh_burst, to ens
* ure that tRFCmax is not violated due to a PHY-initiated update occurring
* shortly before a refresh burst was due. In this situation, the refresh
* burst will be delayed until the PHY-initiated update is complete.
* PSU_DDRC_RFSHCTL0_REFRESH_BURST 0x0
* - 1 - Per bank refresh; - 0 - All bank refresh. Per bank refresh allows
* traffic to flow to other banks. Per bank refresh is not supported by all
* LPDDR2 devices but should be supported by all LPDDR3/LPDDR4 devices. Pr
* esent only in designs configured to support LPDDR2/LPDDR3/LPDDR4
* PSU_DDRC_RFSHCTL0_PER_BANK_REFRESH 0x0
* Refresh Control Register 0
* (OFFSET, MASK, VALUE) (0XFD070050, 0x00F1F1F4U ,0x00210000U)
*/
PSU_Mask_Write(DDRC_RFSHCTL0_OFFSET, 0x00F1F1F4U, 0x00210000U);
/*##################################################################### */
/*
* Register : RFSHCTL1 @ 0XFD070054
* Refresh timer start for rank 1 (only present in multi-rank configuration
* s). This is useful in staggering the refreshes to multiple ranks to help
* traffic to proceed. This is explained in Refresh Controls section of ar
* chitecture chapter. Unit: Multiples of 32 clocks. FOR PERFORMANCE ONLY.
* PSU_DDRC_RFSHCTL1_REFRESH_TIMER1_START_VALUE_X32 0x0
* Refresh timer start for rank 0 (only present in multi-rank configuration
* s). This is useful in staggering the refreshes to multiple ranks to help
* traffic to proceed. This is explained in Refresh Controls section of ar
* chitecture chapter. Unit: Multiples of 32 clocks. FOR PERFORMANCE ONLY.
* PSU_DDRC_RFSHCTL1_REFRESH_TIMER0_START_VALUE_X32 0x0
* Refresh Control Register 1
* (OFFSET, MASK, VALUE) (0XFD070054, 0x0FFF0FFFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_RFSHCTL1_OFFSET, 0x0FFF0FFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : RFSHCTL3 @ 0XFD070060
* Fine Granularity Refresh Mode - 000 - Fixed 1x (Normal mode) - 001 - Fix
* ed 2x - 010 - Fixed 4x - 101 - Enable on the fly 2x (not supported) - 11
* 0 - Enable on the fly 4x (not supported) - Everything else - reserved No
* te: The on-the-fly modes is not supported in this version of the uMCTL2.
* Note: This must be set up while the Controller is in reset or while the
* Controller is in self-refresh mode. Changing this during normal operati
* on is not allowed. Making this a dynamic register will be supported in f
* uture version of the uMCTL2.
* PSU_DDRC_RFSHCTL3_REFRESH_MODE 0x0
* Toggle this signal (either from 0 to 1 or from 1 to 0) to indicate that
* the refresh register(s) have been updated. The value is automatically up
* dated when exiting reset, so it does not need to be toggled initially.
* PSU_DDRC_RFSHCTL3_REFRESH_UPDATE_LEVEL 0x0
* When '1', disable auto-refresh generated by the uMCTL2. When auto-refres
* h is disabled, the SoC core must generate refreshes using the registers
* reg_ddrc_rank0_refresh, reg_ddrc_rank1_refresh, reg_ddrc_rank2_refresh a
* nd reg_ddrc_rank3_refresh. When dis_auto_refresh transitions from 0 to 1
* , any pending refreshes are immediately scheduled by the uMCTL2. If DDR4
* CRC/parity retry is enabled (CRCPARCTL1.crc_parity_retry_enable = 1), d
* isable auto-refresh is not supported, and this bit must be set to '0'. T
* his register field is changeable on the fly.
* PSU_DDRC_RFSHCTL3_DIS_AUTO_REFRESH 0x1
* Refresh Control Register 3
* (OFFSET, MASK, VALUE) (0XFD070060, 0x00000073U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_RFSHCTL3_OFFSET, 0x00000073U, 0x00000001U);
/*##################################################################### */
/*
* Register : RFSHTMG @ 0XFD070064
* tREFI: Average time interval between refreshes per rank (Specification:
* 7.8us for DDR2, DDR3 and DDR4. See JEDEC specification for mDDR, LPDDR2,
* LPDDR3 and LPDDR4). For LPDDR2/LPDDR3/LPDDR4: - if using all-bank refre
* shes (RFSHCTL0.per_bank_refresh = 0), this register should be set to tRE
* FIab - if using per-bank refreshes (RFSHCTL0.per_bank_refresh = 1), this
* register should be set to tREFIpb For configurations with MEMC_FREQ_RAT
* IO=2, program this to (tREFI/2), no rounding up. In DDR4 mode, tREFI val
* ue is different depending on the refresh mode. The user should program t
* he appropriate value from the spec based on the value programmed in the
* refresh mode register. Note that RFSHTMG.t_rfc_nom_x32 * 32 must be grea
* ter than RFSHTMG.t_rfc_min, and RFSHTMG.t_rfc_nom_x32 must be greater th
* an 0x1. Unit: Multiples of 32 clocks.
* PSU_DDRC_RFSHTMG_T_RFC_NOM_X32 0x81
* Used only when LPDDR3 memory type is connected. Should only be changed w
* hen uMCTL2 is in reset. Specifies whether to use the tREFBW parameter (r
* equired by some LPDDR3 devices which comply with earlier versions of the
* LPDDR3 JEDEC specification) or not: - 0 - tREFBW parameter not used - 1
* - tREFBW parameter used
* PSU_DDRC_RFSHTMG_LPDDR3_TREFBW_EN 0x1
* tRFC (min): Minimum time from refresh to refresh or activate. For MEMC_F
* REQ_RATIO=1 configurations, t_rfc_min should be set to RoundUp(tRFCmin/t
* CK). For MEMC_FREQ_RATIO=2 configurations, t_rfc_min should be set to Ro
* undUp(RoundUp(tRFCmin/tCK)/2). In LPDDR2/LPDDR3/LPDDR4 mode: - if using
* all-bank refreshes, the tRFCmin value in the above equations is equal to
* tRFCab - if using per-bank refreshes, the tRFCmin value in the above eq
* uations is equal to tRFCpb In DDR4 mode, the tRFCmin value in the above
* equations is different depending on the refresh mode (fixed 1X,2X,4X) an
* d the device density. The user should program the appropriate value from
* the spec based on the 'refresh_mode' and the device density that is use
* d. Unit: Clocks.
* PSU_DDRC_RFSHTMG_T_RFC_MIN 0x8b
* Refresh Timing Register
* (OFFSET, MASK, VALUE) (0XFD070064, 0x0FFF83FFU ,0x0081808BU)
*/
PSU_Mask_Write(DDRC_RFSHTMG_OFFSET, 0x0FFF83FFU, 0x0081808BU);
/*##################################################################### */
/*
* Register : ECCCFG0 @ 0XFD070070
* Disable ECC scrubs. Valid only when ECCCFG0.ecc_mode = 3'b100 and MEMC_U
* SE_RMW is defined
* PSU_DDRC_ECCCFG0_DIS_SCRUB 0x1
* ECC mode indicator - 000 - ECC disabled - 100 - ECC enabled - SEC/DED ov
* er 1 beat - all other settings are reserved for future use
* PSU_DDRC_ECCCFG0_ECC_MODE 0x0
* ECC Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD070070, 0x00000017U ,0x00000010U)
*/
PSU_Mask_Write(DDRC_ECCCFG0_OFFSET, 0x00000017U, 0x00000010U);
/*##################################################################### */
/*
* Register : ECCCFG1 @ 0XFD070074
* Selects whether to poison 1 or 2 bits - if 0 -> 2-bit (uncorrectable) da
* ta poisoning, if 1 -> 1-bit (correctable) data poisoning, if ECCCFG1.dat
* a_poison_en=1
* PSU_DDRC_ECCCFG1_DATA_POISON_BIT 0x0
* Enable ECC data poisoning - introduces ECC errors on writes to address s
* pecified by the ECCPOISONADDR0/1 registers
* PSU_DDRC_ECCCFG1_DATA_POISON_EN 0x0
* ECC Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD070074, 0x00000003U ,0x00000000U)
*/
PSU_Mask_Write(DDRC_ECCCFG1_OFFSET, 0x00000003U, 0x00000000U);
/*##################################################################### */
/*
* Register : CRCPARCTL1 @ 0XFD0700C4
* The maximum number of DFI PHY clock cycles allowed from the assertion of
* the dfi_rddata_en signal to the assertion of each of the corresponding
* bits of the dfi_rddata_valid signal. This corresponds to the DFI timing
* parameter tphy_rdlat. Refer to PHY specification for correct value. This
* value it only used for detecting read data timeout when DDR4 retry is e
* nabled by CRCPARCTL1.crc_parity_retry_enable=1. Maximum supported value:
* - 1:1 Frequency mode : DFITMG0.dfi_t_rddata_en + CRCPARCTL1.dfi_t_phy_r
* dlat < 'd114 - 1:2 Frequency mode ANDAND DFITMG0.dfi_rddata_use_sdr == 1
* : CRCPARCTL1.dfi_t_phy_rdlat < 64 - 1:2 Frequency mode ANDAND DFITMG0.d
* fi_rddata_use_sdr == 0 : DFITMG0.dfi_t_rddata_en + CRCPARCTL1.dfi_t_phy_
* rdlat < 'd114 Unit: DFI Clocks
* PSU_DDRC_CRCPARCTL1_DFI_T_PHY_RDLAT 0x10
* After a Parity or CRC error is flagged on dfi_alert_n signal, the softwa
* re has an option to read the mode registers in the DRAM before the hardw
* are begins the retry process - 1: Wait for software to read/write the mo
* de registers before hardware begins the retry. After software is done wi
* th its operations, it will clear the alert interrupt register bit - 0: H
* ardware can begin the retry right away after the dfi_alert_n pulse goes
* away. The value on this register is valid only when retry is enabled (PA
* RCTRL.crc_parity_retry_enable = 1) If this register is set to 1 and if t
* he software doesn't clear the interrupt register after handling the pari
* ty/CRC error, then the hardware will not begin the retry process and the
* system will hang. In the case of Parity/CRC error, there are two possib
* ilities when the software doesn't reset MR5[4] to 0. - (i) If 'Persisten
* t parity' mode register bit is NOT set: the commands sent during retry a
* nd normal operation are executed without parity checking. The value in t
* he Parity error log register MPR Page 1 is valid. - (ii) If 'Persistent
* parity' mode register bit is SET: Parity checking is done for commands s
* ent during retry and normal operation. If multiple errors occur before M
* R5[4] is cleared, the error log in MPR Page 1 should be treated as 'Don'
* t care'.
* PSU_DDRC_CRCPARCTL1_ALERT_WAIT_FOR_SW 0x1
* - 1: Enable command retry mechanism in case of C/A Parity or CRC error -
* 0: Disable command retry mechanism when C/A Parity or CRC features are
* enabled. Note that retry functionality is not supported if burst chop is
* enabled (MSTR.burstchop = 1) and/or disable auto-refresh is enabled (RF
* SHCTL3.dis_auto_refresh = 1)
* PSU_DDRC_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE 0x0
* CRC Calculation setting register - 1: CRC includes DM signal - 0: CRC no
* t includes DM signal Present only in designs configured to support DDR4.
* PSU_DDRC_CRCPARCTL1_CRC_INC_DM 0x0
* CRC enable Register - 1: Enable generation of CRC - 0: Disable generatio
* n of CRC The setting of this register should match the CRC mode register
* setting in the DRAM.
* PSU_DDRC_CRCPARCTL1_CRC_ENABLE 0x0
* C/A Parity enable register - 1: Enable generation of C/A parity and dete
* ction of C/A parity error - 0: Disable generation of C/A parity and disa
* ble detection of C/A parity error If RCD's parity error detection or SDR
* AM's parity detection is enabled, this register should be 1.
* PSU_DDRC_CRCPARCTL1_PARITY_ENABLE 0x0
* CRC Parity Control Register1
* (OFFSET, MASK, VALUE) (0XFD0700C4, 0x3F000391U ,0x10000200U)
*/
PSU_Mask_Write(DDRC_CRCPARCTL1_OFFSET, 0x3F000391U, 0x10000200U);
/*##################################################################### */
/*
* Register : CRCPARCTL2 @ 0XFD0700C8
* Value from the DRAM spec indicating the maximum width of the dfi_alert_n
* pulse when a parity error occurs. Recommended values: - tPAR_ALERT_PW.M
* AX For configurations with MEMC_FREQ_RATIO=2, program this to tPAR_ALERT
* _PW.MAX/2 and round up to next integer value. Values of 0, 1 and 2 are i
* llegal. This value must be greater than CRCPARCTL2.t_crc_alert_pw_max.
* PSU_DDRC_CRCPARCTL2_T_PAR_ALERT_PW_MAX 0x40
* Value from the DRAM spec indicating the maximum width of the dfi_alert_n
* pulse when a CRC error occurs. Recommended values: - tCRC_ALERT_PW.MAX
* For configurations with MEMC_FREQ_RATIO=2, program this to tCRC_ALERT_PW
* .MAX/2 and round up to next integer value. Values of 0, 1 and 2 are ille
* gal. This value must be less than CRCPARCTL2.t_par_alert_pw_max.
* PSU_DDRC_CRCPARCTL2_T_CRC_ALERT_PW_MAX 0x5
* Indicates the maximum duration in number of DRAM clock cycles for which
* a command should be held in the Command Retry FIFO before it is popped o
* ut. Every location in the Command Retry FIFO has an associated down coun
* ting timer that will use this register as the start value. The down coun
* ting starts when a command is loaded into the FIFO. The timer counts dow
* n every 4 DRAM cycles. When the counter reaches zero, the entry is poppe
* d from the FIFO. All the counters are frozen, if a C/A Parity or CRC err
* or occurs before the counter reaches zero. The counter is reset to 0, af
* ter all the commands in the FIFO are retried. Recommended(minimum) value
* s: - Only C/A Parity is enabled. RoundUp((PHY Command Latency(DRAM CLK)
* + CAL + RDIMM delay + tPAR_ALERT_ON.max + tPAR_UNKNOWN + PHY Alert Laten
* cy(DRAM CLK) + board delay) / 4) + 2 - Both C/A Parity and CRC is enable
* d/ Only CRC is enabled. RoundUp((PHY Command Latency(DRAM CLK) + CAL + R
* DIMM delay + WL + 5(BL10)+ tCRC_ALERT.max + PHY Alert Latency(DRAM CLK)
* + board delay) / 4) + 2 Note 1: All value (e.g. tPAR_ALERT_ON) should be
* in terms of DRAM Clock and round up Note 2: Board delay(Command/Alert_n
* ) should be considered. Note 3: Use the worst case(longer) value for PHY
* Latencies/Board delay Note 4: The Recommended values are minimum value
* to be set. For mode detail, See 'Calculation of FIFO Depth' section. Max
* value can be set to this register is defined below: - MEMC_BURST_LENGTH
* == 16 Full bus Mode (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-2
* Full bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-3 Half b
* us Mode (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-4 Half bus Mod
* e (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-6 Quarter bus Mode (C
* RC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-8 Quarter bus Mode (CRC=
* ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-12 - MEMC_BURST_LENGTH != 16
* Full bus Mode (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-1 Full
* bus Mode (CRC=ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-2 Half bus Mod
* e (CRC=OFF) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-2 Half bus Mode (CRC
* =ON) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-3 Quarter bus Mode (CRC=OFF
* ) Max value = UMCTL2_RETRY_CMD_FIFO_DEPTH-4 Quarter bus Mode (CRC=ON) Ma
* x value = UMCTL2_RETRY_CMD_FIFO_DEPTH-6 Values of 0, 1 and 2 are illegal
* .
* PSU_DDRC_CRCPARCTL2_RETRY_FIFO_MAX_HOLD_TIMER_X4 0x1f
* CRC Parity Control Register2
* (OFFSET, MASK, VALUE) (0XFD0700C8, 0x01FF1F3FU ,0x0040051FU)
*/
PSU_Mask_Write(DDRC_CRCPARCTL2_OFFSET, 0x01FF1F3FU, 0x0040051FU);
/*##################################################################### */
/*
* Register : INIT0 @ 0XFD0700D0
* If lower bit is enabled the SDRAM initialization routine is skipped. The
* upper bit decides what state the controller starts up in when reset is
* removed - 00 - SDRAM Intialization routine is run after power-up - 01 -
* SDRAM Intialization routine is skipped after power-up. Controller starts
* up in Normal Mode - 11 - SDRAM Intialization routine is skipped after p
* ower-up. Controller starts up in Self-refresh Mode - 10 - SDRAM Intializ
* ation routine is run after power-up. Note: The only 2'b00 is supported f
* or LPDDR4 in this version of the uMCTL2.
* PSU_DDRC_INIT0_SKIP_DRAM_INIT 0x0
* Cycles to wait after driving CKE high to start the SDRAM initialization
* sequence. Unit: 1024 clocks. DDR2 typically requires a 400 ns delay, req
* uiring this value to be programmed to 2 at all clock speeds. LPDDR2/LPDD
* R3 typically requires this to be programmed for a delay of 200 us. LPDDR
* 4 typically requires this to be programmed for a delay of 2 us. For conf
* igurations with MEMC_FREQ_RATIO=2, program this to JEDEC spec value divi
* ded by 2, and round it up to next integer value.
* PSU_DDRC_INIT0_POST_CKE_X1024 0x2
* Cycles to wait after reset before driving CKE high to start the SDRAM in
* itialization sequence. Unit: 1024 clock cycles. DDR2 specifications typi
* cally require this to be programmed for a delay of >= 200 us. LPDDR2/LPD
* DR3: tINIT1 of 100 ns (min) LPDDR4: tINIT3 of 2 ms (min) For configurati
* ons with MEMC_FREQ_RATIO=2, program this to JEDEC spec value divided by
* 2, and round it up to next integer value.
* PSU_DDRC_INIT0_PRE_CKE_X1024 0x106
* SDRAM Initialization Register 0
* (OFFSET, MASK, VALUE) (0XFD0700D0, 0xC3FF0FFFU ,0x00020106U)
*/
PSU_Mask_Write(DDRC_INIT0_OFFSET, 0xC3FF0FFFU, 0x00020106U);
/*##################################################################### */
/*
* Register : INIT1 @ 0XFD0700D4
* Number of cycles to assert SDRAM reset signal during init sequence. This
* is only present for designs supporting DDR3, DDR4 or LPDDR4 devices. Fo
* r use with a DDR PHY, this should be set to a minimum of 1
* PSU_DDRC_INIT1_DRAM_RSTN_X1024 0x2
* Cycles to wait after completing the SDRAM initialization sequence before
* starting the dynamic scheduler. Unit: Counts of a global timer that pul
* ses every 32 clock cycles. There is no known specific requirement for th
* is; it may be set to zero.
* PSU_DDRC_INIT1_FINAL_WAIT_X32 0x0
* Wait period before driving the OCD complete command to SDRAM. Unit: Coun
* ts of a global timer that pulses every 32 clock cycles. There is no know
* n specific requirement for this; it may be set to zero.
* PSU_DDRC_INIT1_PRE_OCD_X32 0x0
* SDRAM Initialization Register 1
* (OFFSET, MASK, VALUE) (0XFD0700D4, 0x01FF7F0FU ,0x00020000U)
*/
PSU_Mask_Write(DDRC_INIT1_OFFSET, 0x01FF7F0FU, 0x00020000U);
/*##################################################################### */
/*
* Register : INIT2 @ 0XFD0700D8
* Idle time after the reset command, tINIT4. Present only in designs confi
* gured to support LPDDR2. Unit: 32 clock cycles.
* PSU_DDRC_INIT2_IDLE_AFTER_RESET_X32 0x23
* Time to wait after the first CKE high, tINIT2. Present only in designs c
* onfigured to support LPDDR2/LPDDR3. Unit: 1 clock cycle. LPDDR2/LPDDR3 t
* ypically requires 5 x tCK delay.
* PSU_DDRC_INIT2_MIN_STABLE_CLOCK_X1 0x5
* SDRAM Initialization Register 2
* (OFFSET, MASK, VALUE) (0XFD0700D8, 0x0000FF0FU ,0x00002305U)
*/
PSU_Mask_Write(DDRC_INIT2_OFFSET, 0x0000FF0FU, 0x00002305U);
/*##################################################################### */
/*
* Register : INIT3 @ 0XFD0700DC
* DDR2: Value to write to MR register. Bit 8 is for DLL and the setting he
* re is ignored. The uMCTL2 sets this bit appropriately. DDR3/DDR4: Value
* loaded into MR0 register. mDDR: Value to write to MR register. LPDDR2/LP
* DDR3/LPDDR4 - Value to write to MR1 register
* PSU_DDRC_INIT3_MR 0x730
* DDR2: Value to write to EMR register. Bits 9:7 are for OCD and the setti
* ng in this register is ignored. The uMCTL2 sets those bits appropriately
* . DDR3/DDR4: Value to write to MR1 register Set bit 7 to 0. If PHY-evalu
* ation mode training is enabled, this bit is set appropriately by the uMC
* TL2 during write leveling. mDDR: Value to write to EMR register. LPDDR2/
* LPDDR3/LPDDR4 - Value to write to MR2 register
* PSU_DDRC_INIT3_EMR 0x301
* SDRAM Initialization Register 3
* (OFFSET, MASK, VALUE) (0XFD0700DC, 0xFFFFFFFFU ,0x07300301U)
*/
PSU_Mask_Write(DDRC_INIT3_OFFSET, 0xFFFFFFFFU, 0x07300301U);
/*##################################################################### */
/*
* Register : INIT4 @ 0XFD0700E0
* DDR2: Value to write to EMR2 register. DDR3/DDR4: Value to write to MR2
* register LPDDR2/LPDDR3/LPDDR4: Value to write to MR3 register mDDR: Unus
* ed
* PSU_DDRC_INIT4_EMR2 0x20
* DDR2: Value to write to EMR3 register. DDR3/DDR4: Value to write to MR3
* register mDDR/LPDDR2/LPDDR3: Unused LPDDR4: Value to write to MR13 regis
* ter
* PSU_DDRC_INIT4_EMR3 0x200
* SDRAM Initialization Register 4
* (OFFSET, MASK, VALUE) (0XFD0700E0, 0xFFFFFFFFU ,0x00200200U)
*/
PSU_Mask_Write(DDRC_INIT4_OFFSET, 0xFFFFFFFFU, 0x00200200U);
/*##################################################################### */
/*
* Register : INIT5 @ 0XFD0700E4
* ZQ initial calibration, tZQINIT. Present only in designs configured to s
* upport DDR3 or DDR4 or LPDDR2/LPDDR3. Unit: 32 clock cycles. DDR3 typica
* lly requires 512 clocks. DDR4 requires 1024 clocks. LPDDR2/LPDDR3 requir
* es 1 us.
* PSU_DDRC_INIT5_DEV_ZQINIT_X32 0x21
* Maximum duration of the auto initialization, tINIT5. Present only in des
* igns configured to support LPDDR2/LPDDR3. LPDDR2/LPDDR3 typically requir
* es 10 us.
* PSU_DDRC_INIT5_MAX_AUTO_INIT_X1024 0x4
* SDRAM Initialization Register 5
* (OFFSET, MASK, VALUE) (0XFD0700E4, 0x00FF03FFU ,0x00210004U)
*/
PSU_Mask_Write(DDRC_INIT5_OFFSET, 0x00FF03FFU, 0x00210004U);
/*##################################################################### */
/*
* Register : INIT6 @ 0XFD0700E8
* DDR4- Value to be loaded into SDRAM MR4 registers. Used in DDR4 designs
* only.
* PSU_DDRC_INIT6_MR4 0x0
* DDR4- Value to be loaded into SDRAM MR5 registers. Used in DDR4 designs
* only.
* PSU_DDRC_INIT6_MR5 0x6c0
* SDRAM Initialization Register 6
* (OFFSET, MASK, VALUE) (0XFD0700E8, 0xFFFFFFFFU ,0x000006C0U)
*/
PSU_Mask_Write(DDRC_INIT6_OFFSET, 0xFFFFFFFFU, 0x000006C0U);
/*##################################################################### */
/*
* Register : INIT7 @ 0XFD0700EC
* DDR4- Value to be loaded into SDRAM MR6 registers. Used in DDR4 designs
* only.
* PSU_DDRC_INIT7_MR6 0x819
* SDRAM Initialization Register 7
* (OFFSET, MASK, VALUE) (0XFD0700EC, 0xFFFF0000U ,0x08190000U)
*/
PSU_Mask_Write(DDRC_INIT7_OFFSET, 0xFFFF0000U, 0x08190000U);
/*##################################################################### */
/*
* Register : DIMMCTL @ 0XFD0700F0
* Disabling Address Mirroring for BG bits. When this is set to 1, BG0 and
* BG1 are NOT swapped even if Address Mirroring is enabled. This will be r
* equired for DDR4 DIMMs with x16 devices. - 1 - BG0 and BG1 are NOT swapp
* ed. - 0 - BG0 and BG1 are swapped if address mirroring is enabled.
* PSU_DDRC_DIMMCTL_DIMM_DIS_BG_MIRRORING 0x0
* Enable for BG1 bit of MRS command. BG1 bit of the mode register address
* is specified as RFU (Reserved for Future Use) and must be programmed to
* 0 during MRS. In case where DRAMs which do not have BG1 are attached and
* both the CA parity and the Output Inversion are enabled, this must be s
* et to 0, so that the calculation of CA parity will not include BG1 bit.
* Note: This has no effect on the address of any other memory accesses, or
* of software-driven mode register accesses. If address mirroring is enab
* led, this is applied to BG1 of even ranks and BG0 of odd ranks. - 1 - En
* abled - 0 - Disabled
* PSU_DDRC_DIMMCTL_MRS_BG1_EN 0x1
* Enable for A17 bit of MRS command. A17 bit of the mode register address
* is specified as RFU (Reserved for Future Use) and must be programmed to
* 0 during MRS. In case where DRAMs which do not have A17 are attached and
* the Output Inversion are enabled, this must be set to 0, so that the ca
* lculation of CA parity will not include A17 bit. Note: This has no effec
* t on the address of any other memory accesses, or of software-driven mod
* e register accesses. - 1 - Enabled - 0 - Disabled
* PSU_DDRC_DIMMCTL_MRS_A17_EN 0x0
* Output Inversion Enable (for DDR4 RDIMM implementations only). DDR4 RDIM
* M implements the Output Inversion feature by default, which means that t
* he following address, bank address and bank group bits of B-side DRAMs a
* re inverted: A3-A9, A11, A13, A17, BA0-BA1, BG0-BG1. Setting this bit en
* sures that, for mode register accesses generated by the uMCTL2 during th
* e automatic initialization routine and enabling of a particular DDR4 fea
* ture, separate A-side and B-side mode register accesses are generated. F
* or B-side mode register accesses, these bits are inverted within the uMC
* TL2 to compensate for this RDIMM inversion. Note: This has no effect on
* the address of any other memory accesses, or of software-driven mode reg
* ister accesses. - 1 - Implement output inversion for B-side DRAMs. - 0 -
* Do not implement output inversion for B-side DRAMs.
* PSU_DDRC_DIMMCTL_DIMM_OUTPUT_INV_EN 0x0
* Address Mirroring Enable (for multi-rank UDIMM implementations and multi
* -rank DDR4 RDIMM implementations). Some UDIMMs and DDR4 RDIMMs implement
* address mirroring for odd ranks, which means that the following address
* , bank address and bank group bits are swapped: (A3, A4), (A5, A6), (A7,
* A8), (BA0, BA1) and also (A11, A13), (BG0, BG1) for the DDR4. Setting t
* his bit ensures that, for mode register accesses during the automatic in
* itialization routine, these bits are swapped within the uMCTL2 to compen
* sate for this UDIMM/RDIMM swapping. In addition to the automatic initial
* ization routine, in case of DDR4 UDIMM/RDIMM, they are swapped during th
* e automatic MRS access to enable/disable of a particular DDR4 feature. N
* ote: This has no effect on the address of any other memory accesses, or
* of software-driven mode register accesses. This is not supported for mDD
* R, LPDDR2, LPDDR3 or LPDDR4 SDRAMs. Note: In case of x16 DDR4 DIMMs, BG1
* output of MRS for the odd ranks is same as BG0 because BG1 is invalid,
* hence dimm_dis_bg_mirroring register must be set to 1. - 1 - For odd ran
* ks, implement address mirroring for MRS commands to during initializatio
* n and for any automatic DDR4 MRS commands (to be used if UDIMM/RDIMM imp
* lements address mirroring) - 0 - Do not implement address mirroring
* PSU_DDRC_DIMMCTL_DIMM_ADDR_MIRR_EN 0x0
* Staggering enable for multi-rank accesses (for multi-rank UDIMM and RDIM
* M implementations only). This is not supported for mDDR, LPDDR2, LPDDR3
* or LPDDR4 SDRAMs. Note: Even if this bit is set it does not take care of
* software driven MR commands (via MRCTRL0/MRCTRL1), where software is re
* sponsible to send them to seperate ranks as appropriate. - 1 - (DDR4) Se
* nd MRS commands to each ranks seperately - 1 - (non-DDR4) Send all comma
* nds to even and odd ranks seperately - 0 - Do not stagger accesses
* PSU_DDRC_DIMMCTL_DIMM_STAGGER_CS_EN 0x0
* DIMM Control Register
* (OFFSET, MASK, VALUE) (0XFD0700F0, 0x0000003FU ,0x00000010U)
*/
PSU_Mask_Write(DDRC_DIMMCTL_OFFSET, 0x0000003FU, 0x00000010U);
/*##################################################################### */
/*
* Register : RANKCTL @ 0XFD0700F4
* Only present for multi-rank configurations. Indicates the number of cloc
* ks of gap in data responses when performing consecutive writes to differ
* ent ranks. This is used to switch the delays in the PHY to match the ran
* k requirements. This value should consider both PHY requirement and ODT
* requirement. - PHY requirement: tphy_wrcsgap + 1 (see PHY databook for v
* alue of tphy_wrcsgap) If CRC feature is enabled, should be increased by
* 1. If write preamble is set to 2tCK(DDR4/LPDDR4 only), should be increas
* ed by 1. If write postamble is set to 1.5tCK(LPDDR4 only), should be inc
* reased by 1. - ODT requirement: The value programmed in this register ta
* kes care of the ODT switch off timing requirement when switching ranks d
* uring writes. For LPDDR4, the requirement is ODTLoff - ODTLon - BL/2 + 1
* For configurations with MEMC_FREQ_RATIO=1, program this to the larger o
* f PHY requirement or ODT requirement. For configurations with MEMC_FREQ_
* RATIO=2, program this to the larger value divided by two and round it up
* to the next integer.
* PSU_DDRC_RANKCTL_DIFF_RANK_WR_GAP 0x6
* Only present for multi-rank configurations. Indicates the number of cloc
* ks of gap in data responses when performing consecutive reads to differe
* nt ranks. This is used to switch the delays in the PHY to match the rank
* requirements. This value should consider both PHY requirement and ODT r
* equirement. - PHY requirement: tphy_rdcsgap + 1 (see PHY databook for va
* lue of tphy_rdcsgap) If read preamble is set to 2tCK(DDR4/LPDDR4 only),
* should be increased by 1. If read postamble is set to 1.5tCK(LPDDR4 only
* ), should be increased by 1. - ODT requirement: The value programmed in
* this register takes care of the ODT switch off timing requirement when s
* witching ranks during reads. For configurations with MEMC_FREQ_RATIO=1,
* program this to the larger of PHY requirement or ODT requirement. For co
* nfigurations with MEMC_FREQ_RATIO=2, program this to the larger value di
* vided by two and round it up to the next integer.
* PSU_DDRC_RANKCTL_DIFF_RANK_RD_GAP 0x6
* Only present for multi-rank configurations. Background: Reads to the sam
* e rank can be performed back-to-back. Reads to different ranks require a
* dditional gap dictated by the register RANKCTL.diff_rank_rd_gap. This is
* to avoid possible data bus contention as well as to give PHY enough tim
* e to switch the delay when changing ranks. The uMCTL2 arbitrates for bus
* access on a cycle-by-cycle basis; therefore after a read is scheduled,
* there are few clock cycles (determined by the value on RANKCTL.diff_rank
* _rd_gap register) in which only reads from the same rank are eligible to
* be scheduled. This prevents reads from other ranks from having fair acc
* ess to the data bus. This parameter represents the maximum number of rea
* ds that can be scheduled consecutively to the same rank. After this numb
* er is reached, a delay equal to RANKCTL.diff_rank_rd_gap is inserted by
* the scheduler to allow all ranks a fair opportunity to be scheduled. Hig
* her numbers increase bandwidth utilization, lower numbers increase fairn
* ess. This feature can be DISABLED by setting this register to 0. When se
* t to 0, the Controller will stay on the same rank as long as commands ar
* e available for it. Minimum programmable value is 0 (feature disabled) a
* nd maximum programmable value is 0xF. FOR PERFORMANCE ONLY.
* PSU_DDRC_RANKCTL_MAX_RANK_RD 0xf
* Rank Control Register
* (OFFSET, MASK, VALUE) (0XFD0700F4, 0x00000FFFU ,0x0000066FU)
*/
PSU_Mask_Write(DDRC_RANKCTL_OFFSET, 0x00000FFFU, 0x0000066FU);
/*##################################################################### */
/*
* Register : DRAMTMG0 @ 0XFD070100
* Minimum time between write and precharge to same bank. Unit: Clocks Spec
* ifications: WL + BL/2 + tWR = approximately 8 cycles + 15 ns = 14 clocks
* @400MHz and less for lower frequencies where: - WL = write latency - BL
* = burst length. This must match the value programmed in the BL bit of t
* he mode register to the SDRAM. BST (burst terminate) is not supported at
* present. - tWR = Write recovery time. This comes directly from the SDRA
* M specification. Add one extra cycle for LPDDR2/LPDDR3/LPDDR4 for this p
* arameter. For configurations with MEMC_FREQ_RATIO=2, 1T mode, divide the
* above value by 2. No rounding up. For configurations with MEMC_FREQ_RAT
* IO=2, 2T mode or LPDDR4 mode, divide the above value by 2 and round it u
* p to the next integer value.
* PSU_DDRC_DRAMTMG0_WR2PRE 0x11
* tFAW Valid only when 8 or more banks(or banks x bank groups) are present
* . In 8-bank design, at most 4 banks must be activated in a rolling windo
* w of tFAW cycles. For configurations with MEMC_FREQ_RATIO=2, program thi
* s to (tFAW/2) and round up to next integer value. In a 4-bank design, se
* t this register to 0x1 independent of the MEMC_FREQ_RATIO configuration.
* Unit: Clocks
* PSU_DDRC_DRAMTMG0_T_FAW 0x10
* tRAS(max): Maximum time between activate and precharge to same bank. Thi
* s is the maximum time that a page can be kept open Minimum value of this
* register is 1. Zero is invalid. For configurations with MEMC_FREQ_RATIO
* =2, program this to (tRAS(max)-1)/2. No rounding up. Unit: Multiples of
* 1024 clocks.
* PSU_DDRC_DRAMTMG0_T_RAS_MAX 0x24
* tRAS(min): Minimum time between activate and precharge to the same bank.
* For configurations with MEMC_FREQ_RATIO=2, 1T mode, program this to tRA
* S(min)/2. No rounding up. For configurations with MEMC_FREQ_RATIO=2, 2T
* mode or LPDDR4 mode, program this to (tRAS(min)/2) and round it up to th
* e next integer value. Unit: Clocks
* PSU_DDRC_DRAMTMG0_T_RAS_MIN 0x12
* SDRAM Timing Register 0
* (OFFSET, MASK, VALUE) (0XFD070100, 0x7F3F7F3FU ,0x11102412U)
*/
PSU_Mask_Write(DDRC_DRAMTMG0_OFFSET, 0x7F3F7F3FU, 0x11102412U);
/*##################################################################### */
/*
* Register : DRAMTMG1 @ 0XFD070104
* tXP: Minimum time after power-down exit to any operation. For DDR3, this
* should be programmed to tXPDLL if slow powerdown exit is selected in MR
* 0[12]. If C/A parity for DDR4 is used, set to (tXP+PL) instead. For conf
* igurations with MEMC_FREQ_RATIO=2, program this to (tXP/2) and round it
* up to the next integer value. Units: Clocks
* PSU_DDRC_DRAMTMG1_T_XP 0x4
* tRTP: Minimum time from read to precharge of same bank. - DDR2: tAL + BL
* /2 + max(tRTP, 2) - 2 - DDR3: tAL + max (tRTP, 4) - DDR4: Max of followi
* ng two equations: tAL + max (tRTP, 4) or, RL + BL/2 - tRP. - mDDR: BL/2
* - LPDDR2: Depends on if it's LPDDR2-S2 or LPDDR2-S4: LPDDR2-S2: BL/2 + t
* RTP - 1. LPDDR2-S4: BL/2 + max(tRTP,2) - 2. - LPDDR3: BL/2 + max(tRTP,4)
* - 4 - LPDDR4: BL/2 + max(tRTP,8) - 8 For configurations with MEMC_FREQ_
* RATIO=2, 1T mode, divide the above value by 2. No rounding up. For confi
* gurations with MEMC_FREQ_RATIO=2, 2T mode or LPDDR4 mode, divide the abo
* ve value by 2 and round it up to the next integer value. Unit: Clocks.
* PSU_DDRC_DRAMTMG1_RD2PRE 0x4
* tRC: Minimum time between activates to same bank. For configurations wit
* h MEMC_FREQ_RATIO=2, program this to (tRC/2) and round up to next intege
* r value. Unit: Clocks.
* PSU_DDRC_DRAMTMG1_T_RC 0x1a
* SDRAM Timing Register 1
* (OFFSET, MASK, VALUE) (0XFD070104, 0x001F1F7FU ,0x0004041AU)
*/
PSU_Mask_Write(DDRC_DRAMTMG1_OFFSET, 0x001F1F7FU, 0x0004041AU);
/*##################################################################### */
/*
* Register : DRAMTMG2 @ 0XFD070108
* Set to WL Time from write command to write data on SDRAM interface. This
* must be set to WL. For mDDR, it should normally be set to 1. Note that,
* depending on the PHY, if using RDIMM, it may be necessary to use a valu
* e of WL + 1 to compensate for the extra cycle of latency through the RDI
* MM For configurations with MEMC_FREQ_RATIO=2, divide the value calculate
* d using the above equation by 2, and round it up to next integer. This r
* egister field is not required for DDR2 and DDR3 (except if MEMC_TRAINING
* is set), as the DFI read and write latencies defined in DFITMG0 and DFI
* TMG1 are sufficient for those protocols Unit: clocks
* PSU_DDRC_DRAMTMG2_WRITE_LATENCY 0x7
* Set to RL Time from read command to read data on SDRAM interface. This m
* ust be set to RL. Note that, depending on the PHY, if using RDIMM, it ma
* t be necessary to use a value of RL + 1 to compensate for the extra cycl
* e of latency through the RDIMM For configurations with MEMC_FREQ_RATIO=2
* , divide the value calculated using the above equation by 2, and round i
* t up to next integer. This register field is not required for DDR2 and D
* DR3 (except if MEMC_TRAINING is set), as the DFI read and write latencie
* s defined in DFITMG0 and DFITMG1 are sufficient for those protocols Unit
* : clocks
* PSU_DDRC_DRAMTMG2_READ_LATENCY 0x8
* DDR2/3/mDDR: RL + BL/2 + 2 - WL DDR4: RL + BL/2 + 1 + WR_PREAMBLE - WL L
* PDDR2/LPDDR3: RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL LPDDR4(DQ ODT is Di
* sabled): RL + BL/2 + RU(tDQSCKmax/tCK) + WR_PREAMBLE + RD_POSTAMBLE - WL
* LPDDR4(DQ ODT is Enabled) : RL + BL/2 + RU(tDQSCKmax/tCK) + RD_POSTAMBL
* E - ODTLon - RU(tODTon(min)/tCK) Minimum time from read command to write
* command. Include time for bus turnaround and all per-bank, per-rank, an
* d global constraints. Unit: Clocks. Where: - WL = write latency - BL = b
* urst length. This must match the value programmed in the BL bit of the m
* ode register to the SDRAM - RL = read latency = CAS latency - WR_PREAMBL
* E = write preamble. This is unique to DDR4 and LPDDR4. - RD_POSTAMBLE =
* read postamble. This is unique to LPDDR4. For LPDDR2/LPDDR3/LPDDR4, if d
* erating is enabled (DERATEEN.derate_enable=1), derated tDQSCKmax should
* be used. For configurations with MEMC_FREQ_RATIO=2, divide the value cal
* culated using the above equation by 2, and round it up to next integer.
* PSU_DDRC_DRAMTMG2_RD2WR 0x6
* DDR4: CWL + PL + BL/2 + tWTR_L Others: CWL + BL/2 + tWTR In DDR4, minimu
* m time from write command to read command for same bank group. In others
* , minimum time from write command to read command. Includes time for bus
* turnaround, recovery times, and all per-bank, per-rank, and global cons
* traints. Unit: Clocks. Where: - CWL = CAS write latency - PL = Parity la
* tency - BL = burst length. This must match the value programmed in the B
* L bit of the mode register to the SDRAM - tWTR_L = internal write to rea
* d command delay for same bank group. This comes directly from the SDRAM
* specification. - tWTR = internal write to read command delay. This comes
* directly from the SDRAM specification. Add one extra cycle for LPDDR2/L
* PDDR3/LPDDR4 operation. For configurations with MEMC_FREQ_RATIO=2, divid
* e the value calculated using the above equation by 2, and round it up to
* next integer.
* PSU_DDRC_DRAMTMG2_WR2RD 0xd
* SDRAM Timing Register 2
* (OFFSET, MASK, VALUE) (0XFD070108, 0x3F3F3F3FU ,0x0708060DU)
*/
PSU_Mask_Write(DDRC_DRAMTMG2_OFFSET, 0x3F3F3F3FU, 0x0708060DU);
/*##################################################################### */
/*
* Register : DRAMTMG3 @ 0XFD07010C
* Time to wait after a mode register write or read (MRW or MRR). Present o
* nly in designs configured to support LPDDR2, LPDDR3 or LPDDR4. LPDDR2 ty
* pically requires value of 5. LPDDR3 typically requires value of 10. LPDD
* R4: Set this to the larger of tMRW and tMRWCKEL. For LPDDR2, this regist
* er is used for the time from a MRW/MRR to all other commands. For LDPDR3
* , this register is used for the time from a MRW/MRR to a MRW/MRR.
* PSU_DDRC_DRAMTMG3_T_MRW 0x5
* tMRD: Cycles to wait after a mode register write or read. Depending on t
* he connected SDRAM, tMRD represents: DDR2/mDDR: Time from MRS to any com
* mand DDR3/4: Time from MRS to MRS command LPDDR2: not used LPDDR3/4: Tim
* e from MRS to non-MRS command For configurations with MEMC_FREQ_RATIO=2,
* program this to (tMRD/2) and round it up to the next integer value. If
* C/A parity for DDR4 is used, set to tMRD_PAR(tMOD+PL) instead.
* PSU_DDRC_DRAMTMG3_T_MRD 0x4
* tMOD: Parameter used only in DDR3 and DDR4. Cycles between load mode com
* mand and following non-load mode command. If C/A parity for DDR4 is used
* , set to tMOD_PAR(tMOD+PL) instead. Set to tMOD if MEMC_FREQ_RATIO=1, or
* tMOD/2 (rounded up to next integer) if MEMC_FREQ_RATIO=2. Note that if
* using RDIMM, depending on the PHY, it may be necessary to use a value of
* tMOD + 1 or (tMOD + 1)/2 to compensate for the extra cycle of latency a
* pplied to mode register writes by the RDIMM chip.
* PSU_DDRC_DRAMTMG3_T_MOD 0xc
* SDRAM Timing Register 3
* (OFFSET, MASK, VALUE) (0XFD07010C, 0x3FF3F3FFU ,0x0050400CU)
*/
PSU_Mask_Write(DDRC_DRAMTMG3_OFFSET, 0x3FF3F3FFU, 0x0050400CU);
/*##################################################################### */
/*
* Register : DRAMTMG4 @ 0XFD070110
* tRCD - tAL: Minimum time from activate to read or write command to same
* bank. For configurations with MEMC_FREQ_RATIO=2, program this to ((tRCD
* - tAL)/2) and round it up to the next integer value. Minimum value allow
* ed for this register is 1, which implies minimum (tRCD - tAL) value to b
* e 2 in configurations with MEMC_FREQ_RATIO=2. Unit: Clocks.
* PSU_DDRC_DRAMTMG4_T_RCD 0x8
* DDR4: tCCD_L: This is the minimum time between two reads or two writes f
* or same bank group. Others: tCCD: This is the minimum time between two r
* eads or two writes. For configurations with MEMC_FREQ_RATIO=2, program t
* his to (tCCD_L/2 or tCCD/2) and round it up to the next integer value. U
* nit: clocks.
* PSU_DDRC_DRAMTMG4_T_CCD 0x3
* DDR4: tRRD_L: Minimum time between activates from bank 'a' to bank 'b' f
* or same bank group. Others: tRRD: Minimum time between activates from ba
* nk 'a' to bank 'b'For configurations with MEMC_FREQ_RATIO=2, program thi
* s to (tRRD_L/2 or tRRD/2) and round it up to the next integer value. Uni
* t: Clocks.
* PSU_DDRC_DRAMTMG4_T_RRD 0x3
* tRP: Minimum time from precharge to activate of same bank. For MEMC_FREQ
* _RATIO=1 configurations, t_rp should be set to RoundUp(tRP/tCK). For MEM
* C_FREQ_RATIO=2 configurations, t_rp should be set to RoundDown(RoundUp(t
* RP/tCK)/2) + 1. For MEMC_FREQ_RATIO=2 configurations in LPDDR4, t_rp sho
* uld be set to RoundUp(RoundUp(tRP/tCK)/2). Unit: Clocks.
* PSU_DDRC_DRAMTMG4_T_RP 0x9
* SDRAM Timing Register 4
* (OFFSET, MASK, VALUE) (0XFD070110, 0x1F0F0F1FU ,0x08030309U)
*/
PSU_Mask_Write(DDRC_DRAMTMG4_OFFSET, 0x1F0F0F1FU, 0x08030309U);
/*##################################################################### */
/*
* Register : DRAMTMG5 @ 0XFD070114
* This is the time before Self Refresh Exit that CK is maintained as a val
* id clock before issuing SRX. Specifies the clock stable time before SRX.
* Recommended settings: - mDDR: 1 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: tCKCK
* EH - DDR2: 1 - DDR3: tCKSRX - DDR4: tCKSRX For configurations with MEMC_
* FREQ_RATIO=2, program this to recommended value divided by two and round
* it up to next integer.
* PSU_DDRC_DRAMTMG5_T_CKSRX 0x6
* This is the time after Self Refresh Down Entry that CK is maintained as
* a valid clock. Specifies the clock disable delay after SRE. Recommended
* settings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: tCKCKEL - DDR2: 1
* - DDR3: max (10 ns, 5 tCK) - DDR4: max (10 ns, 5 tCK) For configurations
* with MEMC_FREQ_RATIO=2, program this to recommended value divided by tw
* o and round it up to next integer.
* PSU_DDRC_DRAMTMG5_T_CKSRE 0x6
* Minimum CKE low width for Self refresh or Self refresh power down entry
* to exit timing in memory clock cycles. Recommended settings: - mDDR: tRF
* C - LPDDR2: tCKESR - LPDDR3: tCKESR - LPDDR4: max(tCKELPD, tSR) - DDR2:
* tCKE - DDR3: tCKE + 1 - DDR4: tCKE + 1 For configurations with MEMC_FREQ
* _RATIO=2, program this to recommended value divided by two and round it
* up to next integer.
* PSU_DDRC_DRAMTMG5_T_CKESR 0x4
* Minimum number of cycles of CKE HIGH/LOW during power-down and self refr
* esh. - LPDDR2/LPDDR3 mode: Set this to the larger of tCKE or tCKESR - LP
* DDR4 mode: Set this to the larger of tCKE, tCKELPD or tSR. - Non-LPDDR2/
* non-LPDDR3/non-LPDDR4 designs: Set this to tCKE value. For configuration
* s with MEMC_FREQ_RATIO=2, program this to (value described above)/2 and
* round it up to the next integer value. Unit: Clocks.
* PSU_DDRC_DRAMTMG5_T_CKE 0x3
* SDRAM Timing Register 5
* (OFFSET, MASK, VALUE) (0XFD070114, 0x0F0F3F1FU ,0x06060403U)
*/
PSU_Mask_Write(DDRC_DRAMTMG5_OFFSET, 0x0F0F3F1FU, 0x06060403U);
/*##################################################################### */
/*
* Register : DRAMTMG6 @ 0XFD070118
* This is the time after Deep Power Down Entry that CK is maintained as a
* valid clock. Specifies the clock disable delay after DPDE. Recommended s
* ettings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 For configurations with MEMC_
* FREQ_RATIO=2, program this to recommended value divided by two and round
* it up to next integer. This is only present for designs supporting mDDR
* or LPDDR2/LPDDR3 devices.
* PSU_DDRC_DRAMTMG6_T_CKDPDE 0x1
* This is the time before Deep Power Down Exit that CK is maintained as a
* valid clock before issuing DPDX. Specifies the clock stable time before
* DPDX. Recommended settings: - mDDR: 1 - LPDDR2: 2 - LPDDR3: 2 For config
* urations with MEMC_FREQ_RATIO=2, program this to recommended value divid
* ed by two and round it up to next integer. This is only present for desi
* gns supporting mDDR or LPDDR2 devices.
* PSU_DDRC_DRAMTMG6_T_CKDPDX 0x1
* This is the time before Clock Stop Exit that CK is maintained as a valid
* clock before issuing Clock Stop Exit. Specifies the clock stable time b
* efore next command after Clock Stop Exit. Recommended settings: - mDDR:
* 1 - LPDDR2: tXP + 2 - LPDDR3: tXP + 2 - LPDDR4: tXP + 2 For configuratio
* ns with MEMC_FREQ_RATIO=2, program this to recommended value divided by
* two and round it up to next integer. This is only present for designs su
* pporting mDDR or LPDDR2/LPDDR3/LPDDR4 devices.
* PSU_DDRC_DRAMTMG6_T_CKCSX 0x4
* SDRAM Timing Register 6
* (OFFSET, MASK, VALUE) (0XFD070118, 0x0F0F000FU ,0x01010004U)
*/
PSU_Mask_Write(DDRC_DRAMTMG6_OFFSET, 0x0F0F000FU, 0x01010004U);
/*##################################################################### */
/*
* Register : DRAMTMG7 @ 0XFD07011C
* This is the time after Power Down Entry that CK is maintained as a valid
* clock. Specifies the clock disable delay after PDE. Recommended setting
* s: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: tCKCKEL For configuration
* s with MEMC_FREQ_RATIO=2, program this to recommended value divided by t
* wo and round it up to next integer. This is only present for designs sup
* porting mDDR or LPDDR2/LPDDR3/LPDDR4 devices.
* PSU_DDRC_DRAMTMG7_T_CKPDE 0x6
* This is the time before Power Down Exit that CK is maintained as a valid
* clock before issuing PDX. Specifies the clock stable time before PDX. R
* ecommended settings: - mDDR: 0 - LPDDR2: 2 - LPDDR3: 2 - LPDDR4: 2 For c
* onfigurations with MEMC_FREQ_RATIO=2, program this to recommended value
* divided by two and round it up to next integer. This is only present for
* designs supporting mDDR or LPDDR2/LPDDR3/LPDDR4 devices.
* PSU_DDRC_DRAMTMG7_T_CKPDX 0x6
* SDRAM Timing Register 7
* (OFFSET, MASK, VALUE) (0XFD07011C, 0x00000F0FU ,0x00000606U)
*/
PSU_Mask_Write(DDRC_DRAMTMG7_OFFSET, 0x00000F0FU, 0x00000606U);
/*##################################################################### */
/*
* Register : DRAMTMG8 @ 0XFD070120
* tXS_FAST: Exit Self Refresh to ZQCL, ZQCS and MRS (only CL, WR, RTP and
* Geardown mode). For configurations with MEMC_FREQ_RATIO=2, program this
* to the above value divided by 2 and round up to next integer value. Unit
* : Multiples of 32 clocks. Note: This is applicable to only ZQCL/ZQCS com
* mands. Note: Ensure this is less than or equal to t_xs_x32.
* PSU_DDRC_DRAMTMG8_T_XS_FAST_X32 0x3
* tXS_ABORT: Exit Self Refresh to commands not requiring a locked DLL in S
* elf Refresh Abort. For configurations with MEMC_FREQ_RATIO=2, program th
* is to the above value divided by 2 and round up to next integer value. U
* nit: Multiples of 32 clocks. Note: Ensure this is less than or equal to
* t_xs_x32.
* PSU_DDRC_DRAMTMG8_T_XS_ABORT_X32 0x3
* tXSDLL: Exit Self Refresh to commands requiring a locked DLL. For config
* urations with MEMC_FREQ_RATIO=2, program this to the above value divided
* by 2 and round up to next integer value. Unit: Multiples of 32 clocks.
* Note: Used only for DDR2, DDR3 and DDR4 SDRAMs.
* PSU_DDRC_DRAMTMG8_T_XS_DLL_X32 0xd
* tXS: Exit Self Refresh to commands not requiring a locked DLL. For confi
* gurations with MEMC_FREQ_RATIO=2, program this to the above value divide
* d by 2 and round up to next integer value. Unit: Multiples of 32 clocks.
* Note: Used only for DDR2, DDR3 and DDR4 SDRAMs.
* PSU_DDRC_DRAMTMG8_T_XS_X32 0x6
* SDRAM Timing Register 8
* (OFFSET, MASK, VALUE) (0XFD070120, 0x7F7F7F7FU ,0x03030D06U)
*/
PSU_Mask_Write(DDRC_DRAMTMG8_OFFSET, 0x7F7F7F7FU, 0x03030D06U);
/*##################################################################### */
/*
* Register : DRAMTMG9 @ 0XFD070124
* DDR4 Write preamble mode - 0: 1tCK preamble - 1: 2tCK preamble Present o
* nly with MEMC_FREQ_RATIO=2
* PSU_DDRC_DRAMTMG9_DDR4_WR_PREAMBLE 0x0
* tCCD_S: This is the minimum time between two reads or two writes for dif
* ferent bank group. For bank switching (from bank 'a' to bank 'b'), the m
* inimum time is this value + 1. For configurations with MEMC_FREQ_RATIO=2
* , program this to (tCCD_S/2) and round it up to the next integer value.
* Present only in designs configured to support DDR4. Unit: clocks.
* PSU_DDRC_DRAMTMG9_T_CCD_S 0x2
* tRRD_S: Minimum time between activates from bank 'a' to bank 'b' for dif
* ferent bank group. For configurations with MEMC_FREQ_RATIO=2, program th
* is to (tRRD_S/2) and round it up to the next integer value. Present only
* in designs configured to support DDR4. Unit: Clocks.
* PSU_DDRC_DRAMTMG9_T_RRD_S 0x2
* CWL + PL + BL/2 + tWTR_S Minimum time from write command to read command
* for different bank group. Includes time for bus turnaround, recovery ti
* mes, and all per-bank, per-rank, and global constraints. Present only in
* designs configured to support DDR4. Unit: Clocks. Where: - CWL = CAS wr
* ite latency - PL = Parity latency - BL = burst length. This must match t
* he value programmed in the BL bit of the mode register to the SDRAM - tW
* TR_S = internal write to read command delay for different bank group. Th
* is comes directly from the SDRAM specification. For configurations with
* MEMC_FREQ_RATIO=2, divide the value calculated using the above equation
* by 2, and round it up to next integer.
* PSU_DDRC_DRAMTMG9_WR2RD_S 0xb
* SDRAM Timing Register 9
* (OFFSET, MASK, VALUE) (0XFD070124, 0x40070F3FU ,0x0002020BU)
*/
PSU_Mask_Write(DDRC_DRAMTMG9_OFFSET, 0x40070F3FU, 0x0002020BU);
/*##################################################################### */
/*
* Register : DRAMTMG11 @ 0XFD07012C
* tXMPDLL: This is the minimum Exit MPSM to commands requiring a locked DL
* L. For configurations with MEMC_FREQ_RATIO=2, program this to (tXMPDLL/2
* ) and round it up to the next integer value. Present only in designs con
* figured to support DDR4. Unit: Multiples of 32 clocks.
* PSU_DDRC_DRAMTMG11_POST_MPSM_GAP_X32 0x70
* tMPX_LH: This is the minimum CS_n Low hold time to CKE rising edge. For
* configurations with MEMC_FREQ_RATIO=2, program this to RoundUp(tMPX_LH/2
* )+1. Present only in designs configured to support DDR4. Unit: clocks.
* PSU_DDRC_DRAMTMG11_T_MPX_LH 0x7
* tMPX_S: Minimum time CS setup time to CKE. For configurations with MEMC_
* FREQ_RATIO=2, program this to (tMPX_S/2) and round it up to the next int
* eger value. Present only in designs configured to support DDR4. Unit: Cl
* ocks.
* PSU_DDRC_DRAMTMG11_T_MPX_S 0x1
* tCKMPE: Minimum valid clock requirement after MPSM entry. Present only i
* n designs configured to support DDR4. Unit: Clocks. For configurations w
* ith MEMC_FREQ_RATIO=2, divide the value calculated using the above equat
* ion by 2, and round it up to next integer.
* PSU_DDRC_DRAMTMG11_T_CKMPE 0xe
* SDRAM Timing Register 11
* (OFFSET, MASK, VALUE) (0XFD07012C, 0x7F1F031FU ,0x7007010EU)
*/
PSU_Mask_Write(DDRC_DRAMTMG11_OFFSET, 0x7F1F031FU, 0x7007010EU);
/*##################################################################### */
/*
* Register : DRAMTMG12 @ 0XFD070130
* tCMDCKE: Delay from valid command to CKE input LOW. Set this to the larg
* er of tESCKE or tCMDCKE For configurations with MEMC_FREQ_RATIO=2, progr
* am this to (max(tESCKE, tCMDCKE)/2) and round it up to next integer valu
* e.
* PSU_DDRC_DRAMTMG12_T_CMDCKE 0x2
* tCKEHCMD: Valid command requirement after CKE input HIGH. For configurat
* ions with MEMC_FREQ_RATIO=2, program this to (tCKEHCMD/2) and round it u
* p to next integer value.
* PSU_DDRC_DRAMTMG12_T_CKEHCMD 0x6
* tMRD_PDA: This is the Mode Register Set command cycle time in PDA mode.
* For configurations with MEMC_FREQ_RATIO=2, program this to (tMRD_PDA/2)
* and round it up to next integer value.
* PSU_DDRC_DRAMTMG12_T_MRD_PDA 0x8
* SDRAM Timing Register 12
* (OFFSET, MASK, VALUE) (0XFD070130, 0x00030F1FU ,0x00020608U)
*/
PSU_Mask_Write(DDRC_DRAMTMG12_OFFSET, 0x00030F1FU, 0x00020608U);
/*##################################################################### */
/*
* Register : ZQCTL0 @ 0XFD070180
* - 1 - Disable uMCTL2 generation of ZQCS/MPC(ZQ calibration) command. Reg
* ister DBGCMD.zq_calib_short can be used instead to issue ZQ calibration
* request from APB module. - 0 - Internally generate ZQCS/MPC(ZQ calibrati
* on) commands based on ZQCTL1.t_zq_short_interval_x1024. This is only pre
* sent for designs supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
* PSU_DDRC_ZQCTL0_DIS_AUTO_ZQ 0x1
* - 1 - Disable issuing of ZQCL/MPC(ZQ calibration) command at Self-Refres
* h/SR-Powerdown exit. Only applicable when run in DDR3 or DDR4 or LPDDR2
* or LPDDR3 or LPDDR4 mode. - 0 - Enable issuing of ZQCL/MPC(ZQ calibratio
* n) command at Self-Refresh/SR-Powerdown exit. Only applicable when run i
* n DDR3 or DDR4 or LPDDR2 or LPDDR3 or LPDDR4 mode. This is only present
* for designs supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
* PSU_DDRC_ZQCTL0_DIS_SRX_ZQCL 0x0
* - 1 - Denotes that ZQ resistor is shared between ranks. Means ZQinit/ZQC
* L/ZQCS/MPC(ZQ calibration) commands are sent to one rank at a time with
* tZQinit/tZQCL/tZQCS/tZQCAL/tZQLAT timing met between commands so that co
* mmands to different ranks do not overlap. - 0 - ZQ resistor is not share
* d. This is only present for designs supporting DDR3/DDR4 or LPDDR2/LPDDR
* 3/LPDDR4 devices.
* PSU_DDRC_ZQCTL0_ZQ_RESISTOR_SHARED 0x0
* - 1 - Disable issuing of ZQCL command at Maximum Power Saving Mode exit.
* Only applicable when run in DDR4 mode. - 0 - Enable issuing of ZQCL com
* mand at Maximum Power Saving Mode exit. Only applicable when run in DDR4
* mode. This is only present for designs supporting DDR4 devices.
* PSU_DDRC_ZQCTL0_DIS_MPSMX_ZQCL 0x0
* tZQoper for DDR3/DDR4, tZQCL for LPDDR2/LPDDR3, tZQCAL for LPDDR4: Numbe
* r of cycles of NOP required after a ZQCL (ZQ calibration long)/MPC(ZQ St
* art) command is issued to SDRAM. For configurations with MEMC_FREQ_RATIO
* =2: DDR3/DDR4: program this to tZQoper/2 and round it up to the next int
* eger value. LPDDR2/LPDDR3: program this to tZQCL/2 and round it up to th
* e next integer value. LPDDR4: program this to tZQCAL/2 and round it up t
* o the next integer value. Unit: Clock cycles. This is only present for d
* esigns supporting DDR3/DDR4 or LPDDR2/LPDDR3/LPDDR4 devices.
* PSU_DDRC_ZQCTL0_T_ZQ_LONG_NOP 0x100
* tZQCS for DDR3/DD4/LPDDR2/LPDDR3, tZQLAT for LPDDR4: Number of cycles of
* NOP required after a ZQCS (ZQ calibration short)/MPC(ZQ Latch) command
* is issued to SDRAM. For configurations with MEMC_FREQ_RATIO=2, program t
* his to tZQCS/2 and round it up to the next integer value. Unit: Clock cy
* cles. This is only present for designs supporting DDR3/DDR4 or LPDDR2/LP
* DDR3/LPDDR4 devices.
* PSU_DDRC_ZQCTL0_T_ZQ_SHORT_NOP 0x40
* ZQ Control Register 0
* (OFFSET, MASK, VALUE) (0XFD070180, 0xF7FF03FFU ,0x81000040U)
*/
PSU_Mask_Write(DDRC_ZQCTL0_OFFSET, 0xF7FF03FFU, 0x81000040U);
/*##################################################################### */
/*
* Register : ZQCTL1 @ 0XFD070184
* tZQReset: Number of cycles of NOP required after a ZQReset (ZQ calibrati
* on Reset) command is issued to SDRAM. For configurations with MEMC_FREQ_
* RATIO=2, program this to tZQReset/2 and round it up to the next integer
* value. Unit: Clock cycles. This is only present for designs supporting L
* PDDR2/LPDDR3/LPDDR4 devices.
* PSU_DDRC_ZQCTL1_T_ZQ_RESET_NOP 0x20
* Average interval to wait between automatically issuing ZQCS (ZQ calibrat
* ion short)/MPC(ZQ calibration) commands to DDR3/DDR4/LPDDR2/LPDDR3/LPDDR
* 4 devices. Meaningless, if ZQCTL0.dis_auto_zq=1. Unit: 1024 clock cycles
* . This is only present for designs supporting DDR3/DDR4 or LPDDR2/LPDDR3
* /LPDDR4 devices.
* PSU_DDRC_ZQCTL1_T_ZQ_SHORT_INTERVAL_X1024 0x196dc
* ZQ Control Register 1
* (OFFSET, MASK, VALUE) (0XFD070184, 0x3FFFFFFFU ,0x020196DCU)
*/
PSU_Mask_Write(DDRC_ZQCTL1_OFFSET, 0x3FFFFFFFU, 0x020196DCU);
/*##################################################################### */
/*
* Register : DFITMG0 @ 0XFD070190
* Specifies the number of DFI clock cycles after an assertion or de-assert
* ion of the DFI control signals that the control signals at the PHY-DRAM
* interface reflect the assertion or de-assertion. If the DFI clock and th
* e memory clock are not phase-aligned, this timing parameter should be ro
* unded up to the next integer value. Note that if using RDIMM, it is nece
* ssary to increment this parameter by RDIMM's extra cycle of latency in t
* erms of DFI clock.
* PSU_DDRC_DFITMG0_DFI_T_CTRL_DELAY 0x4
* Defines whether dfi_rddata_en/dfi_rddata/dfi_rddata_valid is generated u
* sing HDR or SDR values Selects whether value in DFITMG0.dfi_t_rddata_en
* is in terms of SDR or HDR clock cycles: - 0 in terms of HDR clock cycles
* - 1 in terms of SDR clock cycles Refer to PHY specification for correct
* value.
* PSU_DDRC_DFITMG0_DFI_RDDATA_USE_SDR 0x1
* Time from the assertion of a read command on the DFI interface to the as
* sertion of the dfi_rddata_en signal. Refer to PHY specification for corr
* ect value. This corresponds to the DFI parameter trddata_en. Note that,
* depending on the PHY, if using RDIMM, it may be necessary to use the val
* ue (CL + 1) in the calculation of trddata_en. This is to compensate for
* the extra cycle of latency through the RDIMM. Unit: Clocks
* PSU_DDRC_DFITMG0_DFI_T_RDDATA_EN 0xb
* Defines whether dfi_wrdata_en/dfi_wrdata/dfi_wrdata_mask is generated us
* ing HDR or SDR values Selects whether value in DFITMG0.dfi_tphy_wrlat is
* in terms of SDR or HDR clock cycles Selects whether value in DFITMG0.df
* i_tphy_wrdata is in terms of SDR or HDR clock cycles - 0 in terms of HDR
* clock cycles - 1 in terms of SDR clock cycles Refer to PHY specificatio
* n for correct value.
* PSU_DDRC_DFITMG0_DFI_WRDATA_USE_SDR 0x1
* Specifies the number of clock cycles between when dfi_wrdata_en is asser
* ted to when the associated write data is driven on the dfi_wrdata signal
* . This corresponds to the DFI timing parameter tphy_wrdata. Refer to PHY
* specification for correct value. Note, max supported value is 8. Unit:
* Clocks
* PSU_DDRC_DFITMG0_DFI_TPHY_WRDATA 0x2
* Write latency Number of clocks from the write command to write data enab
* le (dfi_wrdata_en). This corresponds to the DFI timing parameter tphy_wr
* lat. Refer to PHY specification for correct value.Note that, depending o
* n the PHY, if using RDIMM, it may be necessary to use the value (CL + 1)
* in the calculation of tphy_wrlat. This is to compensate for the extra c
* ycle of latency through the RDIMM.
* PSU_DDRC_DFITMG0_DFI_TPHY_WRLAT 0xb
* DFI Timing Register 0
* (OFFSET, MASK, VALUE) (0XFD070190, 0x1FBFBF3FU ,0x048B820BU)
*/
PSU_Mask_Write(DDRC_DFITMG0_OFFSET, 0x1FBFBF3FU, 0x048B820BU);
/*##################################################################### */
/*
* Register : DFITMG1 @ 0XFD070194
* Specifies the number of DFI PHY clocks between when the dfi_cs signal is
* asserted and when the associated command is driven. This field is used
* for CAL mode, should be set to '0' or the value which matches the CAL mo
* de register setting in the DRAM. If the PHY can add the latency for CAL
* mode, this should be set to '0'. Valid Range: 0, 3, 4, 5, 6, and 8
* PSU_DDRC_DFITMG1_DFI_T_CMD_LAT 0x0
* Specifies the number of DFI PHY clocks between when the dfi_cs signal is
* asserted and when the associated dfi_parity_in signal is driven.
* PSU_DDRC_DFITMG1_DFI_T_PARIN_LAT 0x0
* Specifies the number of DFI clocks between when the dfi_wrdata_en signal
* is asserted and when the corresponding write data transfer is completed
* on the DRAM bus. This corresponds to the DFI timing parameter twrdata_d
* elay. Refer to PHY specification for correct value. For DFI 3.0 PHY, set
* to twrdata_delay, a new timing parameter introduced in DFI 3.0. For DFI
* 2.1 PHY, set to tphy_wrdata + (delay of DFI write data to the DRAM). Va
* lue to be programmed is in terms of DFI clocks, not PHY clocks. In FREQ_
* RATIO=2, divide PHY's value by 2 and round up to next integer. If using
* DFITMG0.dfi_wrdata_use_sdr=1, add 1 to the value. Unit: Clocks
* PSU_DDRC_DFITMG1_DFI_T_WRDATA_DELAY 0x3
* Specifies the number of DFI clock cycles from the assertion of the dfi_d
* ram_clk_disable signal on the DFI until the clock to the DRAM memory dev
* ices, at the PHY-DRAM boundary, maintains a low value. If the DFI clock
* and the memory clock are not phase aligned, this timing parameter should
* be rounded up to the next integer value.
* PSU_DDRC_DFITMG1_DFI_T_DRAM_CLK_DISABLE 0x3
* Specifies the number of DFI clock cycles from the de-assertion of the df
* i_dram_clk_disable signal on the DFI until the first valid rising edge o
* f the clock to the DRAM memory devices, at the PHY-DRAM boundary. If the
* DFI clock and the memory clock are not phase aligned, this timing param
* eter should be rounded up to the next integer value.
* PSU_DDRC_DFITMG1_DFI_T_DRAM_CLK_ENABLE 0x4
* DFI Timing Register 1
* (OFFSET, MASK, VALUE) (0XFD070194, 0xF31F0F0FU ,0x00030304U)
*/
PSU_Mask_Write(DDRC_DFITMG1_OFFSET, 0xF31F0F0FU, 0x00030304U);
/*##################################################################### */
/*
* Register : DFILPCFG0 @ 0XFD070198
* Setting for DFI's tlp_resp time. Same value is used for both Power Down,
* Self Refresh, Deep Power Down and Maximum Power Saving modes. DFI 2.1 s
* pecification onwards, recommends using a fixed value of 7 always.
* PSU_DDRC_DFILPCFG0_DFI_TLP_RESP 0x7
* Value to drive on dfi_lp_wakeup signal when Deep Power Down mode is ente
* red. Determines the DFI's tlp_wakeup time: - 0x0 - 16 cycles - 0x1 - 32
* cycles - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 5
* 12 cycles - 0x6 - 1024 cycles - 0x7 - 2048 cycles - 0x8 - 4096 cycles -
* 0x9 - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 6553
* 6 cycles - 0xD - 131072 cycles - 0xE - 262144 cycles - 0xF - Unlimited T
* his is only present for designs supporting mDDR or LPDDR2/LPDDR3 devices
* .
* PSU_DDRC_DFILPCFG0_DFI_LP_WAKEUP_DPD 0x0
* Enables DFI Low Power interface handshaking during Deep Power Down Entry
* /Exit. - 0 - Disabled - 1 - Enabled This is only present for designs sup
* porting mDDR or LPDDR2/LPDDR3 devices.
* PSU_DDRC_DFILPCFG0_DFI_LP_EN_DPD 0x0
* Value to drive on dfi_lp_wakeup signal when Self Refresh mode is entered
* . Determines the DFI's tlp_wakeup time: - 0x0 - 16 cycles - 0x1 - 32 cyc
* les - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 512
* cycles - 0x6 - 1024 cycles - 0x7 - 2048 cycles - 0x8 - 4096 cycles - 0x9
* - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 65536 c
* ycles - 0xD - 131072 cycles - 0xE - 262144 cycles - 0xF - Unlimited
* PSU_DDRC_DFILPCFG0_DFI_LP_WAKEUP_SR 0x0
* Enables DFI Low Power interface handshaking during Self Refresh Entry/Ex
* it. - 0 - Disabled - 1 - Enabled
* PSU_DDRC_DFILPCFG0_DFI_LP_EN_SR 0x1
* Value to drive on dfi_lp_wakeup signal when Power Down mode is entered.
* Determines the DFI's tlp_wakeup time: - 0x0 - 16 cycles - 0x1 - 32 cycle
* s - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x5 - 512 cy
* cles - 0x6 - 1024 cycles - 0x7 - 2048 cycles - 0x8 - 4096 cycles - 0x9 -
* 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC - 65536 cyc
* les - 0xD - 131072 cycles - 0xE - 262144 cycles - 0xF - Unlimited
* PSU_DDRC_DFILPCFG0_DFI_LP_WAKEUP_PD 0x0
* Enables DFI Low Power interface handshaking during Power Down Entry/Exit
* . - 0 - Disabled - 1 - Enabled
* PSU_DDRC_DFILPCFG0_DFI_LP_EN_PD 0x1
* DFI Low Power Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD070198, 0x0FF1F1F1U ,0x07000101U)
*/
PSU_Mask_Write(DDRC_DFILPCFG0_OFFSET, 0x0FF1F1F1U, 0x07000101U);
/*##################################################################### */
/*
* Register : DFILPCFG1 @ 0XFD07019C
* Value to drive on dfi_lp_wakeup signal when Maximum Power Saving Mode is
* entered. Determines the DFI's tlp_wakeup time: - 0x0 - 16 cycles - 0x1
* - 32 cycles - 0x2 - 64 cycles - 0x3 - 128 cycles - 0x4 - 256 cycles - 0x
* 5 - 512 cycles - 0x6 - 1024 cycles - 0x7 - 2048 cycles - 0x8 - 4096 cycl
* es - 0x9 - 8192 cycles - 0xA - 16384 cycles - 0xB - 32768 cycles - 0xC -
* 65536 cycles - 0xD - 131072 cycles - 0xE - 262144 cycles - 0xF - Unlimi
* ted This is only present for designs supporting DDR4 devices.
* PSU_DDRC_DFILPCFG1_DFI_LP_WAKEUP_MPSM 0x2
* Enables DFI Low Power interface handshaking during Maximum Power Saving
* Mode Entry/Exit. - 0 - Disabled - 1 - Enabled This is only present for d
* esigns supporting DDR4 devices.
* PSU_DDRC_DFILPCFG1_DFI_LP_EN_MPSM 0x1
* DFI Low Power Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD07019C, 0x000000F1U ,0x00000021U)
*/
PSU_Mask_Write(DDRC_DFILPCFG1_OFFSET, 0x000000F1U, 0x00000021U);
/*##################################################################### */
/*
* Register : DFIUPD0 @ 0XFD0701A0
* When '1', disable the automatic dfi_ctrlupd_req generation by the uMCTL2
* . The core must issue the dfi_ctrlupd_req signal using register reg_ddrc
* _ctrlupd. When '0', uMCTL2 issues dfi_ctrlupd_req periodically.
* PSU_DDRC_DFIUPD0_DIS_AUTO_CTRLUPD 0x0
* When '1', disable the automatic dfi_ctrlupd_req generation by the uMCTL2
* following a self-refresh exit. The core must issue the dfi_ctrlupd_req
* signal using register reg_ddrc_ctrlupd. When '0', uMCTL2 issues a dfi_ct
* rlupd_req after exiting self-refresh.
* PSU_DDRC_DFIUPD0_DIS_AUTO_CTRLUPD_SRX 0x0
* Specifies the maximum number of clock cycles that the dfi_ctrlupd_req si
* gnal can assert. Lowest value to assign to this variable is 0x40. Unit:
* Clocks
* PSU_DDRC_DFIUPD0_DFI_T_CTRLUP_MAX 0x40
* Specifies the minimum number of clock cycles that the dfi_ctrlupd_req si
* gnal must be asserted. The uMCTL2 expects the PHY to respond within this
* time. If the PHY does not respond, the uMCTL2 will de-assert dfi_ctrlup
* d_req after dfi_t_ctrlup_min + 2 cycles. Lowest value to assign to this
* variable is 0x3. Unit: Clocks
* PSU_DDRC_DFIUPD0_DFI_T_CTRLUP_MIN 0x3
* DFI Update Register 0
* (OFFSET, MASK, VALUE) (0XFD0701A0, 0xC3FF03FFU ,0x00400003U)
*/
PSU_Mask_Write(DDRC_DFIUPD0_OFFSET, 0xC3FF03FFU, 0x00400003U);
/*##################################################################### */
/*
* Register : DFIUPD1 @ 0XFD0701A4
* This is the minimum amount of time between uMCTL2 initiated DFI update r
* equests (which is executed whenever the uMCTL2 is idle). Set this number
* higher to reduce the frequency of update requests, which can have a sma
* ll impact on the latency of the first read request when the uMCTL2 is id
* le. Unit: 1024 clocks
* PSU_DDRC_DFIUPD1_DFI_T_CTRLUPD_INTERVAL_MIN_X1024 0x41
* This is the maximum amount of time between uMCTL2 initiated DFI update r
* equests. This timer resets with each update request; when the timer expi
* res dfi_ctrlupd_req is sent and traffic is blocked until the dfi_ctrlupd
* _ackx is received. PHY can use this idle time to recalibrate the delay l
* ines to the DLLs. The DFI controller update is also used to reset PHY FI
* FO pointers in case of data capture errors. Updates are required to main
* tain calibration over PVT, but frequent updates may impact performance.
* Note: Value programmed for DFIUPD1.dfi_t_ctrlupd_interval_max_x1024 must
* be greater than DFIUPD1.dfi_t_ctrlupd_interval_min_x1024. Unit: 1024 cl
* ocks
* PSU_DDRC_DFIUPD1_DFI_T_CTRLUPD_INTERVAL_MAX_X1024 0xe1
* DFI Update Register 1
* (OFFSET, MASK, VALUE) (0XFD0701A4, 0x00FF00FFU ,0x004100E1U)
*/
PSU_Mask_Write(DDRC_DFIUPD1_OFFSET, 0x00FF00FFU, 0x004100E1U);
/*##################################################################### */
/*
* Register : DFIMISC @ 0XFD0701B0
* Defines polarity of dfi_wrdata_cs and dfi_rddata_cs signals. - 0: Signal
* s are active low - 1: Signals are active high
* PSU_DDRC_DFIMISC_DFI_DATA_CS_POLARITY 0x0
* DBI implemented in DDRC or PHY. - 0 - DDRC implements DBI functionality.
* - 1 - PHY implements DBI functionality. Present only in designs configu
* red to support DDR4 and LPDDR4.
* PSU_DDRC_DFIMISC_PHY_DBI_MODE 0x0
* PHY initialization complete enable signal. When asserted the dfi_init_co
* mplete signal can be used to trigger SDRAM initialisation
* PSU_DDRC_DFIMISC_DFI_INIT_COMPLETE_EN 0x0
* DFI Miscellaneous Control Register
* (OFFSET, MASK, VALUE) (0XFD0701B0, 0x00000007U ,0x00000000U)
*/
PSU_Mask_Write(DDRC_DFIMISC_OFFSET, 0x00000007U, 0x00000000U);
/*##################################################################### */
/*
* Register : DFITMG2 @ 0XFD0701B4
* >Number of clocks between when a read command is sent on the DFI control
* interface and when the associated dfi_rddata_cs signal is asserted. Thi
* s corresponds to the DFI timing parameter tphy_rdcslat. Refer to PHY spe
* cification for correct value.
* PSU_DDRC_DFITMG2_DFI_TPHY_RDCSLAT 0x9
* Number of clocks between when a write command is sent on the DFI control
* interface and when the associated dfi_wrdata_cs signal is asserted. Thi
* s corresponds to the DFI timing parameter tphy_wrcslat. Refer to PHY spe
* cification for correct value.
* PSU_DDRC_DFITMG2_DFI_TPHY_WRCSLAT 0x6
* DFI Timing Register 2
* (OFFSET, MASK, VALUE) (0XFD0701B4, 0x00003F3FU ,0x00000906U)
*/
PSU_Mask_Write(DDRC_DFITMG2_OFFSET, 0x00003F3FU, 0x00000906U);
/*##################################################################### */
/*
* Register : DBICTL @ 0XFD0701C0
* Read DBI enable signal in DDRC. - 0 - Read DBI is disabled. - 1 - Read D
* BI is enabled. This signal must be set the same value as DRAM's mode reg
* ister. - DDR4: MR5 bit A12. When x4 devices are used, this signal must b
* e set to 0. - LPDDR4: MR3[6]
* PSU_DDRC_DBICTL_RD_DBI_EN 0x0
* Write DBI enable signal in DDRC. - 0 - Write DBI is disabled. - 1 - Writ
* e DBI is enabled. This signal must be set the same value as DRAM's mode
* register. - DDR4: MR5 bit A11. When x4 devices are used, this signal mus
* t be set to 0. - LPDDR4: MR3[7]
* PSU_DDRC_DBICTL_WR_DBI_EN 0x0
* DM enable signal in DDRC. - 0 - DM is disabled. - 1 - DM is enabled. Thi
* s signal must be set the same logical value as DRAM's mode register. - D
* DR4: Set this to same value as MR5 bit A10. When x4 devices are used, th
* is signal must be set to 0. - LPDDR4: Set this to inverted value of MR13
* [5] which is opposite polarity from this signal
* PSU_DDRC_DBICTL_DM_EN 0x1
* DM/DBI Control Register
* (OFFSET, MASK, VALUE) (0XFD0701C0, 0x00000007U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_DBICTL_OFFSET, 0x00000007U, 0x00000001U);
/*##################################################################### */
/*
* Register : ADDRMAP0 @ 0XFD070200
* Selects the HIF address bit used as rank address bit 0. Valid Range: 0 t
* o 27, and 31 Internal Base: 6 The selected HIF address bit is determined
* by adding the internal base to the value of this field. If set to 31, r
* ank address bit 0 is set to 0.
* PSU_DDRC_ADDRMAP0_ADDRMAP_CS_BIT0 0x1f
* Address Map Register 0
* (OFFSET, MASK, VALUE) (0XFD070200, 0x0000001FU ,0x0000001FU)
*/
PSU_Mask_Write(DDRC_ADDRMAP0_OFFSET, 0x0000001FU, 0x0000001FU);
/*##################################################################### */
/*
* Register : ADDRMAP1 @ 0XFD070204
* Selects the HIF address bit used as bank address bit 2. Valid Range: 0 t
* o 29 and 31 Internal Base: 4 The selected HIF address bit is determined
* by adding the internal base to the value of this field. If set to 31, ba
* nk address bit 2 is set to 0.
* PSU_DDRC_ADDRMAP1_ADDRMAP_BANK_B2 0x1f
* Selects the HIF address bits used as bank address bit 1. Valid Range: 0
* to 30 Internal Base: 3 The selected HIF address bit for each of the bank
* address bits is determined by adding the internal base to the value of
* this field.
* PSU_DDRC_ADDRMAP1_ADDRMAP_BANK_B1 0xa
* Selects the HIF address bits used as bank address bit 0. Valid Range: 0
* to 30 Internal Base: 2 The selected HIF address bit for each of the bank
* address bits is determined by adding the internal base to the value of
* this field.
* PSU_DDRC_ADDRMAP1_ADDRMAP_BANK_B0 0xa
* Address Map Register 1
* (OFFSET, MASK, VALUE) (0XFD070204, 0x001F1F1FU ,0x001F0A0AU)
*/
PSU_Mask_Write(DDRC_ADDRMAP1_OFFSET, 0x001F1F1FU, 0x001F0A0AU);
/*##################################################################### */
/*
* Register : ADDRMAP2 @ 0XFD070208
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 5. - Half bus width mode: Selects the HIF address bit used as colu
* mn address bit 6. - Quarter bus width mode: Selects the HIF address bit
* used as column address bit 7 . Valid Range: 0 to 7, and 15 Internal Base
* : 5 The selected HIF address bit is determined by adding the internal ba
* se to the value of this field. If set to 15, this column address bit is
* set to 0.
* PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B5 0x0
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 4. - Half bus width mode: Selects the HIF address bit used as colu
* mn address bit 5. - Quarter bus width mode: Selects the HIF address bit
* used as column address bit 6. Valid Range: 0 to 7, and 15 Internal Base:
* 4 The selected HIF address bit is determined by adding the internal bas
* e to the value of this field. If set to 15, this column address bit is s
* et to 0.
* PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B4 0x0
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 3. - Half bus width mode: Selects the HIF address bit used as colu
* mn address bit 4. - Quarter bus width mode: Selects the HIF address bit
* used as column address bit 5. Valid Range: 0 to 7 Internal Base: 3 The s
* elected HIF address bit is determined by adding the internal base to the
* value of this field. Note, if UMCTL2_INCL_ARB=1 and MEMC_BURST_LENGTH=1
* 6, it is required to program this to 0, hence register does not exist in
* this case.
* PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B3 0x0
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 2. - Half bus width mode: Selects the HIF address bit used as colu
* mn address bit 3. - Quarter bus width mode: Selects the HIF address bit
* used as column address bit 4. Valid Range: 0 to 7 Internal Base: 2 The s
* elected HIF address bit is determined by adding the internal base to the
* value of this field. Note, if UMCTL2_INCL_ARB=1 and MEMC_BURST_LENGTH=8
* or 16, it is required to program this to 0.
* PSU_DDRC_ADDRMAP2_ADDRMAP_COL_B2 0x0
* Address Map Register 2
* (OFFSET, MASK, VALUE) (0XFD070208, 0x0F0F0F0FU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_ADDRMAP2_OFFSET, 0x0F0F0F0FU, 0x00000000U);
/*##################################################################### */
/*
* Register : ADDRMAP3 @ 0XFD07020C
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 9. - Half bus width mode: Selects the HIF address bit used as colu
* mn address bit 11 (10 in LPDDR2/LPDDR3 mode). - Quarter bus width mode:
* Selects the HIF address bit used as column address bit 13 (11 in LPDDR2/
* LPDDR3 mode). Valid Range: 0 to 7, and 15 Internal Base: 9 The selected
* HIF address bit is determined by adding the internal base to the value o
* f this field. If set to 15, this column address bit is set to 0. Note: P
* er JEDEC DDR2/3/mDDR specification, column address bit 10 is reserved fo
* r indicating auto-precharge, and hence no source address bit can be mapp
* ed to column address bit 10. In LPDDR2/LPDDR3, there is a dedicated bit
* for auto-precharge in the CA bus and hence column bit 10 is used.
* PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B9 0x0
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 8. - Half bus width mode: Selects the HIF address bit used as colu
* mn address bit 9. - Quarter bus width mode: Selects the HIF address bit
* used as column address bit 11 (10 in LPDDR2/LPDDR3 mode). Valid Range: 0
* to 7, and 15 Internal Base: 8 The selected HIF address bit is determine
* d by adding the internal base to the value of this field. If set to 15,
* this column address bit is set to 0. Note: Per JEDEC DDR2/3/mDDR specifi
* cation, column address bit 10 is reserved for indicating auto-precharge,
* and hence no source address bit can be mapped to column address bit 10.
* In LPDDR2/LPDDR3, there is a dedicated bit for auto-precharge in the CA
* bus and hence column bit 10 is used.
* PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B8 0x0
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 7. - Half bus width mode: Selects the HIF address bit used as colu
* mn address bit 8. - Quarter bus width mode: Selects the HIF address bit
* used as column address bit 9. Valid Range: 0 to 7, and 15 Internal Base:
* 7 The selected HIF address bit is determined by adding the internal bas
* e to the value of this field. If set to 15, this column address bit is s
* et to 0.
* PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B7 0x0
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 6. - Half bus width mode: Selects the HIF address bit used as colu
* mn address bit 7. - Quarter bus width mode: Selects the HIF address bit
* used as column address bit 8. Valid Range: 0 to 7, and 15 Internal Base:
* 6 The selected HIF address bit is determined by adding the internal bas
* e to the value of this field. If set to 15, this column address bit is s
* et to 0.
* PSU_DDRC_ADDRMAP3_ADDRMAP_COL_B6 0x0
* Address Map Register 3
* (OFFSET, MASK, VALUE) (0XFD07020C, 0x0F0F0F0FU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_ADDRMAP3_OFFSET, 0x0F0F0F0FU, 0x00000000U);
/*##################################################################### */
/*
* Register : ADDRMAP4 @ 0XFD070210
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 13 (11 in LPDDR2/LPDDR3 mode). - Half bus width mode: Unused. To m
* ake it unused, this should be tied to 4'hF. - Quarter bus width mode: Un
* used. To make it unused, this must be tied to 4'hF. Valid Range: 0 to 7,
* and 15 Internal Base: 11 The selected HIF address bit is determined by
* adding the internal base to the value of this field. If set to 15, this
* column address bit is set to 0. Note: Per JEDEC DDR2/3/mDDR specificatio
* n, column address bit 10 is reserved for indicating auto-precharge, and
* hence no source address bit can be mapped to column address bit 10. In L
* PDDR2/LPDDR3, there is a dedicated bit for auto-precharge in the CA bus
* and hence column bit 10 is used.
* PSU_DDRC_ADDRMAP4_ADDRMAP_COL_B11 0xf
* - Full bus width mode: Selects the HIF address bit used as column addres
* s bit 11 (10 in LPDDR2/LPDDR3 mode). - Half bus width mode: Selects the
* HIF address bit used as column address bit 13 (11 in LPDDR2/LPDDR3 mode)
* . - Quarter bus width mode: UNUSED. To make it unused, this must be tied
* to 4'hF. Valid Range: 0 to 7, and 15 Internal Base: 10 The selected HIF
* address bit is determined by adding the internal base to the value of t
* his field. If set to 15, this column address bit is set to 0. Note: Per
* JEDEC DDR2/3/mDDR specification, column address bit 10 is reserved for i
* ndicating auto-precharge, and hence no source address bit can be mapped
* to column address bit 10. In LPDDR2/LPDDR3, there is a dedicated bit for
* auto-precharge in the CA bus and hence column bit 10 is used.
* PSU_DDRC_ADDRMAP4_ADDRMAP_COL_B10 0xf
* Address Map Register 4
* (OFFSET, MASK, VALUE) (0XFD070210, 0x00000F0FU ,0x00000F0FU)
*/
PSU_Mask_Write(DDRC_ADDRMAP4_OFFSET, 0x00000F0FU, 0x00000F0FU);
/*##################################################################### */
/*
* Register : ADDRMAP5 @ 0XFD070214
* Selects the HIF address bit used as row address bit 11. Valid Range: 0 t
* o 11, and 15 Internal Base: 17 The selected HIF address bit is determine
* d by adding the internal base to the value of this field. If set to 15,
* row address bit 11 is set to 0.
* PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B11 0x8
* Selects the HIF address bits used as row address bits 2 to 10. Valid Ran
* ge: 0 to 11, and 15 Internal Base: 8 (for row address bit 2), 9 (for row
* address bit 3), 10 (for row address bit 4) etc increasing to 16 (for ro
* w address bit 10) The selected HIF address bit for each of the row addre
* ss bits is determined by adding the internal base to the value of this f
* ield. When value 15 is used the values of row address bits 2 to 10 are d
* efined by registers ADDRMAP9, ADDRMAP10, ADDRMAP11.
* PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B2_10 0xf
* Selects the HIF address bits used as row address bit 1. Valid Range: 0 t
* o 11 Internal Base: 7 The selected HIF address bit for each of the row a
* ddress bits is determined by adding the internal base to the value of th
* is field.
* PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B1 0x8
* Selects the HIF address bits used as row address bit 0. Valid Range: 0 t
* o 11 Internal Base: 6 The selected HIF address bit for each of the row a
* ddress bits is determined by adding the internal base to the value of th
* is field.
* PSU_DDRC_ADDRMAP5_ADDRMAP_ROW_B0 0x8
* Address Map Register 5
* (OFFSET, MASK, VALUE) (0XFD070214, 0x0F0F0F0FU ,0x080F0808U)
*/
PSU_Mask_Write(DDRC_ADDRMAP5_OFFSET, 0x0F0F0F0FU, 0x080F0808U);
/*##################################################################### */
/*
* Register : ADDRMAP6 @ 0XFD070218
* Set this to 1 if there is an LPDDR3 SDRAM 6Gb or 12Gb device in use. - 1
* - LPDDR3 SDRAM 6Gb/12Gb device in use. Every address having row[14:13]=
* =2'b11 is considered as invalid - 0 - non-LPDDR3 6Gb/12Gb device in use.
* All addresses are valid Present only in designs configured to support L
* PDDR3.
* PSU_DDRC_ADDRMAP6_LPDDR3_6GB_12GB 0x0
* Selects the HIF address bit used as row address bit 15. Valid Range: 0 t
* o 11, and 15 Internal Base: 21 The selected HIF address bit is determine
* d by adding the internal base to the value of this field. If set to 15,
* row address bit 15 is set to 0.
* PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B15 0xf
* Selects the HIF address bit used as row address bit 14. Valid Range: 0 t
* o 11, and 15 Internal Base: 20 The selected HIF address bit is determine
* d by adding the internal base to the value of this field. If set to 15,
* row address bit 14 is set to 0.
* PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B14 0x8
* Selects the HIF address bit used as row address bit 13. Valid Range: 0 t
* o 11, and 15 Internal Base: 19 The selected HIF address bit is determine
* d by adding the internal base to the value of this field. If set to 15,
* row address bit 13 is set to 0.
* PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B13 0x8
* Selects the HIF address bit used as row address bit 12. Valid Range: 0 t
* o 11, and 15 Internal Base: 18 The selected HIF address bit is determine
* d by adding the internal base to the value of this field. If set to 15,
* row address bit 12 is set to 0.
* PSU_DDRC_ADDRMAP6_ADDRMAP_ROW_B12 0x8
* Address Map Register 6
* (OFFSET, MASK, VALUE) (0XFD070218, 0x8F0F0F0FU ,0x0F080808U)
*/
PSU_Mask_Write(DDRC_ADDRMAP6_OFFSET, 0x8F0F0F0FU, 0x0F080808U);
/*##################################################################### */
/*
* Register : ADDRMAP7 @ 0XFD07021C
* Selects the HIF address bit used as row address bit 17. Valid Range: 0 t
* o 10, and 15 Internal Base: 23 The selected HIF address bit is determine
* d by adding the internal base to the value of this field. If set to 15,
* row address bit 17 is set to 0.
* PSU_DDRC_ADDRMAP7_ADDRMAP_ROW_B17 0xf
* Selects the HIF address bit used as row address bit 16. Valid Range: 0 t
* o 11, and 15 Internal Base: 22 The selected HIF address bit is determine
* d by adding the internal base to the value of this field. If set to 15,
* row address bit 16 is set to 0.
* PSU_DDRC_ADDRMAP7_ADDRMAP_ROW_B16 0xf
* Address Map Register 7
* (OFFSET, MASK, VALUE) (0XFD07021C, 0x00000F0FU ,0x00000F0FU)
*/
PSU_Mask_Write(DDRC_ADDRMAP7_OFFSET, 0x00000F0FU, 0x00000F0FU);
/*##################################################################### */
/*
* Register : ADDRMAP8 @ 0XFD070220
* Selects the HIF address bits used as bank group address bit 1. Valid Ran
* ge: 0 to 30, and 31 Internal Base: 3 The selected HIF address bit for ea
* ch of the bank group address bits is determined by adding the internal b
* ase to the value of this field. If set to 31, bank group address bit 1 i
* s set to 0.
* PSU_DDRC_ADDRMAP8_ADDRMAP_BG_B1 0x8
* Selects the HIF address bits used as bank group address bit 0. Valid Ran
* ge: 0 to 30 Internal Base: 2 The selected HIF address bit for each of th
* e bank group address bits is determined by adding the internal base to t
* he value of this field.
* PSU_DDRC_ADDRMAP8_ADDRMAP_BG_B0 0x8
* Address Map Register 8
* (OFFSET, MASK, VALUE) (0XFD070220, 0x00001F1FU ,0x00000808U)
*/
PSU_Mask_Write(DDRC_ADDRMAP8_OFFSET, 0x00001F1FU, 0x00000808U);
/*##################################################################### */
/*
* Register : ADDRMAP9 @ 0XFD070224
* Selects the HIF address bits used as row address bit 5. Valid Range: 0 t
* o 11 Internal Base: 11 The selected HIF address bit for each of the row
* address bits is determined by adding the internal base to the value of t
* his field. This register field is used only when ADDRMAP5.addrmap_row_b2
* _10 is set to value 15.
* PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B5 0x8
* Selects the HIF address bits used as row address bit 4. Valid Range: 0 t
* o 11 Internal Base: 10 The selected HIF address bit for each of the row
* address bits is determined by adding the internal base to the value of t
* his field. This register field is used only when ADDRMAP5.addrmap_row_b2
* _10 is set to value 15.
* PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B4 0x8
* Selects the HIF address bits used as row address bit 3. Valid Range: 0 t
* o 11 Internal Base: 9 The selected HIF address bit for each of the row a
* ddress bits is determined by adding the internal base to the value of th
* is field. This register field is used only when ADDRMAP5.addrmap_row_b2_
* 10 is set to value 15.
* PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B3 0x8
* Selects the HIF address bits used as row address bit 2. Valid Range: 0 t
* o 11 Internal Base: 8 The selected HIF address bit for each of the row a
* ddress bits is determined by adding the internal base to the value of th
* is field. This register field is used only when ADDRMAP5.addrmap_row_b2_
* 10 is set to value 15.
* PSU_DDRC_ADDRMAP9_ADDRMAP_ROW_B2 0x8
* Address Map Register 9
* (OFFSET, MASK, VALUE) (0XFD070224, 0x0F0F0F0FU ,0x08080808U)
*/
PSU_Mask_Write(DDRC_ADDRMAP9_OFFSET, 0x0F0F0F0FU, 0x08080808U);
/*##################################################################### */
/*
* Register : ADDRMAP10 @ 0XFD070228
* Selects the HIF address bits used as row address bit 9. Valid Range: 0 t
* o 11 Internal Base: 15 The selected HIF address bit for each of the row
* address bits is determined by adding the internal base to the value of t
* his field. This register field is used only when ADDRMAP5.addrmap_row_b2
* _10 is set to value 15.
* PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B9 0x8
* Selects the HIF address bits used as row address bit 8. Valid Range: 0 t
* o 11 Internal Base: 14 The selected HIF address bit for each of the row
* address bits is determined by adding the internal base to the value of t
* his field. This register field is used only when ADDRMAP5.addrmap_row_b2
* _10 is set to value 15.
* PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B8 0x8
* Selects the HIF address bits used as row address bit 7. Valid Range: 0 t
* o 11 Internal Base: 13 The selected HIF address bit for each of the row
* address bits is determined by adding the internal base to the value of t
* his field. This register field is used only when ADDRMAP5.addrmap_row_b2
* _10 is set to value 15.
* PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B7 0x8
* Selects the HIF address bits used as row address bit 6. Valid Range: 0 t
* o 11 Internal Base: 12 The selected HIF address bit for each of the row
* address bits is determined by adding the internal base to the value of t
* his field. This register field is used only when ADDRMAP5.addrmap_row_b2
* _10 is set to value 15.
* PSU_DDRC_ADDRMAP10_ADDRMAP_ROW_B6 0x8
* Address Map Register 10
* (OFFSET, MASK, VALUE) (0XFD070228, 0x0F0F0F0FU ,0x08080808U)
*/
PSU_Mask_Write(DDRC_ADDRMAP10_OFFSET, 0x0F0F0F0FU, 0x08080808U);
/*##################################################################### */
/*
* Register : ADDRMAP11 @ 0XFD07022C
* Selects the HIF address bits used as row address bit 10. Valid Range: 0
* to 11 Internal Base: 16 The selected HIF address bit for each of the row
* address bits is determined by adding the internal base to the value of
* this field. This register field is used only when ADDRMAP5.addrmap_row_b
* 2_10 is set to value 15.
* PSU_DDRC_ADDRMAP11_ADDRMAP_ROW_B10 0x8
* Address Map Register 11
* (OFFSET, MASK, VALUE) (0XFD07022C, 0x0000000FU ,0x00000008U)
*/
PSU_Mask_Write(DDRC_ADDRMAP11_OFFSET, 0x0000000FU, 0x00000008U);
/*##################################################################### */
/*
* Register : ODTCFG @ 0XFD070240
* Cycles to hold ODT for a write command. The minimum supported value is 2
* . Recommended values: DDR2: - BL8: 0x5 (DDR2-400/533/667), 0x6 (DDR2-800
* ), 0x7 (DDR2-1066) - BL4: 0x3 (DDR2-400/533/667), 0x4 (DDR2-800), 0x5 (D
* DR2-1066) DDR3: - BL8: 0x6 DDR4: - BL8: 5 + WR_PREAMBLE + CRC_MODE WR_PR
* EAMBLE = 1 (1tCK write preamble), 2 (2tCK write preamble) CRC_MODE = 0 (
* not CRC mode), 1 (CRC mode) LPDDR3: - BL8: 7 + RU(tODTon(max)/tCK)
* PSU_DDRC_ODTCFG_WR_ODT_HOLD 0x6
* The delay, in clock cycles, from issuing a write command to setting ODT
* values associated with that command. ODT setting must remain constant fo
* r the entire time that DQS is driven by the uMCTL2. Recommended values:
* DDR2: - CWL + AL - 3 (DDR2-400/533/667), CWL + AL - 4 (DDR2-800), CWL +
* AL - 5 (DDR2-1066) If (CWL + AL - 3 < 0), uMCTL2 does not support ODT fo
* r write operation. DDR3: - 0x0 DDR4: - DFITMG1.dfi_t_cmd_lat (to adjust
* for CAL mode) LPDDR3: - WL - 1 - RU(tODTon(max)/tCK))
* PSU_DDRC_ODTCFG_WR_ODT_DELAY 0x0
* Cycles to hold ODT for a read command. The minimum supported value is 2.
* Recommended values: DDR2: - BL8: 0x6 (not DDR2-1066), 0x7 (DDR2-1066) -
* BL4: 0x4 (not DDR2-1066), 0x5 (DDR2-1066) DDR3: - BL8 - 0x6 DDR4: - BL8
* : 5 + RD_PREAMBLE RD_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK write p
* reamble) LPDDR3: - BL8: 5 + RU(tDQSCK(max)/tCK) - RD(tDQSCK(min)/tCK) +
* RU(tODTon(max)/tCK)
* PSU_DDRC_ODTCFG_RD_ODT_HOLD 0x6
* The delay, in clock cycles, from issuing a read command to setting ODT v
* alues associated with that command. ODT setting must remain constant for
* the entire time that DQS is driven by the uMCTL2. Recommended values: D
* DR2: - CL + AL - 4 (not DDR2-1066), CL + AL - 5 (DDR2-1066) If (CL + AL
* - 4 < 0), uMCTL2 does not support ODT for read operation. DDR3: - CL - C
* WL DDR4: - CL - CWL - RD_PREAMBLE + WR_PREAMBLE + DFITMG1.dfi_t_cmd_lat
* (to adjust for CAL mode) WR_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK
* write preamble) RD_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK write pre
* amble) If (CL - CWL - RD_PREAMBLE + WR_PREAMBLE) < 0, uMCTL2 does not su
* pport ODT for read operation. LPDDR3: - RL + RD(tDQSCK(min)/tCK) - 1 - R
* U(tODTon(max)/tCK)
* PSU_DDRC_ODTCFG_RD_ODT_DELAY 0x0
* ODT Configuration Register
* (OFFSET, MASK, VALUE) (0XFD070240, 0x0F1F0F7CU ,0x06000600U)
*/
PSU_Mask_Write(DDRC_ODTCFG_OFFSET, 0x0F1F0F7CU, 0x06000600U);
/*##################################################################### */
/*
* Register : ODTMAP @ 0XFD070244
* Indicates which remote ODTs must be turned on during a read from rank 1.
* Each rank has a remote ODT (in the SDRAM) which can be turned on by set
* ting the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 i
* s controlled by bit next to the LSB, etc. For each rank, set its bit to
* 1 to enable its ODT. Present only in configurations that have 2 or more
* ranks
* PSU_DDRC_ODTMAP_RANK1_RD_ODT 0x0
* Indicates which remote ODTs must be turned on during a write to rank 1.
* Each rank has a remote ODT (in the SDRAM) which can be turned on by sett
* ing the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 is
* controlled by bit next to the LSB, etc. For each rank, set its bit to 1
* to enable its ODT. Present only in configurations that have 2 or more r
* anks
* PSU_DDRC_ODTMAP_RANK1_WR_ODT 0x0
* Indicates which remote ODTs must be turned on during a read from rank 0.
* Each rank has a remote ODT (in the SDRAM) which can be turned on by set
* ting the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 i
* s controlled by bit next to the LSB, etc. For each rank, set its bit to
* 1 to enable its ODT.
* PSU_DDRC_ODTMAP_RANK0_RD_ODT 0x0
* Indicates which remote ODTs must be turned on during a write to rank 0.
* Each rank has a remote ODT (in the SDRAM) which can be turned on by sett
* ing the appropriate bit here. Rank 0 is controlled by the LSB; rank 1 is
* controlled by bit next to the LSB, etc. For each rank, set its bit to 1
* to enable its ODT.
* PSU_DDRC_ODTMAP_RANK0_WR_ODT 0x1
* ODT/Rank Map Register
* (OFFSET, MASK, VALUE) (0XFD070244, 0x00003333U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_ODTMAP_OFFSET, 0x00003333U, 0x00000001U);
/*##################################################################### */
/*
* Register : SCHED @ 0XFD070250
* When the preferred transaction store is empty for these many clock cycle
* s, switch to the alternate transaction store if it is non-empty. The rea
* d transaction store (both high and low priority) is the default preferre
* d transaction store and the write transaction store is the alternative s
* tore. When prefer write over read is set this is reversed. 0x0 is a lega
* l value for this register. When set to 0x0, the transaction store switch
* ing will happen immediately when the switching conditions become true. F
* OR PERFORMANCE ONLY
* PSU_DDRC_SCHED_RDWR_IDLE_GAP 0x1
* UNUSED
* PSU_DDRC_SCHED_GO2CRITICAL_HYSTERESIS 0x0
* Number of entries in the low priority transaction store is this value +
* 1. (MEMC_NO_OF_ENTRY - (SCHED.lpr_num_entries + 1)) is the number of ent
* ries available for the high priority transaction store. Setting this to
* maximum value allocates all entries to low priority transaction store. S
* etting this to 0 allocates 1 entry to low priority transaction store and
* the rest to high priority transaction store. Note: In ECC configuration
* s, the numbers of write and low priority read credits issued is one less
* than in the non-ECC case. One entry each is reserved in the write and l
* ow-priority read CAMs for storing the RMW requests arising out of single
* bit error correction RMW operation.
* PSU_DDRC_SCHED_LPR_NUM_ENTRIES 0x20
* If true, bank is kept open only while there are page hit transactions av
* ailable in the CAM to that bank. The last read or write command in the C
* AM with a bank and page hit will be executed with auto-precharge if SCHE
* D1.pageclose_timer=0. Even if this register set to 1 and SCHED1.pageclos
* e_timer is set to 0, explicit precharge (and not auto-precharge) may be
* issued in some cases where there is a mode switch between Write and Read
* or between LPR and HPR. The Read and Write commands that are executed a
* s part of the ECC scrub requests are also executed without auto-precharg
* e. If false, the bank remains open until there is a need to close it (to
* open a different page, or for page timeout or refresh timeout) - also k
* nown as open page policy. The open page policy can be overridden by sett
* ing the per-command-autopre bit on the HIF interface (hif_cmd_autopre).
* The pageclose feature provids a midway between Open and Close page polic
* ies. FOR PERFORMANCE ONLY.
* PSU_DDRC_SCHED_PAGECLOSE 0x0
* If set then the bank selector prefers writes over reads. FOR DEBUG ONLY.
* PSU_DDRC_SCHED_PREFER_WRITE 0x0
* Active low signal. When asserted ('0'), all incoming transactions are fo
* rced to low priority. This implies that all High Priority Read (HPR) and
* Variable Priority Read commands (VPR) will be treated as Low Priority R
* ead (LPR) commands. On the write side, all Variable Priority Write (VPW)
* commands will be treated as Normal Priority Write (NPW) commands. Forci
* ng the incoming transactions to low priority implicitly turns off Bypass
* path for read commands. FOR PERFORMANCE ONLY.
* PSU_DDRC_SCHED_FORCE_LOW_PRI_N 0x1
* Scheduler Control Register
* (OFFSET, MASK, VALUE) (0XFD070250, 0x7FFF3F07U ,0x01002001U)
*/
PSU_Mask_Write(DDRC_SCHED_OFFSET, 0x7FFF3F07U, 0x01002001U);
/*##################################################################### */
/*
* Register : PERFLPR1 @ 0XFD070264
* Number of transactions that are serviced once the LPR queue goes critica
* l is the smaller of: - (a) This number - (b) Number of transactions avai
* lable. Unit: Transaction. FOR PERFORMANCE ONLY.
* PSU_DDRC_PERFLPR1_LPR_XACT_RUN_LENGTH 0x8
* Number of clocks that the LPR queue can be starved before it goes critic
* al. The minimum valid functional value for this register is 0x1. Program
* ming it to 0x0 will disable the starvation functionality; during normal
* operation, this function should not be disabled as it will cause excessi
* ve latencies. Unit: Clock cycles. FOR PERFORMANCE ONLY.
* PSU_DDRC_PERFLPR1_LPR_MAX_STARVE 0x40
* Low Priority Read CAM Register 1
* (OFFSET, MASK, VALUE) (0XFD070264, 0xFF00FFFFU ,0x08000040U)
*/
PSU_Mask_Write(DDRC_PERFLPR1_OFFSET, 0xFF00FFFFU, 0x08000040U);
/*##################################################################### */
/*
* Register : PERFWR1 @ 0XFD07026C
* Number of transactions that are serviced once the WR queue goes critical
* is the smaller of: - (a) This number - (b) Number of transactions avail
* able. Unit: Transaction. FOR PERFORMANCE ONLY.
* PSU_DDRC_PERFWR1_W_XACT_RUN_LENGTH 0x8
* Number of clocks that the WR queue can be starved before it goes critica
* l. The minimum valid functional value for this register is 0x1. Programm
* ing it to 0x0 will disable the starvation functionality; during normal o
* peration, this function should not be disabled as it will cause excessiv
* e latencies. Unit: Clock cycles. FOR PERFORMANCE ONLY.
* PSU_DDRC_PERFWR1_W_MAX_STARVE 0x40
* Write CAM Register 1
* (OFFSET, MASK, VALUE) (0XFD07026C, 0xFF00FFFFU ,0x08000040U)
*/
PSU_Mask_Write(DDRC_PERFWR1_OFFSET, 0xFF00FFFFU, 0x08000040U);
/*##################################################################### */
/*
* Register : DQMAP0 @ 0XFD070280
* DQ nibble map for DQ bits [12-15] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP0_DQ_NIBBLE_MAP_12_15 0x0
* DQ nibble map for DQ bits [8-11] Present only in designs configured to s
* upport DDR4.
* PSU_DDRC_DQMAP0_DQ_NIBBLE_MAP_8_11 0x0
* DQ nibble map for DQ bits [4-7] Present only in designs configured to su
* pport DDR4.
* PSU_DDRC_DQMAP0_DQ_NIBBLE_MAP_4_7 0x0
* DQ nibble map for DQ bits [0-3] Present only in designs configured to su
* pport DDR4.
* PSU_DDRC_DQMAP0_DQ_NIBBLE_MAP_0_3 0x0
* DQ Map Register 0
* (OFFSET, MASK, VALUE) (0XFD070280, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_DQMAP0_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : DQMAP1 @ 0XFD070284
* DQ nibble map for DQ bits [28-31] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP1_DQ_NIBBLE_MAP_28_31 0x0
* DQ nibble map for DQ bits [24-27] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP1_DQ_NIBBLE_MAP_24_27 0x0
* DQ nibble map for DQ bits [20-23] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP1_DQ_NIBBLE_MAP_20_23 0x0
* DQ nibble map for DQ bits [16-19] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP1_DQ_NIBBLE_MAP_16_19 0x0
* DQ Map Register 1
* (OFFSET, MASK, VALUE) (0XFD070284, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_DQMAP1_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : DQMAP2 @ 0XFD070288
* DQ nibble map for DQ bits [44-47] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP2_DQ_NIBBLE_MAP_44_47 0x0
* DQ nibble map for DQ bits [40-43] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP2_DQ_NIBBLE_MAP_40_43 0x0
* DQ nibble map for DQ bits [36-39] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP2_DQ_NIBBLE_MAP_36_39 0x0
* DQ nibble map for DQ bits [32-35] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP2_DQ_NIBBLE_MAP_32_35 0x0
* DQ Map Register 2
* (OFFSET, MASK, VALUE) (0XFD070288, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_DQMAP2_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : DQMAP3 @ 0XFD07028C
* DQ nibble map for DQ bits [60-63] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP3_DQ_NIBBLE_MAP_60_63 0x0
* DQ nibble map for DQ bits [56-59] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP3_DQ_NIBBLE_MAP_56_59 0x0
* DQ nibble map for DQ bits [52-55] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP3_DQ_NIBBLE_MAP_52_55 0x0
* DQ nibble map for DQ bits [48-51] Present only in designs configured to
* support DDR4.
* PSU_DDRC_DQMAP3_DQ_NIBBLE_MAP_48_51 0x0
* DQ Map Register 3
* (OFFSET, MASK, VALUE) (0XFD07028C, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_DQMAP3_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : DQMAP4 @ 0XFD070290
* DQ nibble map for DIMM ECC check bits [4-7] Present only in designs conf
* igured to support DDR4.
* PSU_DDRC_DQMAP4_DQ_NIBBLE_MAP_CB_4_7 0x0
* DQ nibble map for DIMM ECC check bits [0-3] Present only in designs conf
* igured to support DDR4.
* PSU_DDRC_DQMAP4_DQ_NIBBLE_MAP_CB_0_3 0x0
* DQ Map Register 4
* (OFFSET, MASK, VALUE) (0XFD070290, 0x0000FFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_DQMAP4_OFFSET, 0x0000FFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : DQMAP5 @ 0XFD070294
* All even ranks have the same DQ mapping controled by DQMAP0-4 register a
* s rank 0. This register provides DQ swap function for all odd ranks to s
* upport CRC feature. rank based DQ swapping is: swap bit 0 with 1, swap b
* it 2 with 3, swap bit 4 with 5 and swap bit 6 with 7. 1: Disable rank ba
* sed DQ swapping 0: Enable rank based DQ swapping Present only in designs
* configured to support DDR4.
* PSU_DDRC_DQMAP5_DIS_DQ_RANK_SWAP 0x1
* DQ Map Register 5
* (OFFSET, MASK, VALUE) (0XFD070294, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_DQMAP5_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : DBG0 @ 0XFD070300
* When this is set to '0', auto-precharge is disabled for the flushed comm
* and in a collision case. Collision cases are write followed by read to s
* ame address, read followed by write to same address, or write followed b
* y write to same address with DBG0.dis_wc bit = 1 (where same address com
* parisons exclude the two address bits representing critical word). FOR D
* EBUG ONLY.
* PSU_DDRC_DBG0_DIS_COLLISION_PAGE_OPT 0x0
* When 1, disable write combine. FOR DEBUG ONLY
* PSU_DDRC_DBG0_DIS_WC 0x0
* Debug Register 0
* (OFFSET, MASK, VALUE) (0XFD070300, 0x00000011U ,0x00000000U)
*/
PSU_Mask_Write(DDRC_DBG0_OFFSET, 0x00000011U, 0x00000000U);
/*##################################################################### */
/*
* Register : DBGCMD @ 0XFD07030C
* Setting this register bit to 1 allows refresh and ZQCS commands to be tr
* iggered from hardware via the IOs ext_*. If set to 1, the fields DBGCMD.
* zq_calib_short and DBGCMD.rank*_refresh have no function, and are ignore
* d by the uMCTL2 logic. Setting this register bit to 0 allows refresh and
* ZQCS to be triggered from software, via the fields DBGCMD.zq_calib_shor
* t and DBGCMD.rank*_refresh. If set to 0, the hardware pins ext_* have no
* function, and are ignored by the uMCTL2 logic. This register is static,
* and may only be changed when the DDRC reset signal, core_ddrc_rstn, is
* asserted (0).
* PSU_DDRC_DBGCMD_HW_REF_ZQ_EN 0x0
* Setting this register bit to 1 indicates to the uMCTL2 to issue a dfi_ct
* rlupd_req to the PHY. When this request is stored in the uMCTL2, the bit
* is automatically cleared. This operation must only be performed when DF
* IUPD0.dis_auto_ctrlupd=1.
* PSU_DDRC_DBGCMD_CTRLUPD 0x0
* Setting this register bit to 1 indicates to the uMCTL2 to issue a ZQCS (
* ZQ calibration short)/MPC(ZQ calibration) command to the SDRAM. When thi
* s request is stored in the uMCTL2, the bit is automatically cleared. Thi
* s operation can be performed only when ZQCTL0.dis_auto_zq=1. It is recom
* mended NOT to set this register bit if in Init operating mode. This regi
* ster bit is ignored when in Self-Refresh(except LPDDR4) and SR-Powerdown
* (LPDDR4) and Deep power-down operating modes and Maximum Power Saving Mo
* de.
* PSU_DDRC_DBGCMD_ZQ_CALIB_SHORT 0x0
* Setting this register bit to 1 indicates to the uMCTL2 to issue a refres
* h to rank 1. Writing to this bit causes DBGSTAT.rank1_refresh_busy to be
* set. When DBGSTAT.rank1_refresh_busy is cleared, the command has been s
* tored in uMCTL2. This operation can be performed only when RFSHCTL3.dis_
* auto_refresh=1. It is recommended NOT to set this register bit if in Ini
* t or Deep power-down operating modes or Maximum Power Saving Mode.
* PSU_DDRC_DBGCMD_RANK1_REFRESH 0x0
* Setting this register bit to 1 indicates to the uMCTL2 to issue a refres
* h to rank 0. Writing to this bit causes DBGSTAT.rank0_refresh_busy to be
* set. When DBGSTAT.rank0_refresh_busy is cleared, the command has been s
* tored in uMCTL2. This operation can be performed only when RFSHCTL3.dis_
* auto_refresh=1. It is recommended NOT to set this register bit if in Ini
* t or Deep power-down operating modes or Maximum Power Saving Mode.
* PSU_DDRC_DBGCMD_RANK0_REFRESH 0x0
* Command Debug Register
* (OFFSET, MASK, VALUE) (0XFD07030C, 0x80000033U ,0x00000000U)
*/
PSU_Mask_Write(DDRC_DBGCMD_OFFSET, 0x80000033U, 0x00000000U);
/*##################################################################### */
/*
* Register : SWCTL @ 0XFD070320
* Enable quasi-dynamic register programming outside reset. Program registe
* r to 0 to enable quasi-dynamic programming. Set back register to 1 once
* programming is done.
* PSU_DDRC_SWCTL_SW_DONE 0x0
* Software register programming control enable
* (OFFSET, MASK, VALUE) (0XFD070320, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(DDRC_SWCTL_OFFSET, 0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* Register : PCCFG @ 0XFD070400
* Burst length expansion mode. By default (i.e. bl_exp_mode==0) XPI expand
* s every AXI burst into multiple HIF commands, using the memory burst len
* gth as a unit. If set to 1, then XPI will use half of the memory burst l
* ength as a unit. This applies to both reads and writes. When MSTR.data_b
* us_width==00, setting bl_exp_mode to 1 has no effect. This can be used i
* n cases where Partial Writes is enabled (UMCTL2_PARTIAL_WR=1) and DBG0.d
* is_wc=1, in order to avoid or minimize t_ccd_l penalty in DDR4 and t_ccd
* _mw penalty in LPDDR4. Note that if DBICTL.reg_ddrc_dm_en=0, functionali
* ty is not supported in the following cases: - UMCTL2_PARTIAL_WR=0 - UMCT
* L2_PARTIAL_WR=1, MSTR.reg_ddrc_data_bus_width=01, MEMC_BURST_LENGTH=8 an
* d MSTR.reg_ddrc_burst_rdwr=1000 (LPDDR4 only) - UMCTL2_PARTIAL_WR=1, MST
* R.reg_ddrc_data_bus_width=01, MEMC_BURST_LENGTH=4 and MSTR.reg_ddrc_burs
* t_rdwr=0100 (DDR4 only), with either MSTR.reg_ddrc_burstchop=0 or CRCPAR
* CTL1.reg_ddrc_crc_enable=1 Functionality is also not supported if Shared
* -AC is enabled
* PSU_DDRC_PCCFG_BL_EXP_MODE 0x0
* Page match four limit. If set to 1, limits the number of consecutive sam
* e page DDRC transactions that can be granted by the Port Arbiter to four
* when Page Match feature is enabled. If set to 0, there is no limit impo
* sed on number of consecutive same page DDRC transactions.
* PSU_DDRC_PCCFG_PAGEMATCH_LIMIT 0x0
* If set to 1 (enabled), sets co_gs_go2critical_wr and co_gs_go2critical_l
* pr/co_gs_go2critical_hpr signals going to DDRC based on urgent input (aw
* urgent, arurgent) coming from AXI master. If set to 0 (disabled), co_gs_
* go2critical_wr and co_gs_go2critical_lpr/co_gs_go2critical_hpr signals a
* t DDRC are driven to 1b'0.
* PSU_DDRC_PCCFG_GO2CRITICAL_EN 0x1
* Port Common Configuration Register
* (OFFSET, MASK, VALUE) (0XFD070400, 0x00000111U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_PCCFG_OFFSET, 0x00000111U, 0x00000001U);
/*##################################################################### */
/*
* Register : PCFGR_0 @ 0XFD070404
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGR_0_RD_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
* bled and arurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
* RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
* urgent signal can be asserted anytime and as long as required which is i
* ndependent of address handshaking (it is not associated with any particu
* lar command).
* PSU_DDRC_PCFGR_0_RD_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the read channel of the port.
* PSU_DDRC_PCFGR_0_RD_PORT_AGING_EN 0x0
* Determines the initial load value of read aging counters. These counters
* will be parallel loaded after reset, or after each grant to the corresp
* onding port. The aging counters down-count every clock cycle where the p
* ort is requesting but not granted. The higher significant 5-bits of the
* read aging counter sets the priority of the read channel of a given port
* . Port's priority will increase as the higher significant 5-bits of the
* counter starts to decrease. When the aging counter becomes 0, the corres
* ponding port channel will have the highest priority level (timeout condi
* tion - Priority0). For multi-port configurations, the aging counters can
* not be used to set port priorities when external dynamic priority inputs
* (arqos) are enabled (timeout is still applicable). For single port conf
* igurations, the aging counters are only used when they timeout (become 0
* ) to force read-write direction switching. In this case, external dynami
* c priority input, arqos (for reads only) can still be used to set the DD
* RC read priority (2 priority levels: low priority read - LPR, high prior
* ity read - HPR) on a command by command basis. Note: The two LSBs of thi
* s register field are tied internally to 2'b00.
* PSU_DDRC_PCFGR_0_RD_PORT_PRIORITY 0xf
* Port n Configuration Read Register
* (OFFSET, MASK, VALUE) (0XFD070404, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGR_0_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCFGW_0 @ 0XFD070408
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGW_0_WR_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
* bled and awurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
* ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
* serted anytime and as long as required which is independent of address h
* andshaking (it is not associated with any particular command).
* PSU_DDRC_PCFGW_0_WR_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the write channel of the port.
* PSU_DDRC_PCFGW_0_WR_PORT_AGING_EN 0x0
* Determines the initial load value of write aging counters. These counter
* s will be parallel loaded after reset, or after each grant to the corres
* ponding port. The aging counters down-count every clock cycle where the
* port is requesting but not granted. The higher significant 5-bits of the
* write aging counter sets the initial priority of the write channel of a
* given port. Port's priority will increase as the higher significant 5-b
* its of the counter starts to decrease. When the aging counter becomes 0,
* the corresponding port channel will have the highest priority level. Fo
* r multi-port configurations, the aging counters cannot be used to set po
* rt priorities when external dynamic priority inputs (awqos) are enabled
* (timeout is still applicable). For single port configurations, the aging
* counters are only used when they timeout (become 0) to force read-write
* direction switching. Note: The two LSBs of this register field are tied
* internally to 2'b00.
* PSU_DDRC_PCFGW_0_WR_PORT_PRIORITY 0xf
* Port n Configuration Write Register
* (OFFSET, MASK, VALUE) (0XFD070408, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGW_0_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCTRL_0 @ 0XFD070490
* Enables port n.
* PSU_DDRC_PCTRL_0_PORT_EN 0x1
* Port n Control Register
* (OFFSET, MASK, VALUE) (0XFD070490, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_PCTRL_0_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : PCFGQOS0_0 @ 0XFD070494
* This bitfield indicates the traffic class of region 1. Valid values are:
* 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
* maps to the blue address queue. In this case, valid values are 0: LPR a
* nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
* ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_0_RQOS_MAP_REGION1 0x2
* This bitfield indicates the traffic class of region 0. Valid values are:
* 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
* maps to the blue address queue. In this case, valid values are: 0: LPR
* and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
* affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_0_RQOS_MAP_REGION0 0x0
* Separation level1 indicating the end of region0 mapping; start of region
* 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
* (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
* lues are used directly as port priorities, where the higher the value co
* rresponds to higher port priority. All of the map_level* registers must
* be set to distinct values.
* PSU_DDRC_PCFGQOS0_0_RQOS_MAP_LEVEL1 0xb
* Port n Read QoS Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD070494, 0x0033000FU ,0x0020000BU)
*/
PSU_Mask_Write(DDRC_PCFGQOS0_0_OFFSET, 0x0033000FU, 0x0020000BU);
/*##################################################################### */
/*
* Register : PCFGQOS1_0 @ 0XFD070498
* Specifies the timeout value for transactions mapped to the red address q
* ueue.
* PSU_DDRC_PCFGQOS1_0_RQOS_MAP_TIMEOUTR 0x0
* Specifies the timeout value for transactions mapped to the blue address
* queue.
* PSU_DDRC_PCFGQOS1_0_RQOS_MAP_TIMEOUTB 0x0
* Port n Read QoS Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD070498, 0x07FF07FFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_PCFGQOS1_0_OFFSET, 0x07FF07FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : PCFGR_1 @ 0XFD0704B4
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGR_1_RD_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
* bled and arurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
* RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
* urgent signal can be asserted anytime and as long as required which is i
* ndependent of address handshaking (it is not associated with any particu
* lar command).
* PSU_DDRC_PCFGR_1_RD_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the read channel of the port.
* PSU_DDRC_PCFGR_1_RD_PORT_AGING_EN 0x0
* Determines the initial load value of read aging counters. These counters
* will be parallel loaded after reset, or after each grant to the corresp
* onding port. The aging counters down-count every clock cycle where the p
* ort is requesting but not granted. The higher significant 5-bits of the
* read aging counter sets the priority of the read channel of a given port
* . Port's priority will increase as the higher significant 5-bits of the
* counter starts to decrease. When the aging counter becomes 0, the corres
* ponding port channel will have the highest priority level (timeout condi
* tion - Priority0). For multi-port configurations, the aging counters can
* not be used to set port priorities when external dynamic priority inputs
* (arqos) are enabled (timeout is still applicable). For single port conf
* igurations, the aging counters are only used when they timeout (become 0
* ) to force read-write direction switching. In this case, external dynami
* c priority input, arqos (for reads only) can still be used to set the DD
* RC read priority (2 priority levels: low priority read - LPR, high prior
* ity read - HPR) on a command by command basis. Note: The two LSBs of thi
* s register field are tied internally to 2'b00.
* PSU_DDRC_PCFGR_1_RD_PORT_PRIORITY 0xf
* Port n Configuration Read Register
* (OFFSET, MASK, VALUE) (0XFD0704B4, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGR_1_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCFGW_1 @ 0XFD0704B8
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGW_1_WR_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
* bled and awurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
* ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
* serted anytime and as long as required which is independent of address h
* andshaking (it is not associated with any particular command).
* PSU_DDRC_PCFGW_1_WR_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the write channel of the port.
* PSU_DDRC_PCFGW_1_WR_PORT_AGING_EN 0x0
* Determines the initial load value of write aging counters. These counter
* s will be parallel loaded after reset, or after each grant to the corres
* ponding port. The aging counters down-count every clock cycle where the
* port is requesting but not granted. The higher significant 5-bits of the
* write aging counter sets the initial priority of the write channel of a
* given port. Port's priority will increase as the higher significant 5-b
* its of the counter starts to decrease. When the aging counter becomes 0,
* the corresponding port channel will have the highest priority level. Fo
* r multi-port configurations, the aging counters cannot be used to set po
* rt priorities when external dynamic priority inputs (awqos) are enabled
* (timeout is still applicable). For single port configurations, the aging
* counters are only used when they timeout (become 0) to force read-write
* direction switching. Note: The two LSBs of this register field are tied
* internally to 2'b00.
* PSU_DDRC_PCFGW_1_WR_PORT_PRIORITY 0xf
* Port n Configuration Write Register
* (OFFSET, MASK, VALUE) (0XFD0704B8, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGW_1_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCTRL_1 @ 0XFD070540
* Enables port n.
* PSU_DDRC_PCTRL_1_PORT_EN 0x1
* Port n Control Register
* (OFFSET, MASK, VALUE) (0XFD070540, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_PCTRL_1_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : PCFGQOS0_1 @ 0XFD070544
* This bitfield indicates the traffic class of region2. For dual address q
* ueue configurations, region2 maps to the red address queue. Valid values
* are 1: VPR and 2: HPR only. When VPR support is disabled (UMCTL2_VPR_EN
* = 0) and traffic class of region2 is set to 1 (VPR), VPR traffic is ali
* ased to LPR traffic.
* PSU_DDRC_PCFGQOS0_1_RQOS_MAP_REGION2 0x2
* This bitfield indicates the traffic class of region 1. Valid values are:
* 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
* maps to the blue address queue. In this case, valid values are 0: LPR a
* nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
* ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_1_RQOS_MAP_REGION1 0x0
* This bitfield indicates the traffic class of region 0. Valid values are:
* 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
* maps to the blue address queue. In this case, valid values are: 0: LPR
* and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
* affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_1_RQOS_MAP_REGION0 0x0
* Separation level2 indicating the end of region1 mapping; start of region
* 1 is (level1 + 1). Possible values for level2 are (level1 + 1) to 14 whi
* ch corresponds to arqos. Region2 starts from (level2 + 1) up to 15. Note
* that for PA, arqos values are used directly as port priorities, where t
* he higher the value corresponds to higher port priority. All of the map_
* level* registers must be set to distinct values.
* PSU_DDRC_PCFGQOS0_1_RQOS_MAP_LEVEL2 0xb
* Separation level1 indicating the end of region0 mapping; start of region
* 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
* (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
* lues are used directly as port priorities, where the higher the value co
* rresponds to higher port priority. All of the map_level* registers must
* be set to distinct values.
* PSU_DDRC_PCFGQOS0_1_RQOS_MAP_LEVEL1 0x3
* Port n Read QoS Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD070544, 0x03330F0FU ,0x02000B03U)
*/
PSU_Mask_Write(DDRC_PCFGQOS0_1_OFFSET, 0x03330F0FU, 0x02000B03U);
/*##################################################################### */
/*
* Register : PCFGQOS1_1 @ 0XFD070548
* Specifies the timeout value for transactions mapped to the red address q
* ueue.
* PSU_DDRC_PCFGQOS1_1_RQOS_MAP_TIMEOUTR 0x0
* Specifies the timeout value for transactions mapped to the blue address
* queue.
* PSU_DDRC_PCFGQOS1_1_RQOS_MAP_TIMEOUTB 0x0
* Port n Read QoS Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD070548, 0x07FF07FFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_PCFGQOS1_1_OFFSET, 0x07FF07FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : PCFGR_2 @ 0XFD070564
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGR_2_RD_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
* bled and arurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
* RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
* urgent signal can be asserted anytime and as long as required which is i
* ndependent of address handshaking (it is not associated with any particu
* lar command).
* PSU_DDRC_PCFGR_2_RD_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the read channel of the port.
* PSU_DDRC_PCFGR_2_RD_PORT_AGING_EN 0x0
* Determines the initial load value of read aging counters. These counters
* will be parallel loaded after reset, or after each grant to the corresp
* onding port. The aging counters down-count every clock cycle where the p
* ort is requesting but not granted. The higher significant 5-bits of the
* read aging counter sets the priority of the read channel of a given port
* . Port's priority will increase as the higher significant 5-bits of the
* counter starts to decrease. When the aging counter becomes 0, the corres
* ponding port channel will have the highest priority level (timeout condi
* tion - Priority0). For multi-port configurations, the aging counters can
* not be used to set port priorities when external dynamic priority inputs
* (arqos) are enabled (timeout is still applicable). For single port conf
* igurations, the aging counters are only used when they timeout (become 0
* ) to force read-write direction switching. In this case, external dynami
* c priority input, arqos (for reads only) can still be used to set the DD
* RC read priority (2 priority levels: low priority read - LPR, high prior
* ity read - HPR) on a command by command basis. Note: The two LSBs of thi
* s register field are tied internally to 2'b00.
* PSU_DDRC_PCFGR_2_RD_PORT_PRIORITY 0xf
* Port n Configuration Read Register
* (OFFSET, MASK, VALUE) (0XFD070564, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGR_2_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCFGW_2 @ 0XFD070568
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGW_2_WR_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
* bled and awurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
* ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
* serted anytime and as long as required which is independent of address h
* andshaking (it is not associated with any particular command).
* PSU_DDRC_PCFGW_2_WR_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the write channel of the port.
* PSU_DDRC_PCFGW_2_WR_PORT_AGING_EN 0x0
* Determines the initial load value of write aging counters. These counter
* s will be parallel loaded after reset, or after each grant to the corres
* ponding port. The aging counters down-count every clock cycle where the
* port is requesting but not granted. The higher significant 5-bits of the
* write aging counter sets the initial priority of the write channel of a
* given port. Port's priority will increase as the higher significant 5-b
* its of the counter starts to decrease. When the aging counter becomes 0,
* the corresponding port channel will have the highest priority level. Fo
* r multi-port configurations, the aging counters cannot be used to set po
* rt priorities when external dynamic priority inputs (awqos) are enabled
* (timeout is still applicable). For single port configurations, the aging
* counters are only used when they timeout (become 0) to force read-write
* direction switching. Note: The two LSBs of this register field are tied
* internally to 2'b00.
* PSU_DDRC_PCFGW_2_WR_PORT_PRIORITY 0xf
* Port n Configuration Write Register
* (OFFSET, MASK, VALUE) (0XFD070568, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGW_2_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCTRL_2 @ 0XFD0705F0
* Enables port n.
* PSU_DDRC_PCTRL_2_PORT_EN 0x1
* Port n Control Register
* (OFFSET, MASK, VALUE) (0XFD0705F0, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_PCTRL_2_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : PCFGQOS0_2 @ 0XFD0705F4
* This bitfield indicates the traffic class of region2. For dual address q
* ueue configurations, region2 maps to the red address queue. Valid values
* are 1: VPR and 2: HPR only. When VPR support is disabled (UMCTL2_VPR_EN
* = 0) and traffic class of region2 is set to 1 (VPR), VPR traffic is ali
* ased to LPR traffic.
* PSU_DDRC_PCFGQOS0_2_RQOS_MAP_REGION2 0x2
* This bitfield indicates the traffic class of region 1. Valid values are:
* 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
* maps to the blue address queue. In this case, valid values are 0: LPR a
* nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
* ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_2_RQOS_MAP_REGION1 0x0
* This bitfield indicates the traffic class of region 0. Valid values are:
* 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
* maps to the blue address queue. In this case, valid values are: 0: LPR
* and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
* affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_2_RQOS_MAP_REGION0 0x0
* Separation level2 indicating the end of region1 mapping; start of region
* 1 is (level1 + 1). Possible values for level2 are (level1 + 1) to 14 whi
* ch corresponds to arqos. Region2 starts from (level2 + 1) up to 15. Note
* that for PA, arqos values are used directly as port priorities, where t
* he higher the value corresponds to higher port priority. All of the map_
* level* registers must be set to distinct values.
* PSU_DDRC_PCFGQOS0_2_RQOS_MAP_LEVEL2 0xb
* Separation level1 indicating the end of region0 mapping; start of region
* 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
* (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
* lues are used directly as port priorities, where the higher the value co
* rresponds to higher port priority. All of the map_level* registers must
* be set to distinct values.
* PSU_DDRC_PCFGQOS0_2_RQOS_MAP_LEVEL1 0x3
* Port n Read QoS Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD0705F4, 0x03330F0FU ,0x02000B03U)
*/
PSU_Mask_Write(DDRC_PCFGQOS0_2_OFFSET, 0x03330F0FU, 0x02000B03U);
/*##################################################################### */
/*
* Register : PCFGQOS1_2 @ 0XFD0705F8
* Specifies the timeout value for transactions mapped to the red address q
* ueue.
* PSU_DDRC_PCFGQOS1_2_RQOS_MAP_TIMEOUTR 0x0
* Specifies the timeout value for transactions mapped to the blue address
* queue.
* PSU_DDRC_PCFGQOS1_2_RQOS_MAP_TIMEOUTB 0x0
* Port n Read QoS Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD0705F8, 0x07FF07FFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_PCFGQOS1_2_OFFSET, 0x07FF07FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : PCFGR_3 @ 0XFD070614
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGR_3_RD_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
* bled and arurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
* RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
* urgent signal can be asserted anytime and as long as required which is i
* ndependent of address handshaking (it is not associated with any particu
* lar command).
* PSU_DDRC_PCFGR_3_RD_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the read channel of the port.
* PSU_DDRC_PCFGR_3_RD_PORT_AGING_EN 0x0
* Determines the initial load value of read aging counters. These counters
* will be parallel loaded after reset, or after each grant to the corresp
* onding port. The aging counters down-count every clock cycle where the p
* ort is requesting but not granted. The higher significant 5-bits of the
* read aging counter sets the priority of the read channel of a given port
* . Port's priority will increase as the higher significant 5-bits of the
* counter starts to decrease. When the aging counter becomes 0, the corres
* ponding port channel will have the highest priority level (timeout condi
* tion - Priority0). For multi-port configurations, the aging counters can
* not be used to set port priorities when external dynamic priority inputs
* (arqos) are enabled (timeout is still applicable). For single port conf
* igurations, the aging counters are only used when they timeout (become 0
* ) to force read-write direction switching. In this case, external dynami
* c priority input, arqos (for reads only) can still be used to set the DD
* RC read priority (2 priority levels: low priority read - LPR, high prior
* ity read - HPR) on a command by command basis. Note: The two LSBs of thi
* s register field are tied internally to 2'b00.
* PSU_DDRC_PCFGR_3_RD_PORT_PRIORITY 0xf
* Port n Configuration Read Register
* (OFFSET, MASK, VALUE) (0XFD070614, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGR_3_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCFGW_3 @ 0XFD070618
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGW_3_WR_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
* bled and awurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
* ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
* serted anytime and as long as required which is independent of address h
* andshaking (it is not associated with any particular command).
* PSU_DDRC_PCFGW_3_WR_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the write channel of the port.
* PSU_DDRC_PCFGW_3_WR_PORT_AGING_EN 0x0
* Determines the initial load value of write aging counters. These counter
* s will be parallel loaded after reset, or after each grant to the corres
* ponding port. The aging counters down-count every clock cycle where the
* port is requesting but not granted. The higher significant 5-bits of the
* write aging counter sets the initial priority of the write channel of a
* given port. Port's priority will increase as the higher significant 5-b
* its of the counter starts to decrease. When the aging counter becomes 0,
* the corresponding port channel will have the highest priority level. Fo
* r multi-port configurations, the aging counters cannot be used to set po
* rt priorities when external dynamic priority inputs (awqos) are enabled
* (timeout is still applicable). For single port configurations, the aging
* counters are only used when they timeout (become 0) to force read-write
* direction switching. Note: The two LSBs of this register field are tied
* internally to 2'b00.
* PSU_DDRC_PCFGW_3_WR_PORT_PRIORITY 0xf
* Port n Configuration Write Register
* (OFFSET, MASK, VALUE) (0XFD070618, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGW_3_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCTRL_3 @ 0XFD0706A0
* Enables port n.
* PSU_DDRC_PCTRL_3_PORT_EN 0x1
* Port n Control Register
* (OFFSET, MASK, VALUE) (0XFD0706A0, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_PCTRL_3_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : PCFGQOS0_3 @ 0XFD0706A4
* This bitfield indicates the traffic class of region 1. Valid values are:
* 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
* maps to the blue address queue. In this case, valid values are 0: LPR a
* nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
* ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_3_RQOS_MAP_REGION1 0x1
* This bitfield indicates the traffic class of region 0. Valid values are:
* 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
* maps to the blue address queue. In this case, valid values are: 0: LPR
* and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
* affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_3_RQOS_MAP_REGION0 0x0
* Separation level1 indicating the end of region0 mapping; start of region
* 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
* (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
* lues are used directly as port priorities, where the higher the value co
* rresponds to higher port priority. All of the map_level* registers must
* be set to distinct values.
* PSU_DDRC_PCFGQOS0_3_RQOS_MAP_LEVEL1 0x3
* Port n Read QoS Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD0706A4, 0x0033000FU ,0x00100003U)
*/
PSU_Mask_Write(DDRC_PCFGQOS0_3_OFFSET, 0x0033000FU, 0x00100003U);
/*##################################################################### */
/*
* Register : PCFGQOS1_3 @ 0XFD0706A8
* Specifies the timeout value for transactions mapped to the red address q
* ueue.
* PSU_DDRC_PCFGQOS1_3_RQOS_MAP_TIMEOUTR 0x0
* Specifies the timeout value for transactions mapped to the blue address
* queue.
* PSU_DDRC_PCFGQOS1_3_RQOS_MAP_TIMEOUTB 0x4f
* Port n Read QoS Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD0706A8, 0x07FF07FFU ,0x0000004FU)
*/
PSU_Mask_Write(DDRC_PCFGQOS1_3_OFFSET, 0x07FF07FFU, 0x0000004FU);
/*##################################################################### */
/*
* Register : PCFGWQOS0_3 @ 0XFD0706AC
* This bitfield indicates the traffic class of region 1. Valid values are:
* 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
* affic class of region 1 is set to 1 (VPW), VPW traffic is aliased to LPW
* traffic.
* PSU_DDRC_PCFGWQOS0_3_WQOS_MAP_REGION1 0x1
* This bitfield indicates the traffic class of region 0. Valid values are:
* 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
* affic class of region0 is set to 1 (VPW), VPW traffic is aliased to NPW
* traffic.
* PSU_DDRC_PCFGWQOS0_3_WQOS_MAP_REGION0 0x0
* Separation level indicating the end of region0 mapping; start of region0
* is 0. Possible values for level1 are 0 to 14 which corresponds to awqos
* . Note that for PA, awqos values are used directly as port priorities, w
* here the higher the value corresponds to higher port priority.
* PSU_DDRC_PCFGWQOS0_3_WQOS_MAP_LEVEL 0x3
* Port n Write QoS Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD0706AC, 0x0033000FU ,0x00100003U)
*/
PSU_Mask_Write(DDRC_PCFGWQOS0_3_OFFSET, 0x0033000FU, 0x00100003U);
/*##################################################################### */
/*
* Register : PCFGWQOS1_3 @ 0XFD0706B0
* Specifies the timeout value for write transactions.
* PSU_DDRC_PCFGWQOS1_3_WQOS_MAP_TIMEOUT 0x4f
* Port n Write QoS Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD0706B0, 0x000007FFU ,0x0000004FU)
*/
PSU_Mask_Write(DDRC_PCFGWQOS1_3_OFFSET, 0x000007FFU, 0x0000004FU);
/*##################################################################### */
/*
* Register : PCFGR_4 @ 0XFD0706C4
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGR_4_RD_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
* bled and arurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
* RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
* urgent signal can be asserted anytime and as long as required which is i
* ndependent of address handshaking (it is not associated with any particu
* lar command).
* PSU_DDRC_PCFGR_4_RD_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the read channel of the port.
* PSU_DDRC_PCFGR_4_RD_PORT_AGING_EN 0x0
* Determines the initial load value of read aging counters. These counters
* will be parallel loaded after reset, or after each grant to the corresp
* onding port. The aging counters down-count every clock cycle where the p
* ort is requesting but not granted. The higher significant 5-bits of the
* read aging counter sets the priority of the read channel of a given port
* . Port's priority will increase as the higher significant 5-bits of the
* counter starts to decrease. When the aging counter becomes 0, the corres
* ponding port channel will have the highest priority level (timeout condi
* tion - Priority0). For multi-port configurations, the aging counters can
* not be used to set port priorities when external dynamic priority inputs
* (arqos) are enabled (timeout is still applicable). For single port conf
* igurations, the aging counters are only used when they timeout (become 0
* ) to force read-write direction switching. In this case, external dynami
* c priority input, arqos (for reads only) can still be used to set the DD
* RC read priority (2 priority levels: low priority read - LPR, high prior
* ity read - HPR) on a command by command basis. Note: The two LSBs of thi
* s register field are tied internally to 2'b00.
* PSU_DDRC_PCFGR_4_RD_PORT_PRIORITY 0xf
* Port n Configuration Read Register
* (OFFSET, MASK, VALUE) (0XFD0706C4, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGR_4_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCFGW_4 @ 0XFD0706C8
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGW_4_WR_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
* bled and awurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
* ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
* serted anytime and as long as required which is independent of address h
* andshaking (it is not associated with any particular command).
* PSU_DDRC_PCFGW_4_WR_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the write channel of the port.
* PSU_DDRC_PCFGW_4_WR_PORT_AGING_EN 0x0
* Determines the initial load value of write aging counters. These counter
* s will be parallel loaded after reset, or after each grant to the corres
* ponding port. The aging counters down-count every clock cycle where the
* port is requesting but not granted. The higher significant 5-bits of the
* write aging counter sets the initial priority of the write channel of a
* given port. Port's priority will increase as the higher significant 5-b
* its of the counter starts to decrease. When the aging counter becomes 0,
* the corresponding port channel will have the highest priority level. Fo
* r multi-port configurations, the aging counters cannot be used to set po
* rt priorities when external dynamic priority inputs (awqos) are enabled
* (timeout is still applicable). For single port configurations, the aging
* counters are only used when they timeout (become 0) to force read-write
* direction switching. Note: The two LSBs of this register field are tied
* internally to 2'b00.
* PSU_DDRC_PCFGW_4_WR_PORT_PRIORITY 0xf
* Port n Configuration Write Register
* (OFFSET, MASK, VALUE) (0XFD0706C8, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGW_4_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCTRL_4 @ 0XFD070750
* Enables port n.
* PSU_DDRC_PCTRL_4_PORT_EN 0x1
* Port n Control Register
* (OFFSET, MASK, VALUE) (0XFD070750, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_PCTRL_4_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : PCFGQOS0_4 @ 0XFD070754
* This bitfield indicates the traffic class of region 1. Valid values are:
* 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
* maps to the blue address queue. In this case, valid values are 0: LPR a
* nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
* ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_4_RQOS_MAP_REGION1 0x1
* This bitfield indicates the traffic class of region 0. Valid values are:
* 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
* maps to the blue address queue. In this case, valid values are: 0: LPR
* and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
* affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_4_RQOS_MAP_REGION0 0x0
* Separation level1 indicating the end of region0 mapping; start of region
* 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
* (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
* lues are used directly as port priorities, where the higher the value co
* rresponds to higher port priority. All of the map_level* registers must
* be set to distinct values.
* PSU_DDRC_PCFGQOS0_4_RQOS_MAP_LEVEL1 0x3
* Port n Read QoS Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD070754, 0x0033000FU ,0x00100003U)
*/
PSU_Mask_Write(DDRC_PCFGQOS0_4_OFFSET, 0x0033000FU, 0x00100003U);
/*##################################################################### */
/*
* Register : PCFGQOS1_4 @ 0XFD070758
* Specifies the timeout value for transactions mapped to the red address q
* ueue.
* PSU_DDRC_PCFGQOS1_4_RQOS_MAP_TIMEOUTR 0x0
* Specifies the timeout value for transactions mapped to the blue address
* queue.
* PSU_DDRC_PCFGQOS1_4_RQOS_MAP_TIMEOUTB 0x4f
* Port n Read QoS Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD070758, 0x07FF07FFU ,0x0000004FU)
*/
PSU_Mask_Write(DDRC_PCFGQOS1_4_OFFSET, 0x07FF07FFU, 0x0000004FU);
/*##################################################################### */
/*
* Register : PCFGWQOS0_4 @ 0XFD07075C
* This bitfield indicates the traffic class of region 1. Valid values are:
* 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
* affic class of region 1 is set to 1 (VPW), VPW traffic is aliased to LPW
* traffic.
* PSU_DDRC_PCFGWQOS0_4_WQOS_MAP_REGION1 0x1
* This bitfield indicates the traffic class of region 0. Valid values are:
* 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
* affic class of region0 is set to 1 (VPW), VPW traffic is aliased to NPW
* traffic.
* PSU_DDRC_PCFGWQOS0_4_WQOS_MAP_REGION0 0x0
* Separation level indicating the end of region0 mapping; start of region0
* is 0. Possible values for level1 are 0 to 14 which corresponds to awqos
* . Note that for PA, awqos values are used directly as port priorities, w
* here the higher the value corresponds to higher port priority.
* PSU_DDRC_PCFGWQOS0_4_WQOS_MAP_LEVEL 0x3
* Port n Write QoS Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD07075C, 0x0033000FU ,0x00100003U)
*/
PSU_Mask_Write(DDRC_PCFGWQOS0_4_OFFSET, 0x0033000FU, 0x00100003U);
/*##################################################################### */
/*
* Register : PCFGWQOS1_4 @ 0XFD070760
* Specifies the timeout value for write transactions.
* PSU_DDRC_PCFGWQOS1_4_WQOS_MAP_TIMEOUT 0x4f
* Port n Write QoS Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD070760, 0x000007FFU ,0x0000004FU)
*/
PSU_Mask_Write(DDRC_PCFGWQOS1_4_OFFSET, 0x000007FFU, 0x0000004FU);
/*##################################################################### */
/*
* Register : PCFGR_5 @ 0XFD070774
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGR_5_RD_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (arurgent). When ena
* bled and arurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_lpr/co_gs_go2critical_hpr signal to DD
* RC is asserted if enabled in PCCFG.go2critical_en register. Note that ar
* urgent signal can be asserted anytime and as long as required which is i
* ndependent of address handshaking (it is not associated with any particu
* lar command).
* PSU_DDRC_PCFGR_5_RD_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the read channel of the port.
* PSU_DDRC_PCFGR_5_RD_PORT_AGING_EN 0x0
* Determines the initial load value of read aging counters. These counters
* will be parallel loaded after reset, or after each grant to the corresp
* onding port. The aging counters down-count every clock cycle where the p
* ort is requesting but not granted. The higher significant 5-bits of the
* read aging counter sets the priority of the read channel of a given port
* . Port's priority will increase as the higher significant 5-bits of the
* counter starts to decrease. When the aging counter becomes 0, the corres
* ponding port channel will have the highest priority level (timeout condi
* tion - Priority0). For multi-port configurations, the aging counters can
* not be used to set port priorities when external dynamic priority inputs
* (arqos) are enabled (timeout is still applicable). For single port conf
* igurations, the aging counters are only used when they timeout (become 0
* ) to force read-write direction switching. In this case, external dynami
* c priority input, arqos (for reads only) can still be used to set the DD
* RC read priority (2 priority levels: low priority read - LPR, high prior
* ity read - HPR) on a command by command basis. Note: The two LSBs of thi
* s register field are tied internally to 2'b00.
* PSU_DDRC_PCFGR_5_RD_PORT_PRIORITY 0xf
* Port n Configuration Read Register
* (OFFSET, MASK, VALUE) (0XFD070774, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGR_5_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCFGW_5 @ 0XFD070778
* If set to 1, enables the Page Match feature. If enabled, once a requesti
* ng port is granted, the port is continued to be granted if the following
* immediate commands are to the same memory page (same bank and same row)
* . See also related PCCFG.pagematch_limit register.
* PSU_DDRC_PCFGW_5_WR_PORT_PAGEMATCH_EN 0x0
* If set to 1, enables the AXI urgent sideband signal (awurgent). When ena
* bled and awurgent is asserted by the master, that port becomes the highe
* st priority and co_gs_go2critical_wr signal to DDRC is asserted if enabl
* ed in PCCFG.go2critical_en register. Note that awurgent signal can be as
* serted anytime and as long as required which is independent of address h
* andshaking (it is not associated with any particular command).
* PSU_DDRC_PCFGW_5_WR_PORT_URGENT_EN 0x1
* If set to 1, enables aging function for the write channel of the port.
* PSU_DDRC_PCFGW_5_WR_PORT_AGING_EN 0x0
* Determines the initial load value of write aging counters. These counter
* s will be parallel loaded after reset, or after each grant to the corres
* ponding port. The aging counters down-count every clock cycle where the
* port is requesting but not granted. The higher significant 5-bits of the
* write aging counter sets the initial priority of the write channel of a
* given port. Port's priority will increase as the higher significant 5-b
* its of the counter starts to decrease. When the aging counter becomes 0,
* the corresponding port channel will have the highest priority level. Fo
* r multi-port configurations, the aging counters cannot be used to set po
* rt priorities when external dynamic priority inputs (awqos) are enabled
* (timeout is still applicable). For single port configurations, the aging
* counters are only used when they timeout (become 0) to force read-write
* direction switching. Note: The two LSBs of this register field are tied
* internally to 2'b00.
* PSU_DDRC_PCFGW_5_WR_PORT_PRIORITY 0xf
* Port n Configuration Write Register
* (OFFSET, MASK, VALUE) (0XFD070778, 0x000073FFU ,0x0000200FU)
*/
PSU_Mask_Write(DDRC_PCFGW_5_OFFSET, 0x000073FFU, 0x0000200FU);
/*##################################################################### */
/*
* Register : PCTRL_5 @ 0XFD070800
* Enables port n.
* PSU_DDRC_PCTRL_5_PORT_EN 0x1
* Port n Control Register
* (OFFSET, MASK, VALUE) (0XFD070800, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(DDRC_PCTRL_5_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : PCFGQOS0_5 @ 0XFD070804
* This bitfield indicates the traffic class of region 1. Valid values are:
* 0 : LPR, 1: VPR, 2: HPR. For dual address queue configurations, region1
* maps to the blue address queue. In this case, valid values are 0: LPR a
* nd 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tra
* ffic class of region 1 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_5_RQOS_MAP_REGION1 0x1
* This bitfield indicates the traffic class of region 0. Valid values are:
* 0: LPR, 1: VPR, 2: HPR. For dual address queue configurations, region 0
* maps to the blue address queue. In this case, valid values are: 0: LPR
* and 1: VPR only. When VPR support is disabled (UMCTL2_VPR_EN = 0) and tr
* affic class of region0 is set to 1 (VPR), VPR traffic is aliased to LPR
* traffic.
* PSU_DDRC_PCFGQOS0_5_RQOS_MAP_REGION0 0x0
* Separation level1 indicating the end of region0 mapping; start of region
* 0 is 0. Possible values for level1 are 0 to 13 (for dual RAQ) or 0 to 14
* (for single RAQ) which corresponds to arqos. Note that for PA, arqos va
* lues are used directly as port priorities, where the higher the value co
* rresponds to higher port priority. All of the map_level* registers must
* be set to distinct values.
* PSU_DDRC_PCFGQOS0_5_RQOS_MAP_LEVEL1 0x3
* Port n Read QoS Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD070804, 0x0033000FU ,0x00100003U)
*/
PSU_Mask_Write(DDRC_PCFGQOS0_5_OFFSET, 0x0033000FU, 0x00100003U);
/*##################################################################### */
/*
* Register : PCFGQOS1_5 @ 0XFD070808
* Specifies the timeout value for transactions mapped to the red address q
* ueue.
* PSU_DDRC_PCFGQOS1_5_RQOS_MAP_TIMEOUTR 0x0
* Specifies the timeout value for transactions mapped to the blue address
* queue.
* PSU_DDRC_PCFGQOS1_5_RQOS_MAP_TIMEOUTB 0x4f
* Port n Read QoS Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD070808, 0x07FF07FFU ,0x0000004FU)
*/
PSU_Mask_Write(DDRC_PCFGQOS1_5_OFFSET, 0x07FF07FFU, 0x0000004FU);
/*##################################################################### */
/*
* Register : PCFGWQOS0_5 @ 0XFD07080C
* This bitfield indicates the traffic class of region 1. Valid values are:
* 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
* affic class of region 1 is set to 1 (VPW), VPW traffic is aliased to LPW
* traffic.
* PSU_DDRC_PCFGWQOS0_5_WQOS_MAP_REGION1 0x1
* This bitfield indicates the traffic class of region 0. Valid values are:
* 0: NPW, 1: VPW. When VPW support is disabled (UMCTL2_VPW_EN = 0) and tr
* affic class of region0 is set to 1 (VPW), VPW traffic is aliased to NPW
* traffic.
* PSU_DDRC_PCFGWQOS0_5_WQOS_MAP_REGION0 0x0
* Separation level indicating the end of region0 mapping; start of region0
* is 0. Possible values for level1 are 0 to 14 which corresponds to awqos
* . Note that for PA, awqos values are used directly as port priorities, w
* here the higher the value corresponds to higher port priority.
* PSU_DDRC_PCFGWQOS0_5_WQOS_MAP_LEVEL 0x3
* Port n Write QoS Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD07080C, 0x0033000FU ,0x00100003U)
*/
PSU_Mask_Write(DDRC_PCFGWQOS0_5_OFFSET, 0x0033000FU, 0x00100003U);
/*##################################################################### */
/*
* Register : PCFGWQOS1_5 @ 0XFD070810
* Specifies the timeout value for write transactions.
* PSU_DDRC_PCFGWQOS1_5_WQOS_MAP_TIMEOUT 0x4f
* Port n Write QoS Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD070810, 0x000007FFU ,0x0000004FU)
*/
PSU_Mask_Write(DDRC_PCFGWQOS1_5_OFFSET, 0x000007FFU, 0x0000004FU);
/*##################################################################### */
/*
* Register : SARBASE0 @ 0XFD070F04
* Base address for address region n specified as awaddr[UMCTL2_A_ADDRW-1:x
* ] and araddr[UMCTL2_A_ADDRW-1:x] where x is determined by the minimum bl
* ock size parameter UMCTL2_SARMINSIZE: (x=log2(block size)).
* PSU_DDRC_SARBASE0_BASE_ADDR 0x0
* SAR Base Address Register n
* (OFFSET, MASK, VALUE) (0XFD070F04, 0x000001FFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_SARBASE0_OFFSET, 0x000001FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : SARSIZE0 @ 0XFD070F08
* Number of blocks for address region n. This register determines the tota
* l size of the region in multiples of minimum block size as specified by
* the hardware parameter UMCTL2_SARMINSIZE. The register value is encoded
* as number of blocks = nblocks + 1. For example, if register is programme
* d to 0, region will have 1 block.
* PSU_DDRC_SARSIZE0_NBLOCKS 0x0
* SAR Size Register n
* (OFFSET, MASK, VALUE) (0XFD070F08, 0x000000FFU ,0x00000000U)
*/
PSU_Mask_Write(DDRC_SARSIZE0_OFFSET, 0x000000FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : SARBASE1 @ 0XFD070F0C
* Base address for address region n specified as awaddr[UMCTL2_A_ADDRW-1:x
* ] and araddr[UMCTL2_A_ADDRW-1:x] where x is determined by the minimum bl
* ock size parameter UMCTL2_SARMINSIZE: (x=log2(block size)).
* PSU_DDRC_SARBASE1_BASE_ADDR 0x10
* SAR Base Address Register n
* (OFFSET, MASK, VALUE) (0XFD070F0C, 0x000001FFU ,0x00000010U)
*/
PSU_Mask_Write(DDRC_SARBASE1_OFFSET, 0x000001FFU, 0x00000010U);
/*##################################################################### */
/*
* Register : SARSIZE1 @ 0XFD070F10
* Number of blocks for address region n. This register determines the tota
* l size of the region in multiples of minimum block size as specified by
* the hardware parameter UMCTL2_SARMINSIZE. The register value is encoded
* as number of blocks = nblocks + 1. For example, if register is programme
* d to 0, region will have 1 block.
* PSU_DDRC_SARSIZE1_NBLOCKS 0xf
* SAR Size Register n
* (OFFSET, MASK, VALUE) (0XFD070F10, 0x000000FFU ,0x0000000FU)
*/
PSU_Mask_Write(DDRC_SARSIZE1_OFFSET, 0x000000FFU, 0x0000000FU);
/*##################################################################### */
/*
* Register : DFITMG0_SHADOW @ 0XFD072190
* Specifies the number of DFI clock cycles after an assertion or de-assert
* ion of the DFI control signals that the control signals at the PHY-DRAM
* interface reflect the assertion or de-assertion. If the DFI clock and th
* e memory clock are not phase-aligned, this timing parameter should be ro
* unded up to the next integer value. Note that if using RDIMM, it is nece
* ssary to increment this parameter by RDIMM's extra cycle of latency in t
* erms of DFI clock.
* PSU_DDRC_DFITMG0_SHADOW_DFI_T_CTRL_DELAY 0x7
* Defines whether dfi_rddata_en/dfi_rddata/dfi_rddata_valid is generated u
* sing HDR or SDR values Selects whether value in DFITMG0.dfi_t_rddata_en
* is in terms of SDR or HDR clock cycles: - 0 in terms of HDR clock cycles
* - 1 in terms of SDR clock cycles Refer to PHY specification for correct
* value.
* PSU_DDRC_DFITMG0_SHADOW_DFI_RDDATA_USE_SDR 0x1
* Time from the assertion of a read command on the DFI interface to the as
* sertion of the dfi_rddata_en signal. Refer to PHY specification for corr
* ect value. This corresponds to the DFI parameter trddata_en. Note that,
* depending on the PHY, if using RDIMM, it may be necessary to use the val
* ue (CL + 1) in the calculation of trddata_en. This is to compensate for
* the extra cycle of latency through the RDIMM. Unit: Clocks
* PSU_DDRC_DFITMG0_SHADOW_DFI_T_RDDATA_EN 0x2
* Defines whether dfi_wrdata_en/dfi_wrdata/dfi_wrdata_mask is generated us
* ing HDR or SDR values Selects whether value in DFITMG0.dfi_tphy_wrlat is
* in terms of SDR or HDR clock cycles Selects whether value in DFITMG0.df
* i_tphy_wrdata is in terms of SDR or HDR clock cycles - 0 in terms of HDR
* clock cycles - 1 in terms of SDR clock cycles Refer to PHY specificatio
* n for correct value.
* PSU_DDRC_DFITMG0_SHADOW_DFI_WRDATA_USE_SDR 0x1
* Specifies the number of clock cycles between when dfi_wrdata_en is asser
* ted to when the associated write data is driven on the dfi_wrdata signal
* . This corresponds to the DFI timing parameter tphy_wrdata. Refer to PHY
* specification for correct value. Note, max supported value is 8. Unit:
* Clocks
* PSU_DDRC_DFITMG0_SHADOW_DFI_TPHY_WRDATA 0x0
* Write latency Number of clocks from the write command to write data enab
* le (dfi_wrdata_en). This corresponds to the DFI timing parameter tphy_wr
* lat. Refer to PHY specification for correct value.Note that, depending o
* n the PHY, if using RDIMM, it may be necessary to use the value (CL + 1)
* in the calculation of tphy_wrlat. This is to compensate for the extra c
* ycle of latency through the RDIMM.
* PSU_DDRC_DFITMG0_SHADOW_DFI_TPHY_WRLAT 0x2
* DFI Timing Shadow Register 0
* (OFFSET, MASK, VALUE) (0XFD072190, 0x1FBFBF3FU ,0x07828002U)
*/
PSU_Mask_Write(DDRC_DFITMG0_SHADOW_OFFSET, 0x1FBFBF3FU, 0x07828002U);
/*##################################################################### */
/*
* DDR CONTROLLER RESET
*/
/*
* Register : RST_DDR_SS @ 0XFD1A0108
* DDR block level reset inside of the DDR Sub System
* PSU_CRF_APB_RST_DDR_SS_DDR_RESET 0X0
* APM block level reset inside of the DDR Sub System
* PSU_CRF_APB_RST_DDR_SS_APM_RESET 0X0
* DDR sub system block level reset
* (OFFSET, MASK, VALUE) (0XFD1A0108, 0x0000000CU ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_RST_DDR_SS_OFFSET, 0x0000000CU, 0x00000000U);
/*##################################################################### */
/*
* DDR PHY
*/
/*
* Register : PGCR0 @ 0XFD080010
* Address Copy
* PSU_DDR_PHY_PGCR0_ADCP 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_PGCR0_RESERVED_30_27 0x0
* PHY FIFO Reset
* PSU_DDR_PHY_PGCR0_PHYFRST 0x1
* Oscillator Mode Address/Command Delay Line Select
* PSU_DDR_PHY_PGCR0_OSCACDL 0x3
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_PGCR0_RESERVED_23_19 0x0
* Digital Test Output Select
* PSU_DDR_PHY_PGCR0_DTOSEL 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_PGCR0_RESERVED_13 0x0
* Oscillator Mode Division
* PSU_DDR_PHY_PGCR0_OSCDIV 0xf
* Oscillator Enable
* PSU_DDR_PHY_PGCR0_OSCEN 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_PGCR0_RESERVED_7_0 0x0
* PHY General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080010, 0xFFFFFFFFU ,0x07001E00U)
*/
PSU_Mask_Write(DDR_PHY_PGCR0_OFFSET, 0xFFFFFFFFU, 0x07001E00U);
/*##################################################################### */
/*
* Register : PGCR2 @ 0XFD080018
* Clear Training Status Registers
* PSU_DDR_PHY_PGCR2_CLRTSTAT 0x0
* Clear Impedance Calibration
* PSU_DDR_PHY_PGCR2_CLRZCAL 0x0
* Clear Parity Error
* PSU_DDR_PHY_PGCR2_CLRPERR 0x0
* Initialization Complete Pin Configuration
* PSU_DDR_PHY_PGCR2_ICPC 0x0
* Data Training PUB Mode Exit Timer
* PSU_DDR_PHY_PGCR2_DTPMXTMR 0xf
* Initialization Bypass
* PSU_DDR_PHY_PGCR2_INITFSMBYP 0x0
* PLL FSM Bypass
* PSU_DDR_PHY_PGCR2_PLLFSMBYP 0x0
* Refresh Period
* PSU_DDR_PHY_PGCR2_TREFPRD 0x10010
* PHY General Configuration Register 2
* (OFFSET, MASK, VALUE) (0XFD080018, 0xFFFFFFFFU ,0x00F10010U)
*/
PSU_Mask_Write(DDR_PHY_PGCR2_OFFSET, 0xFFFFFFFFU, 0x00F10010U);
/*##################################################################### */
/*
* Register : PGCR3 @ 0XFD08001C
* CKN Enable
* PSU_DDR_PHY_PGCR3_CKNEN 0x55
* CK Enable
* PSU_DDR_PHY_PGCR3_CKEN 0xaa
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_PGCR3_RESERVED_15 0x0
* Enable Clock Gating for AC [0] ctl_rd_clk
* PSU_DDR_PHY_PGCR3_GATEACRDCLK 0x2
* Enable Clock Gating for AC [0] ddr_clk
* PSU_DDR_PHY_PGCR3_GATEACDDRCLK 0x2
* Enable Clock Gating for AC [0] ctl_clk
* PSU_DDR_PHY_PGCR3_GATEACCTLCLK 0x2
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_PGCR3_RESERVED_8 0x0
* Controls DDL Bypass Modes
* PSU_DDR_PHY_PGCR3_DDLBYPMODE 0x2
* IO Loop-Back Select
* PSU_DDR_PHY_PGCR3_IOLB 0x0
* AC Receive FIFO Read Mode
* PSU_DDR_PHY_PGCR3_RDMODE 0x0
* Read FIFO Reset Disable
* PSU_DDR_PHY_PGCR3_DISRST 0x0
* Clock Level when Clock Gating
* PSU_DDR_PHY_PGCR3_CLKLEVEL 0x0
* PHY General Configuration Register 3
* (OFFSET, MASK, VALUE) (0XFD08001C, 0xFFFFFFFFU ,0x55AA5480U)
*/
PSU_Mask_Write(DDR_PHY_PGCR3_OFFSET, 0xFFFFFFFFU, 0x55AA5480U);
/*##################################################################### */
/*
* Register : PGCR5 @ 0XFD080024
* Frequency B Ratio Term
* PSU_DDR_PHY_PGCR5_FRQBT 0x1
* Frequency A Ratio Term
* PSU_DDR_PHY_PGCR5_FRQAT 0x1
* DFI Disconnect Time Period
* PSU_DDR_PHY_PGCR5_DISCNPERIOD 0x0
* Receiver bias core side control
* PSU_DDR_PHY_PGCR5_VREF_RBCTRL 0xf
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_PGCR5_RESERVED_3 0x0
* Internal VREF generator REFSEL ragne select
* PSU_DDR_PHY_PGCR5_DXREFISELRANGE 0x1
* DDL Page Read Write select
* PSU_DDR_PHY_PGCR5_DDLPGACT 0x0
* DDL Page Read Write select
* PSU_DDR_PHY_PGCR5_DDLPGRW 0x0
* PHY General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080024, 0xFFFFFFFFU ,0x010100F4U)
*/
PSU_Mask_Write(DDR_PHY_PGCR5_OFFSET, 0xFFFFFFFFU, 0x010100F4U);
/*##################################################################### */
/*
* Register : PTR0 @ 0XFD080040
* PLL Power-Down Time
* PSU_DDR_PHY_PTR0_TPLLPD 0x56
* PLL Gear Shift Time
* PSU_DDR_PHY_PTR0_TPLLGS 0x2155
* PHY Reset Time
* PSU_DDR_PHY_PTR0_TPHYRST 0x10
* PHY Timing Register 0
* (OFFSET, MASK, VALUE) (0XFD080040, 0xFFFFFFFFU ,0x0AC85550U)
*/
PSU_Mask_Write(DDR_PHY_PTR0_OFFSET, 0xFFFFFFFFU, 0x0AC85550U);
/*##################################################################### */
/*
* Register : PTR1 @ 0XFD080044
* PLL Lock Time
* PSU_DDR_PHY_PTR1_TPLLLOCK 0x4141
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_PTR1_RESERVED_15_13 0x0
* PLL Reset Time
* PSU_DDR_PHY_PTR1_TPLLRST 0xaff
* PHY Timing Register 1
* (OFFSET, MASK, VALUE) (0XFD080044, 0xFFFFFFFFU ,0x41410AFFU)
*/
PSU_Mask_Write(DDR_PHY_PTR1_OFFSET, 0xFFFFFFFFU, 0x41410AFFU);
/*##################################################################### */
/*
* Register : PLLCR0 @ 0XFD080068
* PLL Bypass
* PSU_DDR_PHY_PLLCR0_PLLBYP 0x0
* PLL Reset
* PSU_DDR_PHY_PLLCR0_PLLRST 0x0
* PLL Power Down
* PSU_DDR_PHY_PLLCR0_PLLPD 0x0
* Reference Stop Mode
* PSU_DDR_PHY_PLLCR0_RSTOPM 0x0
* PLL Frequency Select
* PSU_DDR_PHY_PLLCR0_FRQSEL 0x1
* Relock Mode
* PSU_DDR_PHY_PLLCR0_RLOCKM 0x0
* Charge Pump Proportional Current Control
* PSU_DDR_PHY_PLLCR0_CPPC 0x8
* Charge Pump Integrating Current Control
* PSU_DDR_PHY_PLLCR0_CPIC 0x0
* Gear Shift
* PSU_DDR_PHY_PLLCR0_GSHIFT 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_PLLCR0_RESERVED_11_9 0x0
* Analog Test Enable
* PSU_DDR_PHY_PLLCR0_ATOEN 0x0
* Analog Test Control
* PSU_DDR_PHY_PLLCR0_ATC 0x0
* Digital Test Control
* PSU_DDR_PHY_PLLCR0_DTC 0x0
* PLL Control Register 0 (Type B PLL Only)
* (OFFSET, MASK, VALUE) (0XFD080068, 0xFFFFFFFFU ,0x01100000U)
*/
PSU_Mask_Write(DDR_PHY_PLLCR0_OFFSET, 0xFFFFFFFFU, 0x01100000U);
/*##################################################################### */
/*
* Register : DSGCR @ 0XFD080090
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DSGCR_RESERVED_31_28 0x0
* When RDBI enabled, this bit is used to select RDBI CL calculation, if it
* is 1b1, calculation will use RDBICL, otherwise use default calculation.
* PSU_DDR_PHY_DSGCR_RDBICLSEL 0x0
* When RDBI enabled, if RDBICLSEL is asserted, RDBI CL adjust using this v
* alue.
* PSU_DDR_PHY_DSGCR_RDBICL 0x2
* PHY Impedance Update Enable
* PSU_DDR_PHY_DSGCR_PHYZUEN 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DSGCR_RESERVED_22 0x0
* SDRAM Reset Output Enable
* PSU_DDR_PHY_DSGCR_RSTOE 0x1
* Single Data Rate Mode
* PSU_DDR_PHY_DSGCR_SDRMODE 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DSGCR_RESERVED_18 0x0
* ATO Analog Test Enable
* PSU_DDR_PHY_DSGCR_ATOAE 0x0
* DTO Output Enable
* PSU_DDR_PHY_DSGCR_DTOOE 0x0
* DTO I/O Mode
* PSU_DDR_PHY_DSGCR_DTOIOM 0x0
* DTO Power Down Receiver
* PSU_DDR_PHY_DSGCR_DTOPDR 0x1
* Reserved. Return zeroes on reads
* PSU_DDR_PHY_DSGCR_RESERVED_13 0x0
* DTO On-Die Termination
* PSU_DDR_PHY_DSGCR_DTOODT 0x0
* PHY Update Acknowledge Delay
* PSU_DDR_PHY_DSGCR_PUAD 0x5
* Controller Update Acknowledge Enable
* PSU_DDR_PHY_DSGCR_CUAEN 0x1
* Reserved. Return zeroes on reads
* PSU_DDR_PHY_DSGCR_RESERVED_4_3 0x0
* Controller Impedance Update Enable
* PSU_DDR_PHY_DSGCR_CTLZUEN 0x0
* Reserved. Return zeroes on reads
* PSU_DDR_PHY_DSGCR_RESERVED_1 0x0
* PHY Update Request Enable
* PSU_DDR_PHY_DSGCR_PUREN 0x1
* DDR System General Configuration Register
* (OFFSET, MASK, VALUE) (0XFD080090, 0xFFFFFFFFU ,0x02A04161U)
*/
PSU_Mask_Write(DDR_PHY_DSGCR_OFFSET, 0xFFFFFFFFU, 0x02A04161U);
/*##################################################################### */
/*
* Register : GPR0 @ 0XFD0800C0
* General Purpose Register 0
* PSU_DDR_PHY_GPR0_GPR0 0xd3
* General Purpose Register 0
* (OFFSET, MASK, VALUE) (0XFD0800C0, 0xFFFFFFFFU ,0x000000D3U)
*/
PSU_Mask_Write(DDR_PHY_GPR0_OFFSET, 0xFFFFFFFFU, 0x000000D3U);
/*##################################################################### */
/*
* Register : DCR @ 0XFD080100
* DDR4 Gear Down Timing.
* PSU_DDR_PHY_DCR_GEARDN 0x0
* Un-used Bank Group
* PSU_DDR_PHY_DCR_UBG 0x0
* Un-buffered DIMM Address Mirroring
* PSU_DDR_PHY_DCR_UDIMM 0x0
* DDR 2T Timing
* PSU_DDR_PHY_DCR_DDR2T 0x0
* No Simultaneous Rank Access
* PSU_DDR_PHY_DCR_NOSRA 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DCR_RESERVED_26_18 0x0
* Byte Mask
* PSU_DDR_PHY_DCR_BYTEMASK 0x1
* DDR Type
* PSU_DDR_PHY_DCR_DDRTYPE 0x0
* Multi-Purpose Register (MPR) DQ (DDR3 Only)
* PSU_DDR_PHY_DCR_MPRDQ 0x0
* Primary DQ (DDR3 Only)
* PSU_DDR_PHY_DCR_PDQ 0x0
* DDR 8-Bank
* PSU_DDR_PHY_DCR_DDR8BNK 0x1
* DDR Mode
* PSU_DDR_PHY_DCR_DDRMD 0x4
* DRAM Configuration Register
* (OFFSET, MASK, VALUE) (0XFD080100, 0xFFFFFFFFU ,0x0800040CU)
*/
PSU_Mask_Write(DDR_PHY_DCR_OFFSET, 0xFFFFFFFFU, 0x0800040CU);
/*##################################################################### */
/*
* Register : DTPR0 @ 0XFD080110
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR0_RESERVED_31_29 0x0
* Activate to activate command delay (different banks)
* PSU_DDR_PHY_DTPR0_TRRD 0x6
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR0_RESERVED_23 0x0
* Activate to precharge command delay
* PSU_DDR_PHY_DTPR0_TRAS 0x24
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR0_RESERVED_15 0x0
* Precharge command period
* PSU_DDR_PHY_DTPR0_TRP 0xf
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR0_RESERVED_7_5 0x0
* Internal read to precharge command delay
* PSU_DDR_PHY_DTPR0_TRTP 0x8
* DRAM Timing Parameters Register 0
* (OFFSET, MASK, VALUE) (0XFD080110, 0xFFFFFFFFU ,0x06240F08U)
*/
PSU_Mask_Write(DDR_PHY_DTPR0_OFFSET, 0xFFFFFFFFU, 0x06240F08U);
/*##################################################################### */
/*
* Register : DTPR1 @ 0XFD080114
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR1_RESERVED_31 0x0
* Minimum delay from when write leveling mode is programmed to the first D
* QS/DQS# rising edge.
* PSU_DDR_PHY_DTPR1_TWLMRD 0x28
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR1_RESERVED_23 0x0
* 4-bank activate period
* PSU_DDR_PHY_DTPR1_TFAW 0x20
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR1_RESERVED_15_11 0x0
* Load mode update delay (DDR4 and DDR3 only)
* PSU_DDR_PHY_DTPR1_TMOD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR1_RESERVED_7_5 0x0
* Load mode cycle time
* PSU_DDR_PHY_DTPR1_TMRD 0x8
* DRAM Timing Parameters Register 1
* (OFFSET, MASK, VALUE) (0XFD080114, 0xFFFFFFFFU ,0x28200008U)
*/
PSU_Mask_Write(DDR_PHY_DTPR1_OFFSET, 0xFFFFFFFFU, 0x28200008U);
/*##################################################################### */
/*
* Register : DTPR2 @ 0XFD080118
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR2_RESERVED_31_29 0x0
* Read to Write command delay. Valid values are
* PSU_DDR_PHY_DTPR2_TRTW 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR2_RESERVED_27_25 0x0
* Read to ODT delay (DDR3 only)
* PSU_DDR_PHY_DTPR2_TRTODT 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR2_RESERVED_23_20 0x0
* CKE minimum pulse width
* PSU_DDR_PHY_DTPR2_TCKE 0x7
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR2_RESERVED_15_10 0x0
* Self refresh exit delay
* PSU_DDR_PHY_DTPR2_TXS 0x300
* DRAM Timing Parameters Register 2
* (OFFSET, MASK, VALUE) (0XFD080118, 0xFFFFFFFFU ,0x00070300U)
*/
PSU_Mask_Write(DDR_PHY_DTPR2_OFFSET, 0xFFFFFFFFU, 0x00070300U);
/*##################################################################### */
/*
* Register : DTPR3 @ 0XFD08011C
* ODT turn-off delay extension
* PSU_DDR_PHY_DTPR3_TOFDX 0x4
* Read to read and write to write command delay
* PSU_DDR_PHY_DTPR3_TCCD 0x0
* DLL locking time
* PSU_DDR_PHY_DTPR3_TDLLK 0x300
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR3_RESERVED_15_12 0x0
* Maximum DQS output access time from CK/CK# (LPDDR2/3 only)
* PSU_DDR_PHY_DTPR3_TDQSCKMAX 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR3_RESERVED_7_3 0x0
* DQS output access time from CK/CK# (LPDDR2/3 only)
* PSU_DDR_PHY_DTPR3_TDQSCK 0x0
* DRAM Timing Parameters Register 3
* (OFFSET, MASK, VALUE) (0XFD08011C, 0xFFFFFFFFU ,0x83000800U)
*/
PSU_Mask_Write(DDR_PHY_DTPR3_OFFSET, 0xFFFFFFFFU, 0x83000800U);
/*##################################################################### */
/*
* Register : DTPR4 @ 0XFD080120
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR4_RESERVED_31_30 0x0
* ODT turn-on/turn-off delays (DDR2 only)
* PSU_DDR_PHY_DTPR4_TAOND_TAOFD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR4_RESERVED_27_26 0x0
* Refresh-to-Refresh
* PSU_DDR_PHY_DTPR4_TRFC 0x116
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR4_RESERVED_15_14 0x0
* Write leveling output delay
* PSU_DDR_PHY_DTPR4_TWLO 0x2b
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR4_RESERVED_7_5 0x0
* Power down exit delay
* PSU_DDR_PHY_DTPR4_TXP 0x7
* DRAM Timing Parameters Register 4
* (OFFSET, MASK, VALUE) (0XFD080120, 0xFFFFFFFFU ,0x01162B07U)
*/
PSU_Mask_Write(DDR_PHY_DTPR4_OFFSET, 0xFFFFFFFFU, 0x01162B07U);
/*##################################################################### */
/*
* Register : DTPR5 @ 0XFD080124
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR5_RESERVED_31_24 0x0
* Activate to activate command delay (same bank)
* PSU_DDR_PHY_DTPR5_TRC 0x33
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR5_RESERVED_15 0x0
* Activate to read or write delay
* PSU_DDR_PHY_DTPR5_TRCD 0xf
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR5_RESERVED_7_5 0x0
* Internal write to read command delay
* PSU_DDR_PHY_DTPR5_TWTR 0x8
* DRAM Timing Parameters Register 5
* (OFFSET, MASK, VALUE) (0XFD080124, 0xFFFFFFFFU ,0x00330F08U)
*/
PSU_Mask_Write(DDR_PHY_DTPR5_OFFSET, 0xFFFFFFFFU, 0x00330F08U);
/*##################################################################### */
/*
* Register : DTPR6 @ 0XFD080128
* PUB Write Latency Enable
* PSU_DDR_PHY_DTPR6_PUBWLEN 0x0
* PUB Read Latency Enable
* PSU_DDR_PHY_DTPR6_PUBRLEN 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR6_RESERVED_29_14 0x0
* Write Latency
* PSU_DDR_PHY_DTPR6_PUBWL 0xe
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTPR6_RESERVED_7_6 0x0
* Read Latency
* PSU_DDR_PHY_DTPR6_PUBRL 0xf
* DRAM Timing Parameters Register 6
* (OFFSET, MASK, VALUE) (0XFD080128, 0xFFFFFFFFU ,0x00000E0FU)
*/
PSU_Mask_Write(DDR_PHY_DTPR6_OFFSET, 0xFFFFFFFFU, 0x00000E0FU);
/*##################################################################### */
/*
* Register : RDIMMGCR0 @ 0XFD080140
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR0_RESERVED_31 0x0
* RDMIMM Quad CS Enable
* PSU_DDR_PHY_RDIMMGCR0_QCSEN 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR0_RESERVED_29_28 0x0
* RDIMM Outputs I/O Mode
* PSU_DDR_PHY_RDIMMGCR0_RDIMMIOM 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR0_RESERVED_26_24 0x0
* ERROUT# Output Enable
* PSU_DDR_PHY_RDIMMGCR0_ERROUTOE 0x0
* ERROUT# I/O Mode
* PSU_DDR_PHY_RDIMMGCR0_ERROUTIOM 0x1
* ERROUT# Power Down Receiver
* PSU_DDR_PHY_RDIMMGCR0_ERROUTPDR 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR0_RESERVED_20 0x0
* ERROUT# On-Die Termination
* PSU_DDR_PHY_RDIMMGCR0_ERROUTODT 0x0
* Load Reduced DIMM
* PSU_DDR_PHY_RDIMMGCR0_LRDIMM 0x0
* PAR_IN I/O Mode
* PSU_DDR_PHY_RDIMMGCR0_PARINIOM 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR0_RESERVED_16_8 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR0_RNKMRREN_RSVD 0x0
* Rank Mirror Enable.
* PSU_DDR_PHY_RDIMMGCR0_RNKMRREN 0x2
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR0_RESERVED_3 0x0
* Stop on Parity Error
* PSU_DDR_PHY_RDIMMGCR0_SOPERR 0x0
* Parity Error No Registering
* PSU_DDR_PHY_RDIMMGCR0_ERRNOREG 0x0
* Registered DIMM
* PSU_DDR_PHY_RDIMMGCR0_RDIMM 0x0
* RDIMM General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080140, 0xFFFFFFFFU ,0x08400020U)
*/
PSU_Mask_Write(DDR_PHY_RDIMMGCR0_OFFSET, 0xFFFFFFFFU, 0x08400020U);
/*##################################################################### */
/*
* Register : RDIMMGCR1 @ 0XFD080144
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR1_RESERVED_31_29 0x0
* Address [17] B-side Inversion Disable
* PSU_DDR_PHY_RDIMMGCR1_A17BID 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR1_RESERVED_27 0x0
* Command word to command word programming delay
* PSU_DDR_PHY_RDIMMGCR1_TBCMRD_L2 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR1_RESERVED_23 0x0
* Command word to command word programming delay
* PSU_DDR_PHY_RDIMMGCR1_TBCMRD_L 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR1_RESERVED_19 0x0
* Command word to command word programming delay
* PSU_DDR_PHY_RDIMMGCR1_TBCMRD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RDIMMGCR1_RESERVED_15_14 0x0
* Stabilization time
* PSU_DDR_PHY_RDIMMGCR1_TBCSTAB 0xc80
* RDIMM General Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD080144, 0xFFFFFFFFU ,0x00000C80U)
*/
PSU_Mask_Write(DDR_PHY_RDIMMGCR1_OFFSET, 0xFFFFFFFFU, 0x00000C80U);
/*##################################################################### */
/*
* Register : RDIMMCR0 @ 0XFD080150
* DDR4/DDR3 Control Word 7
* PSU_DDR_PHY_RDIMMCR0_RC7 0x0
* DDR4 Control Word 6 (Comman space Control Word) / DDR3 Reserved
* PSU_DDR_PHY_RDIMMCR0_RC6 0x0
* DDR4/DDR3 Control Word 5 (CK Driver Characteristics Control Word)
* PSU_DDR_PHY_RDIMMCR0_RC5 0x0
* DDR4 Control Word 4 (ODT and CKE Signals Driver Characteristics Control
* Word) / DDR3 Control Word 4 (Control Signals Driver Characteristics Cont
* rol Word)
* PSU_DDR_PHY_RDIMMCR0_RC4 0x0
* DDR4 Control Word 3 (CA and CS Signals Driver Characteristics Control Wo
* rd) / DDR3 Control Word 3 (Command/Address Signals Driver Characteristri
* cs Control Word)
* PSU_DDR_PHY_RDIMMCR0_RC3 0x0
* DDR4 Control Word 2 (Timing and IBT Control Word) / DDR3 Control Word 2
* (Timing Control Word)
* PSU_DDR_PHY_RDIMMCR0_RC2 0x0
* DDR4/DDR3 Control Word 1 (Clock Driver Enable Control Word)
* PSU_DDR_PHY_RDIMMCR0_RC1 0x0
* DDR4/DDR3 Control Word 0 (Global Features Control Word)
* PSU_DDR_PHY_RDIMMCR0_RC0 0x0
* RDIMM Control Register 0
* (OFFSET, MASK, VALUE) (0XFD080150, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_RDIMMCR0_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : RDIMMCR1 @ 0XFD080154
* Control Word 15
* PSU_DDR_PHY_RDIMMCR1_RC15 0x0
* DDR4 Control Word 14 (Parity Control Word) / DDR3 Reserved
* PSU_DDR_PHY_RDIMMCR1_RC14 0x0
* DDR4 Control Word 13 (DIMM Configuration Control Word) / DDR3 Reserved
* PSU_DDR_PHY_RDIMMCR1_RC13 0x0
* DDR4 Control Word 12 (Training Control Word) / DDR3 Reserved
* PSU_DDR_PHY_RDIMMCR1_RC12 0x0
* DDR4 Control Word 11 (Operating Voltage VDD and VREFCA Source Control Wo
* rd) / DDR3 Control Word 11 (Operation Voltage VDD Control Word)
* PSU_DDR_PHY_RDIMMCR1_RC11 0x0
* DDR4/DDR3 Control Word 10 (RDIMM Operating Speed Control Word)
* PSU_DDR_PHY_RDIMMCR1_RC10 0x2
* DDR4/DDR3 Control Word 9 (Power Saving Settings Control Word)
* PSU_DDR_PHY_RDIMMCR1_RC9 0x0
* DDR4 Control Word 8 (Input/Output Configuration Control Word) / DDR3 Con
* trol Word 8 (Additional Input Bus Termination Setting Control Word)
* PSU_DDR_PHY_RDIMMCR1_RC8 0x0
* RDIMM Control Register 1
* (OFFSET, MASK, VALUE) (0XFD080154, 0xFFFFFFFFU ,0x00000200U)
*/
PSU_Mask_Write(DDR_PHY_RDIMMCR1_OFFSET, 0xFFFFFFFFU, 0x00000200U);
/*##################################################################### */
/*
* Register : MR0 @ 0XFD080180
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR0_RESERVED_31_8 0x6
* CA Terminating Rank
* PSU_DDR_PHY_MR0_CATR 0x0
* Reserved. These are JEDEC reserved bits and are recommended by JEDEC to
* be programmed to 0x0.
* PSU_DDR_PHY_MR0_RSVD_6_5 0x1
* Built-in Self-Test for RZQ
* PSU_DDR_PHY_MR0_RZQI 0x2
* Reserved. These are JEDEC reserved bits and are recommended by JEDEC to
* be programmed to 0x0.
* PSU_DDR_PHY_MR0_RSVD_2_0 0x0
* LPDDR4 Mode Register 0
* (OFFSET, MASK, VALUE) (0XFD080180, 0xFFFFFFFFU ,0x00000630U)
*/
PSU_Mask_Write(DDR_PHY_MR0_OFFSET, 0xFFFFFFFFU, 0x00000630U);
/*##################################################################### */
/*
* Register : MR1 @ 0XFD080184
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR1_RESERVED_31_8 0x3
* Read Postamble Length
* PSU_DDR_PHY_MR1_RDPST 0x0
* Write-recovery for auto-precharge command
* PSU_DDR_PHY_MR1_NWR 0x0
* Read Preamble Length
* PSU_DDR_PHY_MR1_RDPRE 0x0
* Write Preamble Length
* PSU_DDR_PHY_MR1_WRPRE 0x0
* Burst Length
* PSU_DDR_PHY_MR1_BL 0x1
* LPDDR4 Mode Register 1
* (OFFSET, MASK, VALUE) (0XFD080184, 0xFFFFFFFFU ,0x00000301U)
*/
PSU_Mask_Write(DDR_PHY_MR1_OFFSET, 0xFFFFFFFFU, 0x00000301U);
/*##################################################################### */
/*
* Register : MR2 @ 0XFD080188
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR2_RESERVED_31_8 0x0
* Write Leveling
* PSU_DDR_PHY_MR2_WRL 0x0
* Write Latency Set
* PSU_DDR_PHY_MR2_WLS 0x0
* Write Latency
* PSU_DDR_PHY_MR2_WL 0x4
* Read Latency
* PSU_DDR_PHY_MR2_RL 0x0
* LPDDR4 Mode Register 2
* (OFFSET, MASK, VALUE) (0XFD080188, 0xFFFFFFFFU ,0x00000020U)
*/
PSU_Mask_Write(DDR_PHY_MR2_OFFSET, 0xFFFFFFFFU, 0x00000020U);
/*##################################################################### */
/*
* Register : MR3 @ 0XFD08018C
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR3_RESERVED_31_8 0x2
* DBI-Write Enable
* PSU_DDR_PHY_MR3_DBIWR 0x0
* DBI-Read Enable
* PSU_DDR_PHY_MR3_DBIRD 0x0
* Pull-down Drive Strength
* PSU_DDR_PHY_MR3_PDDS 0x0
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR3_RSVD 0x0
* Write Postamble Length
* PSU_DDR_PHY_MR3_WRPST 0x0
* Pull-up Calibration Point
* PSU_DDR_PHY_MR3_PUCAL 0x0
* LPDDR4 Mode Register 3
* (OFFSET, MASK, VALUE) (0XFD08018C, 0xFFFFFFFFU ,0x00000200U)
*/
PSU_Mask_Write(DDR_PHY_MR3_OFFSET, 0xFFFFFFFFU, 0x00000200U);
/*##################################################################### */
/*
* Register : MR4 @ 0XFD080190
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR4_RESERVED_31_16 0x0
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR4_RSVD_15_13 0x0
* Write Preamble
* PSU_DDR_PHY_MR4_WRP 0x0
* Read Preamble
* PSU_DDR_PHY_MR4_RDP 0x0
* Read Preamble Training Mode
* PSU_DDR_PHY_MR4_RPTM 0x0
* Self Refresh Abort
* PSU_DDR_PHY_MR4_SRA 0x0
* CS to Command Latency Mode
* PSU_DDR_PHY_MR4_CS2CMDL 0x0
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR4_RSVD1 0x0
* Internal VREF Monitor
* PSU_DDR_PHY_MR4_IVM 0x0
* Temperature Controlled Refresh Mode
* PSU_DDR_PHY_MR4_TCRM 0x0
* Temperature Controlled Refresh Range
* PSU_DDR_PHY_MR4_TCRR 0x0
* Maximum Power Down Mode
* PSU_DDR_PHY_MR4_MPDM 0x0
* This is a JEDEC reserved bit and is recommended by JEDEC to be programme
* d to 0x0.
* PSU_DDR_PHY_MR4_RSVD_0 0x0
* DDR4 Mode Register 4
* (OFFSET, MASK, VALUE) (0XFD080190, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_MR4_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : MR5 @ 0XFD080194
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR5_RESERVED_31_16 0x0
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR5_RSVD 0x0
* Read DBI
* PSU_DDR_PHY_MR5_RDBI 0x0
* Write DBI
* PSU_DDR_PHY_MR5_WDBI 0x0
* Data Mask
* PSU_DDR_PHY_MR5_DM 0x1
* CA Parity Persistent Error
* PSU_DDR_PHY_MR5_CAPPE 0x1
* RTT_PARK
* PSU_DDR_PHY_MR5_RTTPARK 0x3
* ODT Input Buffer during Power Down mode
* PSU_DDR_PHY_MR5_ODTIBPD 0x0
* C/A Parity Error Status
* PSU_DDR_PHY_MR5_CAPES 0x0
* CRC Error Clear
* PSU_DDR_PHY_MR5_CRCEC 0x0
* C/A Parity Latency Mode
* PSU_DDR_PHY_MR5_CAPM 0x0
* DDR4 Mode Register 5
* (OFFSET, MASK, VALUE) (0XFD080194, 0xFFFFFFFFU ,0x000006C0U)
*/
PSU_Mask_Write(DDR_PHY_MR5_OFFSET, 0xFFFFFFFFU, 0x000006C0U);
/*##################################################################### */
/*
* Register : MR6 @ 0XFD080198
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR6_RESERVED_31_16 0x0
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR6_RSVD_15_13 0x0
* CAS_n to CAS_n command delay for same bank group (tCCD_L)
* PSU_DDR_PHY_MR6_TCCDL 0x2
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR6_RSVD_9_8 0x0
* VrefDQ Training Enable
* PSU_DDR_PHY_MR6_VDDQTEN 0x0
* VrefDQ Training Range
* PSU_DDR_PHY_MR6_VDQTRG 0x0
* VrefDQ Training Values
* PSU_DDR_PHY_MR6_VDQTVAL 0x19
* DDR4 Mode Register 6
* (OFFSET, MASK, VALUE) (0XFD080198, 0xFFFFFFFFU ,0x00000819U)
*/
PSU_Mask_Write(DDR_PHY_MR6_OFFSET, 0xFFFFFFFFU, 0x00000819U);
/*##################################################################### */
/*
* Register : MR11 @ 0XFD0801AC
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR11_RESERVED_31_8 0x0
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR11_RSVD 0x0
* Power Down Control
* PSU_DDR_PHY_MR11_PDCTL 0x0
* DQ Bus Receiver On-Die-Termination
* PSU_DDR_PHY_MR11_DQODT 0x0
* LPDDR4 Mode Register 11
* (OFFSET, MASK, VALUE) (0XFD0801AC, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_MR11_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : MR12 @ 0XFD0801B0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR12_RESERVED_31_8 0x0
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR12_RSVD 0x0
* VREF_CA Range Select.
* PSU_DDR_PHY_MR12_VR_CA 0x1
* Controls the VREF(ca) levels for Frequency-Set-Point[1:0].
* PSU_DDR_PHY_MR12_VREF_CA 0xd
* LPDDR4 Mode Register 12
* (OFFSET, MASK, VALUE) (0XFD0801B0, 0xFFFFFFFFU ,0x0000004DU)
*/
PSU_Mask_Write(DDR_PHY_MR12_OFFSET, 0xFFFFFFFFU, 0x0000004DU);
/*##################################################################### */
/*
* Register : MR13 @ 0XFD0801B4
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR13_RESERVED_31_8 0x0
* Frequency Set Point Operation Mode
* PSU_DDR_PHY_MR13_FSPOP 0x0
* Frequency Set Point Write Enable
* PSU_DDR_PHY_MR13_FSPWR 0x0
* Data Mask Enable
* PSU_DDR_PHY_MR13_DMD 0x0
* Refresh Rate Option
* PSU_DDR_PHY_MR13_RRO 0x0
* VREF Current Generator
* PSU_DDR_PHY_MR13_VRCG 0x1
* VREF Output
* PSU_DDR_PHY_MR13_VRO 0x0
* Read Preamble Training Mode
* PSU_DDR_PHY_MR13_RPT 0x0
* Command Bus Training
* PSU_DDR_PHY_MR13_CBT 0x0
* LPDDR4 Mode Register 13
* (OFFSET, MASK, VALUE) (0XFD0801B4, 0xFFFFFFFFU ,0x00000008U)
*/
PSU_Mask_Write(DDR_PHY_MR13_OFFSET, 0xFFFFFFFFU, 0x00000008U);
/*##################################################################### */
/*
* Register : MR14 @ 0XFD0801B8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR14_RESERVED_31_8 0x0
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR14_RSVD 0x0
* VREFDQ Range Selects.
* PSU_DDR_PHY_MR14_VR_DQ 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR14_VREF_DQ 0xd
* LPDDR4 Mode Register 14
* (OFFSET, MASK, VALUE) (0XFD0801B8, 0xFFFFFFFFU ,0x0000004DU)
*/
PSU_Mask_Write(DDR_PHY_MR14_OFFSET, 0xFFFFFFFFU, 0x0000004DU);
/*##################################################################### */
/*
* Register : MR22 @ 0XFD0801D8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_MR22_RESERVED_31_8 0x0
* These are JEDEC reserved bits and are recommended by JEDEC to be program
* med to 0x0.
* PSU_DDR_PHY_MR22_RSVD 0x0
* CA ODT termination disable.
* PSU_DDR_PHY_MR22_ODTD_CA 0x0
* ODT CS override.
* PSU_DDR_PHY_MR22_ODTE_CS 0x0
* ODT CK override.
* PSU_DDR_PHY_MR22_ODTE_CK 0x0
* Controller ODT value for VOH calibration.
* PSU_DDR_PHY_MR22_CODT 0x0
* LPDDR4 Mode Register 22
* (OFFSET, MASK, VALUE) (0XFD0801D8, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_MR22_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : DTCR0 @ 0XFD080200
* Refresh During Training
* PSU_DDR_PHY_DTCR0_RFSHDT 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTCR0_RESERVED_27_26 0x0
* Data Training Debug Rank Select
* PSU_DDR_PHY_DTCR0_DTDRS 0x0
* Data Training with Early/Extended Gate
* PSU_DDR_PHY_DTCR0_DTEXG 0x0
* Data Training Extended Write DQS
* PSU_DDR_PHY_DTCR0_DTEXD 0x0
* Data Training Debug Step
* PSU_DDR_PHY_DTCR0_DTDSTP 0x0
* Data Training Debug Enable
* PSU_DDR_PHY_DTCR0_DTDEN 0x0
* Data Training Debug Byte Select
* PSU_DDR_PHY_DTCR0_DTDBS 0x0
* Data Training read DBI deskewing configuration
* PSU_DDR_PHY_DTCR0_DTRDBITR 0x2
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTCR0_RESERVED_13 0x0
* Data Training Write Bit Deskew Data Mask
* PSU_DDR_PHY_DTCR0_DTWBDDM 0x1
* Refreshes Issued During Entry to Training
* PSU_DDR_PHY_DTCR0_RFSHEN 0x1
* Data Training Compare Data
* PSU_DDR_PHY_DTCR0_DTCMPD 0x1
* Data Training Using MPR
* PSU_DDR_PHY_DTCR0_DTMPR 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTCR0_RESERVED_5_4 0x0
* Data Training Repeat Number
* PSU_DDR_PHY_DTCR0_DTRPTN 0x7
* Data Training Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080200, 0xFFFFFFFFU ,0x800091C7U)
*/
PSU_Mask_Write(DDR_PHY_DTCR0_OFFSET, 0xFFFFFFFFU, 0x800091C7U);
/*##################################################################### */
/*
* Register : DTCR1 @ 0XFD080204
* Rank Enable.
* PSU_DDR_PHY_DTCR1_RANKEN_RSVD 0x0
* Rank Enable.
* PSU_DDR_PHY_DTCR1_RANKEN 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTCR1_RESERVED_15_14 0x0
* Data Training Rank
* PSU_DDR_PHY_DTCR1_DTRANK 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTCR1_RESERVED_11 0x0
* Read Leveling Gate Sampling Difference
* PSU_DDR_PHY_DTCR1_RDLVLGDIFF 0x2
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTCR1_RESERVED_7 0x0
* Read Leveling Gate Shift
* PSU_DDR_PHY_DTCR1_RDLVLGS 0x3
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DTCR1_RESERVED_3 0x0
* Read Preamble Training enable
* PSU_DDR_PHY_DTCR1_RDPRMVL_TRN 0x1
* Read Leveling Enable
* PSU_DDR_PHY_DTCR1_RDLVLEN 0x1
* Basic Gate Training Enable
* PSU_DDR_PHY_DTCR1_BSTEN 0x0
* Data Training Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD080204, 0xFFFFFFFFU ,0x00010236U)
*/
PSU_Mask_Write(DDR_PHY_DTCR1_OFFSET, 0xFFFFFFFFU, 0x00010236U);
/*##################################################################### */
/*
* Register : CATR0 @ 0XFD080240
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_CATR0_RESERVED_31_21 0x0
* Minimum time (in terms of number of dram clocks) between two consectuve
* CA calibration command
* PSU_DDR_PHY_CATR0_CACD 0x14
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_CATR0_RESERVED_15_13 0x0
* Minimum time (in terms of number of dram clocks) PUB should wait before
* sampling the CA response after Calibration command has been sent to the
* memory
* PSU_DDR_PHY_CATR0_CAADR 0x10
* CA_1 Response Byte Lane 1
* PSU_DDR_PHY_CATR0_CA1BYTE1 0x5
* CA_1 Response Byte Lane 0
* PSU_DDR_PHY_CATR0_CA1BYTE0 0x4
* CA Training Register 0
* (OFFSET, MASK, VALUE) (0XFD080240, 0xFFFFFFFFU ,0x00141054U)
*/
PSU_Mask_Write(DDR_PHY_CATR0_OFFSET, 0xFFFFFFFFU, 0x00141054U);
/*##################################################################### */
/*
* Register : DQSDR0 @ 0XFD080250
* Number of delay taps by which the DQS gate LCDL will be updated when DQS
* drift is detected
* PSU_DDR_PHY_DQSDR0_DFTDLY 0x0
* Drift Impedance Update
* PSU_DDR_PHY_DQSDR0_DFTZQUP 0x0
* Drift DDL Update
* PSU_DDR_PHY_DQSDR0_DFTDDLUP 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DQSDR0_RESERVED_25_22 0x0
* Drift Read Spacing
* PSU_DDR_PHY_DQSDR0_DFTRDSPC 0x0
* Drift Back-to-Back Reads
* PSU_DDR_PHY_DQSDR0_DFTB2BRD 0x8
* Drift Idle Reads
* PSU_DDR_PHY_DQSDR0_DFTIDLRD 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DQSDR0_RESERVED_11_8 0x0
* Gate Pulse Enable
* PSU_DDR_PHY_DQSDR0_DFTGPULSE 0x0
* DQS Drift Update Mode
* PSU_DDR_PHY_DQSDR0_DFTUPMODE 0x0
* DQS Drift Detection Mode
* PSU_DDR_PHY_DQSDR0_DFTDTMODE 0x0
* DQS Drift Detection Enable
* PSU_DDR_PHY_DQSDR0_DFTDTEN 0x0
* DQS Drift Register 0
* (OFFSET, MASK, VALUE) (0XFD080250, 0xFFFFFFFFU ,0x00088000U)
*/
PSU_Mask_Write(DDR_PHY_DQSDR0_OFFSET, 0xFFFFFFFFU, 0x00088000U);
/*##################################################################### */
/*
* Register : BISTLSR @ 0XFD080414
* LFSR seed for pseudo-random BIST patterns
* PSU_DDR_PHY_BISTLSR_SEED 0x12341000
* BIST LFSR Seed Register
* (OFFSET, MASK, VALUE) (0XFD080414, 0xFFFFFFFFU ,0x12341000U)
*/
PSU_Mask_Write(DDR_PHY_BISTLSR_OFFSET, 0xFFFFFFFFU, 0x12341000U);
/*##################################################################### */
/*
* Register : RIOCR5 @ 0XFD0804F4
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_RIOCR5_RESERVED_31_16 0x0
* Reserved. Return zeros on reads.
* PSU_DDR_PHY_RIOCR5_ODTOEMODE_RSVD 0x0
* SDRAM On-die Termination Output Enable (OE) Mode Selection.
* PSU_DDR_PHY_RIOCR5_ODTOEMODE 0x5
* Rank I/O Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD0804F4, 0xFFFFFFFFU ,0x00000005U)
*/
PSU_Mask_Write(DDR_PHY_RIOCR5_OFFSET, 0xFFFFFFFFU, 0x00000005U);
/*##################################################################### */
/*
* Register : ACIOCR0 @ 0XFD080500
* Address/Command Slew Rate (D3F I/O Only)
* PSU_DDR_PHY_ACIOCR0_ACSR 0x0
* SDRAM Reset I/O Mode
* PSU_DDR_PHY_ACIOCR0_RSTIOM 0x1
* SDRAM Reset Power Down Receiver
* PSU_DDR_PHY_ACIOCR0_RSTPDR 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACIOCR0_RESERVED_27 0x0
* SDRAM Reset On-Die Termination
* PSU_DDR_PHY_ACIOCR0_RSTODT 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACIOCR0_RESERVED_25_10 0x0
* CK Duty Cycle Correction
* PSU_DDR_PHY_ACIOCR0_CKDCC 0x0
* AC Power Down Receiver Mode
* PSU_DDR_PHY_ACIOCR0_ACPDRMODE 0x2
* AC On-die Termination Mode
* PSU_DDR_PHY_ACIOCR0_ACODTMODE 0x2
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACIOCR0_RESERVED_1 0x0
* Control delayed or non-delayed clock to CS_N/ODT?CKE AC slices.
* PSU_DDR_PHY_ACIOCR0_ACRANKCLKSEL 0x0
* AC I/O Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080500, 0xFFFFFFFFU ,0x30000028U)
*/
PSU_Mask_Write(DDR_PHY_ACIOCR0_OFFSET, 0xFFFFFFFFU, 0x30000028U);
/*##################################################################### */
/*
* Register : ACIOCR2 @ 0XFD080508
* Clock gating for glue logic inside CLKGEN and glue logic inside CONTROL
* slice
* PSU_DDR_PHY_ACIOCR2_CLKGENCLKGATE 0x0
* Clock gating for Output Enable D slices [0]
* PSU_DDR_PHY_ACIOCR2_ACOECLKGATE0 0x0
* Clock gating for Power Down Receiver D slices [0]
* PSU_DDR_PHY_ACIOCR2_ACPDRCLKGATE0 0x0
* Clock gating for Termination Enable D slices [0]
* PSU_DDR_PHY_ACIOCR2_ACTECLKGATE0 0x0
* Clock gating for CK# D slices [1:0]
* PSU_DDR_PHY_ACIOCR2_CKNCLKGATE0 0x2
* Clock gating for CK D slices [1:0]
* PSU_DDR_PHY_ACIOCR2_CKCLKGATE0 0x2
* Clock gating for AC D slices [23:0]
* PSU_DDR_PHY_ACIOCR2_ACCLKGATE0 0x0
* AC I/O Configuration Register 2
* (OFFSET, MASK, VALUE) (0XFD080508, 0xFFFFFFFFU ,0x0A000000U)
*/
PSU_Mask_Write(DDR_PHY_ACIOCR2_OFFSET, 0xFFFFFFFFU, 0x0A000000U);
/*##################################################################### */
/*
* Register : ACIOCR3 @ 0XFD08050C
* SDRAM Parity Output Enable (OE) Mode Selection
* PSU_DDR_PHY_ACIOCR3_PAROEMODE 0x0
* SDRAM Bank Group Output Enable (OE) Mode Selection
* PSU_DDR_PHY_ACIOCR3_BGOEMODE 0x0
* SDRAM Bank Address Output Enable (OE) Mode Selection
* PSU_DDR_PHY_ACIOCR3_BAOEMODE 0x0
* SDRAM A[17] Output Enable (OE) Mode Selection
* PSU_DDR_PHY_ACIOCR3_A17OEMODE 0x0
* SDRAM A[16] / RAS_n Output Enable (OE) Mode Selection
* PSU_DDR_PHY_ACIOCR3_A16OEMODE 0x0
* SDRAM ACT_n Output Enable (OE) Mode Selection (DDR4 only)
* PSU_DDR_PHY_ACIOCR3_ACTOEMODE 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACIOCR3_RESERVED_15_8 0x0
* Reserved. Return zeros on reads.
* PSU_DDR_PHY_ACIOCR3_CKOEMODE_RSVD 0x0
* SDRAM CK Output Enable (OE) Mode Selection.
* PSU_DDR_PHY_ACIOCR3_CKOEMODE 0x9
* AC I/O Configuration Register 3
* (OFFSET, MASK, VALUE) (0XFD08050C, 0xFFFFFFFFU ,0x00000009U)
*/
PSU_Mask_Write(DDR_PHY_ACIOCR3_OFFSET, 0xFFFFFFFFU, 0x00000009U);
/*##################################################################### */
/*
* Register : ACIOCR4 @ 0XFD080510
* Clock gating for AC LB slices and loopback read valid slices
* PSU_DDR_PHY_ACIOCR4_LBCLKGATE 0x0
* Clock gating for Output Enable D slices [1]
* PSU_DDR_PHY_ACIOCR4_ACOECLKGATE1 0x0
* Clock gating for Power Down Receiver D slices [1]
* PSU_DDR_PHY_ACIOCR4_ACPDRCLKGATE1 0x0
* Clock gating for Termination Enable D slices [1]
* PSU_DDR_PHY_ACIOCR4_ACTECLKGATE1 0x0
* Clock gating for CK# D slices [3:2]
* PSU_DDR_PHY_ACIOCR4_CKNCLKGATE1 0x2
* Clock gating for CK D slices [3:2]
* PSU_DDR_PHY_ACIOCR4_CKCLKGATE1 0x2
* Clock gating for AC D slices [47:24]
* PSU_DDR_PHY_ACIOCR4_ACCLKGATE1 0x0
* AC I/O Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080510, 0xFFFFFFFFU ,0x0A000000U)
*/
PSU_Mask_Write(DDR_PHY_ACIOCR4_OFFSET, 0xFFFFFFFFU, 0x0A000000U);
/*##################################################################### */
/*
* Register : IOVCR0 @ 0XFD080520
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_IOVCR0_RESERVED_31_29 0x0
* Address/command lane VREF Pad Enable
* PSU_DDR_PHY_IOVCR0_ACREFPEN 0x0
* Address/command lane Internal VREF Enable
* PSU_DDR_PHY_IOVCR0_ACREFEEN 0x0
* Address/command lane Single-End VREF Enable
* PSU_DDR_PHY_IOVCR0_ACREFSEN 0x1
* Address/command lane Internal VREF Enable
* PSU_DDR_PHY_IOVCR0_ACREFIEN 0x1
* External VREF generato REFSEL range select
* PSU_DDR_PHY_IOVCR0_ACREFESELRANGE 0x0
* Address/command lane External VREF Select
* PSU_DDR_PHY_IOVCR0_ACREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_IOVCR0_ACREFSSELRANGE 0x1
* Address/command lane Single-End VREF Select
* PSU_DDR_PHY_IOVCR0_ACREFSSEL 0x30
* Internal VREF generator REFSEL ragne select
* PSU_DDR_PHY_IOVCR0_ACVREFISELRANGE 0x1
* REFSEL Control for internal AC IOs
* PSU_DDR_PHY_IOVCR0_ACVREFISEL 0x4e
* IO VREF Control Register 0
* (OFFSET, MASK, VALUE) (0XFD080520, 0xFFFFFFFFU ,0x0300B0CEU)
*/
PSU_Mask_Write(DDR_PHY_IOVCR0_OFFSET, 0xFFFFFFFFU, 0x0300B0CEU);
/*##################################################################### */
/*
* Register : VTCR0 @ 0XFD080528
* Number of ctl_clk required to meet (> 150ns) timing requirements during
* DRAM DQ VREF training
* PSU_DDR_PHY_VTCR0_TVREF 0x7
* DRM DQ VREF training Enable
* PSU_DDR_PHY_VTCR0_DVEN 0x1
* Per Device Addressability Enable
* PSU_DDR_PHY_VTCR0_PDAEN 0x1
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_VTCR0_RESERVED_26 0x0
* VREF Word Count
* PSU_DDR_PHY_VTCR0_VWCR 0x4
* DRAM DQ VREF step size used during DRAM VREF training
* PSU_DDR_PHY_VTCR0_DVSS 0x0
* Maximum VREF limit value used during DRAM VREF training
* PSU_DDR_PHY_VTCR0_DVMAX 0x32
* Minimum VREF limit value used during DRAM VREF training
* PSU_DDR_PHY_VTCR0_DVMIN 0x0
* Initial DRAM DQ VREF value used during DRAM VREF training
* PSU_DDR_PHY_VTCR0_DVINIT 0x19
* VREF Training Control Register 0
* (OFFSET, MASK, VALUE) (0XFD080528, 0xFFFFFFFFU ,0xF9032019U)
*/
PSU_Mask_Write(DDR_PHY_VTCR0_OFFSET, 0xFFFFFFFFU, 0xF9032019U);
/*##################################################################### */
/*
* Register : VTCR1 @ 0XFD08052C
* Host VREF step size used during VREF training. The register value of N i
* ndicates step size of (N+1)
* PSU_DDR_PHY_VTCR1_HVSS 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_VTCR1_RESERVED_27 0x0
* Maximum VREF limit value used during DRAM VREF training.
* PSU_DDR_PHY_VTCR1_HVMAX 0x7f
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_VTCR1_RESERVED_19 0x0
* Minimum VREF limit value used during DRAM VREF training.
* PSU_DDR_PHY_VTCR1_HVMIN 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_VTCR1_RESERVED_11 0x0
* Static Host Vref Rank Value
* PSU_DDR_PHY_VTCR1_SHRNK 0x0
* Static Host Vref Rank Enable
* PSU_DDR_PHY_VTCR1_SHREN 0x1
* Number of ctl_clk required to meet (> 200ns) VREF Settling timing requir
* ements during Host IO VREF training
* PSU_DDR_PHY_VTCR1_TVREFIO 0x7
* Eye LCDL Offset value for VREF training
* PSU_DDR_PHY_VTCR1_EOFF 0x0
* Number of LCDL Eye points for which VREF training is repeated
* PSU_DDR_PHY_VTCR1_ENUM 0x0
* HOST (IO) internal VREF training Enable
* PSU_DDR_PHY_VTCR1_HVEN 0x1
* Host IO Type Control
* PSU_DDR_PHY_VTCR1_HVIO 0x1
* VREF Training Control Register 1
* (OFFSET, MASK, VALUE) (0XFD08052C, 0xFFFFFFFFU ,0x07F001E3U)
*/
PSU_Mask_Write(DDR_PHY_VTCR1_OFFSET, 0xFFFFFFFFU, 0x07F001E3U);
/*##################################################################### */
/*
* Register : ACBDLR1 @ 0XFD080544
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR1_RESERVED_31_30 0x0
* Delay select for the BDL on Parity.
* PSU_DDR_PHY_ACBDLR1_PARBD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR1_RESERVED_23_22 0x0
* Delay select for the BDL on Address A[16]. In DDR3 mode this pin is conn
* ected to WE.
* PSU_DDR_PHY_ACBDLR1_A16BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR1_RESERVED_15_14 0x0
* Delay select for the BDL on Address A[17]. When not in DDR4 modemode thi
* s pin is connected to CAS.
* PSU_DDR_PHY_ACBDLR1_A17BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR1_RESERVED_7_6 0x0
* Delay select for the BDL on ACTN.
* PSU_DDR_PHY_ACBDLR1_ACTBD 0x0
* AC Bit Delay Line Register 1
* (OFFSET, MASK, VALUE) (0XFD080544, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_ACBDLR1_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ACBDLR2 @ 0XFD080548
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR2_RESERVED_31_30 0x0
* Delay select for the BDL on BG[1].
* PSU_DDR_PHY_ACBDLR2_BG1BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR2_RESERVED_23_22 0x0
* Delay select for the BDL on BG[0].
* PSU_DDR_PHY_ACBDLR2_BG0BD 0x0
* Reser.ved Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR2_RESERVED_15_14 0x0
* Delay select for the BDL on BA[1].
* PSU_DDR_PHY_ACBDLR2_BA1BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR2_RESERVED_7_6 0x0
* Delay select for the BDL on BA[0].
* PSU_DDR_PHY_ACBDLR2_BA0BD 0x0
* AC Bit Delay Line Register 2
* (OFFSET, MASK, VALUE) (0XFD080548, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_ACBDLR2_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ACBDLR6 @ 0XFD080558
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR6_RESERVED_31_30 0x0
* Delay select for the BDL on Address A[3].
* PSU_DDR_PHY_ACBDLR6_A03BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR6_RESERVED_23_22 0x0
* Delay select for the BDL on Address A[2].
* PSU_DDR_PHY_ACBDLR6_A02BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR6_RESERVED_15_14 0x0
* Delay select for the BDL on Address A[1].
* PSU_DDR_PHY_ACBDLR6_A01BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR6_RESERVED_7_6 0x0
* Delay select for the BDL on Address A[0].
* PSU_DDR_PHY_ACBDLR6_A00BD 0x0
* AC Bit Delay Line Register 6
* (OFFSET, MASK, VALUE) (0XFD080558, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_ACBDLR6_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ACBDLR7 @ 0XFD08055C
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR7_RESERVED_31_30 0x0
* Delay select for the BDL on Address A[7].
* PSU_DDR_PHY_ACBDLR7_A07BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR7_RESERVED_23_22 0x0
* Delay select for the BDL on Address A[6].
* PSU_DDR_PHY_ACBDLR7_A06BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR7_RESERVED_15_14 0x0
* Delay select for the BDL on Address A[5].
* PSU_DDR_PHY_ACBDLR7_A05BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR7_RESERVED_7_6 0x0
* Delay select for the BDL on Address A[4].
* PSU_DDR_PHY_ACBDLR7_A04BD 0x0
* AC Bit Delay Line Register 7
* (OFFSET, MASK, VALUE) (0XFD08055C, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_ACBDLR7_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ACBDLR8 @ 0XFD080560
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR8_RESERVED_31_30 0x0
* Delay select for the BDL on Address A[11].
* PSU_DDR_PHY_ACBDLR8_A11BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR8_RESERVED_23_22 0x0
* Delay select for the BDL on Address A[10].
* PSU_DDR_PHY_ACBDLR8_A10BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR8_RESERVED_15_14 0x0
* Delay select for the BDL on Address A[9].
* PSU_DDR_PHY_ACBDLR8_A09BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR8_RESERVED_7_6 0x0
* Delay select for the BDL on Address A[8].
* PSU_DDR_PHY_ACBDLR8_A08BD 0x0
* AC Bit Delay Line Register 8
* (OFFSET, MASK, VALUE) (0XFD080560, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_ACBDLR8_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ACBDLR9 @ 0XFD080564
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR9_RESERVED_31_30 0x0
* Delay select for the BDL on Address A[15].
* PSU_DDR_PHY_ACBDLR9_A15BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR9_RESERVED_23_22 0x0
* Delay select for the BDL on Address A[14].
* PSU_DDR_PHY_ACBDLR9_A14BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR9_RESERVED_15_14 0x0
* Delay select for the BDL on Address A[13].
* PSU_DDR_PHY_ACBDLR9_A13BD 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ACBDLR9_RESERVED_7_6 0x0
* Delay select for the BDL on Address A[12].
* PSU_DDR_PHY_ACBDLR9_A12BD 0x0
* AC Bit Delay Line Register 9
* (OFFSET, MASK, VALUE) (0XFD080564, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(DDR_PHY_ACBDLR9_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ZQCR @ 0XFD080680
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_ZQCR_RESERVED_31_26 0x0
* ZQ VREF Range
* PSU_DDR_PHY_ZQCR_ZQREFISELRANGE 0x0
* Programmable Wait for Frequency B
* PSU_DDR_PHY_ZQCR_PGWAIT_FRQB 0x11
* Programmable Wait for Frequency A
* PSU_DDR_PHY_ZQCR_PGWAIT_FRQA 0x15
* ZQ VREF Pad Enable
* PSU_DDR_PHY_ZQCR_ZQREFPEN 0x0
* ZQ Internal VREF Enable
* PSU_DDR_PHY_ZQCR_ZQREFIEN 0x1
* Choice of termination mode
* PSU_DDR_PHY_ZQCR_ODT_MODE 0x1
* Force ZCAL VT update
* PSU_DDR_PHY_ZQCR_FORCE_ZCAL_VT_UPDATE 0x0
* IO VT Drift Limit
* PSU_DDR_PHY_ZQCR_IODLMT 0x2
* Averaging algorithm enable, if set, enables averaging algorithm
* PSU_DDR_PHY_ZQCR_AVGEN 0x1
* Maximum number of averaging rounds to be used by averaging algorithm
* PSU_DDR_PHY_ZQCR_AVGMAX 0x2
* ZQ Calibration Type
* PSU_DDR_PHY_ZQCR_ZCALT 0x0
* ZQ Power Down
* PSU_DDR_PHY_ZQCR_ZQPD 0x0
* ZQ Impedance Control Register
* (OFFSET, MASK, VALUE) (0XFD080680, 0xFFFFFFFFU ,0x008AAA58U)
*/
PSU_Mask_Write(DDR_PHY_ZQCR_OFFSET, 0xFFFFFFFFU, 0x008AAA58U);
/*##################################################################### */
/*
* Register : ZQ0PR0 @ 0XFD080684
* Pull-down drive strength ZCTRL over-ride enable
* PSU_DDR_PHY_ZQ0PR0_PD_DRV_ZDEN 0x0
* Pull-up drive strength ZCTRL over-ride enable
* PSU_DDR_PHY_ZQ0PR0_PU_DRV_ZDEN 0x0
* Pull-down termination ZCTRL over-ride enable
* PSU_DDR_PHY_ZQ0PR0_PD_ODT_ZDEN 0x0
* Pull-up termination ZCTRL over-ride enable
* PSU_DDR_PHY_ZQ0PR0_PU_ODT_ZDEN 0x0
* Calibration segment bypass
* PSU_DDR_PHY_ZQ0PR0_ZSEGBYP 0x0
* VREF latch mode controls the mode in which the ZLE pin of the PVREF cell
* is driven by the PUB
* PSU_DDR_PHY_ZQ0PR0_ZLE_MODE 0x0
* Termination adjustment
* PSU_DDR_PHY_ZQ0PR0_ODT_ADJUST 0x0
* Pulldown drive strength adjustment
* PSU_DDR_PHY_ZQ0PR0_PD_DRV_ADJUST 0x0
* Pullup drive strength adjustment
* PSU_DDR_PHY_ZQ0PR0_PU_DRV_ADJUST 0x0
* DRAM Impedance Divide Ratio
* PSU_DDR_PHY_ZQ0PR0_ZPROG_DRAM_ODT 0x7
* HOST Impedance Divide Ratio
* PSU_DDR_PHY_ZQ0PR0_ZPROG_HOST_ODT 0x9
* Impedance Divide Ratio (pulldown drive calibration during asymmetric dri
* ve strength calibration)
* PSU_DDR_PHY_ZQ0PR0_ZPROG_ASYM_DRV_PD 0xd
* Impedance Divide Ratio (pullup drive calibration during asymmetric drive
* strength calibration)
* PSU_DDR_PHY_ZQ0PR0_ZPROG_ASYM_DRV_PU 0xd
* ZQ n Impedance Control Program Register 0
* (OFFSET, MASK, VALUE) (0XFD080684, 0xFFFFFFFFU ,0x000079DDU)
*/
PSU_Mask_Write(DDR_PHY_ZQ0PR0_OFFSET, 0xFFFFFFFFU, 0x000079DDU);
/*##################################################################### */
/*
* Register : ZQ0OR0 @ 0XFD080694
* Reserved. Return zeros on reads.
* PSU_DDR_PHY_ZQ0OR0_RESERVED_31_26 0x0
* Override value for the pull-up output impedance
* PSU_DDR_PHY_ZQ0OR0_ZDATA_PU_DRV_OVRD 0x1e1
* Reserved. Return zeros on reads.
* PSU_DDR_PHY_ZQ0OR0_RESERVED_15_10 0x0
* Override value for the pull-down output impedance
* PSU_DDR_PHY_ZQ0OR0_ZDATA_PD_DRV_OVRD 0x210
* ZQ n Impedance Control Override Data Register 0
* (OFFSET, MASK, VALUE) (0XFD080694, 0xFFFFFFFFU ,0x01E10210U)
*/
PSU_Mask_Write(DDR_PHY_ZQ0OR0_OFFSET, 0xFFFFFFFFU, 0x01E10210U);
/*##################################################################### */
/*
* Register : ZQ0OR1 @ 0XFD080698
* Reserved. Return zeros on reads.
* PSU_DDR_PHY_ZQ0OR1_RESERVED_31_26 0x0
* Override value for the pull-up termination
* PSU_DDR_PHY_ZQ0OR1_ZDATA_PU_ODT_OVRD 0x1e1
* Reserved. Return zeros on reads.
* PSU_DDR_PHY_ZQ0OR1_RESERVED_15_10 0x0
* Override value for the pull-down termination
* PSU_DDR_PHY_ZQ0OR1_ZDATA_PD_ODT_OVRD 0x0
* ZQ n Impedance Control Override Data Register 1
* (OFFSET, MASK, VALUE) (0XFD080698, 0xFFFFFFFFU ,0x01E10000U)
*/
PSU_Mask_Write(DDR_PHY_ZQ0OR1_OFFSET, 0xFFFFFFFFU, 0x01E10000U);
/*##################################################################### */
/*
* Register : ZQ1PR0 @ 0XFD0806A4
* Pull-down drive strength ZCTRL over-ride enable
* PSU_DDR_PHY_ZQ1PR0_PD_DRV_ZDEN 0x0
* Pull-up drive strength ZCTRL over-ride enable
* PSU_DDR_PHY_ZQ1PR0_PU_DRV_ZDEN 0x0
* Pull-down termination ZCTRL over-ride enable
* PSU_DDR_PHY_ZQ1PR0_PD_ODT_ZDEN 0x0
* Pull-up termination ZCTRL over-ride enable
* PSU_DDR_PHY_ZQ1PR0_PU_ODT_ZDEN 0x0
* Calibration segment bypass
* PSU_DDR_PHY_ZQ1PR0_ZSEGBYP 0x0
* VREF latch mode controls the mode in which the ZLE pin of the PVREF cell
* is driven by the PUB
* PSU_DDR_PHY_ZQ1PR0_ZLE_MODE 0x0
* Termination adjustment
* PSU_DDR_PHY_ZQ1PR0_ODT_ADJUST 0x0
* Pulldown drive strength adjustment
* PSU_DDR_PHY_ZQ1PR0_PD_DRV_ADJUST 0x1
* Pullup drive strength adjustment
* PSU_DDR_PHY_ZQ1PR0_PU_DRV_ADJUST 0x0
* DRAM Impedance Divide Ratio
* PSU_DDR_PHY_ZQ1PR0_ZPROG_DRAM_ODT 0x7
* HOST Impedance Divide Ratio
* PSU_DDR_PHY_ZQ1PR0_ZPROG_HOST_ODT 0xb
* Impedance Divide Ratio (pulldown drive calibration during asymmetric dri
* ve strength calibration)
* PSU_DDR_PHY_ZQ1PR0_ZPROG_ASYM_DRV_PD 0xd
* Impedance Divide Ratio (pullup drive calibration during asymmetric drive
* strength calibration)
* PSU_DDR_PHY_ZQ1PR0_ZPROG_ASYM_DRV_PU 0xb
* ZQ n Impedance Control Program Register 0
* (OFFSET, MASK, VALUE) (0XFD0806A4, 0xFFFFFFFFU ,0x00087BDBU)
*/
PSU_Mask_Write(DDR_PHY_ZQ1PR0_OFFSET, 0xFFFFFFFFU, 0x00087BDBU);
/*##################################################################### */
/*
* Register : DX0GCR0 @ 0XFD080700
* Calibration Bypass
* PSU_DDR_PHY_DX0GCR0_CALBYP 0x0
* Master Delay Line Enable
* PSU_DDR_PHY_DX0GCR0_MDLEN 0x1
* Configurable ODT(TE) Phase Shift
* PSU_DDR_PHY_DX0GCR0_CODTSHFT 0x0
* DQS Duty Cycle Correction
* PSU_DDR_PHY_DX0GCR0_DQSDCC 0x0
* Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
* input for the respective bypte lane of the PHY
* PSU_DDR_PHY_DX0GCR0_RDDLY 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX0GCR0_RESERVED_19_14 0x0
* DQSNSE Power Down Receiver
* PSU_DDR_PHY_DX0GCR0_DQSNSEPDR 0x0
* DQSSE Power Down Receiver
* PSU_DDR_PHY_DX0GCR0_DQSSEPDR 0x0
* RTT On Additive Latency
* PSU_DDR_PHY_DX0GCR0_RTTOAL 0x0
* RTT Output Hold
* PSU_DDR_PHY_DX0GCR0_RTTOH 0x3
* Configurable PDR Phase Shift
* PSU_DDR_PHY_DX0GCR0_CPDRSHFT 0x0
* DQSR Power Down
* PSU_DDR_PHY_DX0GCR0_DQSRPD 0x0
* DQSG Power Down Receiver
* PSU_DDR_PHY_DX0GCR0_DQSGPDR 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX0GCR0_RESERVED_4 0x0
* DQSG On-Die Termination
* PSU_DDR_PHY_DX0GCR0_DQSGODT 0x0
* DQSG Output Enable
* PSU_DDR_PHY_DX0GCR0_DQSGOE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX0GCR0_RESERVED_1_0 0x0
* DATX8 n General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080700, 0xFFFFFFFFU ,0x40800604U)
*/
PSU_Mask_Write(DDR_PHY_DX0GCR0_OFFSET, 0xFFFFFFFFU, 0x40800604U);
/*##################################################################### */
/*
* Register : DX0GCR4 @ 0XFD080710
* Byte lane VREF IOM (Used only by D4MU IOs)
* PSU_DDR_PHY_DX0GCR4_RESERVED_31_29 0x0
* Byte Lane VREF Pad Enable
* PSU_DDR_PHY_DX0GCR4_DXREFPEN 0x0
* Byte Lane Internal VREF Enable
* PSU_DDR_PHY_DX0GCR4_DXREFEEN 0x3
* Byte Lane Single-End VREF Enable
* PSU_DDR_PHY_DX0GCR4_DXREFSEN 0x1
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR4_RESERVED_24 0x0
* External VREF generator REFSEL range select
* PSU_DDR_PHY_DX0GCR4_DXREFESELRANGE 0x0
* Byte Lane External VREF Select
* PSU_DDR_PHY_DX0GCR4_DXREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_DX0GCR4_DXREFSSELRANGE 0x1
* Byte Lane Single-End VREF Select
* PSU_DDR_PHY_DX0GCR4_DXREFSSEL 0x30
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR4_RESERVED_7_6 0x0
* VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX0GCR4_DXREFIEN 0xf
* VRMON control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX0GCR4_DXREFIMON 0x0
* DATX8 n General Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080710, 0xFFFFFFFFU ,0x0E00B03CU)
*/
PSU_Mask_Write(DDR_PHY_DX0GCR4_OFFSET, 0xFFFFFFFFU, 0x0E00B03CU);
/*##################################################################### */
/*
* Register : DX0GCR5 @ 0XFD080714
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR5_RESERVED_31 0x0
* Byte Lane internal VREF Select for Rank 3
* PSU_DDR_PHY_DX0GCR5_DXREFISELR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR5_RESERVED_23 0x0
* Byte Lane internal VREF Select for Rank 2
* PSU_DDR_PHY_DX0GCR5_DXREFISELR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR5_RESERVED_15 0x0
* Byte Lane internal VREF Select for Rank 1
* PSU_DDR_PHY_DX0GCR5_DXREFISELR1 0x55
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR5_RESERVED_7 0x0
* Byte Lane internal VREF Select for Rank 0
* PSU_DDR_PHY_DX0GCR5_DXREFISELR0 0x55
* DATX8 n General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080714, 0xFFFFFFFFU ,0x09095555U)
*/
PSU_Mask_Write(DDR_PHY_DX0GCR5_OFFSET, 0xFFFFFFFFU, 0x09095555U);
/*##################################################################### */
/*
* Register : DX0GCR6 @ 0XFD080718
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR6_RESERVED_31_30 0x0
* DRAM DQ VREF Select for Rank3
* PSU_DDR_PHY_DX0GCR6_DXDQVREFR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR6_RESERVED_23_22 0x0
* DRAM DQ VREF Select for Rank2
* PSU_DDR_PHY_DX0GCR6_DXDQVREFR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR6_RESERVED_15_14 0x0
* DRAM DQ VREF Select for Rank1
* PSU_DDR_PHY_DX0GCR6_DXDQVREFR1 0x2b
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX0GCR6_RESERVED_7_6 0x0
* DRAM DQ VREF Select for Rank0
* PSU_DDR_PHY_DX0GCR6_DXDQVREFR0 0x2b
* DATX8 n General Configuration Register 6
* (OFFSET, MASK, VALUE) (0XFD080718, 0xFFFFFFFFU ,0x09092B2BU)
*/
PSU_Mask_Write(DDR_PHY_DX0GCR6_OFFSET, 0xFFFFFFFFU, 0x09092B2BU);
/*##################################################################### */
/*
* Register : DX1GCR0 @ 0XFD080800
* Calibration Bypass
* PSU_DDR_PHY_DX1GCR0_CALBYP 0x0
* Master Delay Line Enable
* PSU_DDR_PHY_DX1GCR0_MDLEN 0x1
* Configurable ODT(TE) Phase Shift
* PSU_DDR_PHY_DX1GCR0_CODTSHFT 0x0
* DQS Duty Cycle Correction
* PSU_DDR_PHY_DX1GCR0_DQSDCC 0x0
* Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
* input for the respective bypte lane of the PHY
* PSU_DDR_PHY_DX1GCR0_RDDLY 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX1GCR0_RESERVED_19_14 0x0
* DQSNSE Power Down Receiver
* PSU_DDR_PHY_DX1GCR0_DQSNSEPDR 0x0
* DQSSE Power Down Receiver
* PSU_DDR_PHY_DX1GCR0_DQSSEPDR 0x0
* RTT On Additive Latency
* PSU_DDR_PHY_DX1GCR0_RTTOAL 0x0
* RTT Output Hold
* PSU_DDR_PHY_DX1GCR0_RTTOH 0x3
* Configurable PDR Phase Shift
* PSU_DDR_PHY_DX1GCR0_CPDRSHFT 0x0
* DQSR Power Down
* PSU_DDR_PHY_DX1GCR0_DQSRPD 0x0
* DQSG Power Down Receiver
* PSU_DDR_PHY_DX1GCR0_DQSGPDR 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX1GCR0_RESERVED_4 0x0
* DQSG On-Die Termination
* PSU_DDR_PHY_DX1GCR0_DQSGODT 0x0
* DQSG Output Enable
* PSU_DDR_PHY_DX1GCR0_DQSGOE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX1GCR0_RESERVED_1_0 0x0
* DATX8 n General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080800, 0xFFFFFFFFU ,0x40800604U)
*/
PSU_Mask_Write(DDR_PHY_DX1GCR0_OFFSET, 0xFFFFFFFFU, 0x40800604U);
/*##################################################################### */
/*
* Register : DX1GCR4 @ 0XFD080810
* Byte lane VREF IOM (Used only by D4MU IOs)
* PSU_DDR_PHY_DX1GCR4_RESERVED_31_29 0x0
* Byte Lane VREF Pad Enable
* PSU_DDR_PHY_DX1GCR4_DXREFPEN 0x0
* Byte Lane Internal VREF Enable
* PSU_DDR_PHY_DX1GCR4_DXREFEEN 0x3
* Byte Lane Single-End VREF Enable
* PSU_DDR_PHY_DX1GCR4_DXREFSEN 0x1
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR4_RESERVED_24 0x0
* External VREF generator REFSEL range select
* PSU_DDR_PHY_DX1GCR4_DXREFESELRANGE 0x0
* Byte Lane External VREF Select
* PSU_DDR_PHY_DX1GCR4_DXREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_DX1GCR4_DXREFSSELRANGE 0x1
* Byte Lane Single-End VREF Select
* PSU_DDR_PHY_DX1GCR4_DXREFSSEL 0x30
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR4_RESERVED_7_6 0x0
* VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX1GCR4_DXREFIEN 0xf
* VRMON control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX1GCR4_DXREFIMON 0x0
* DATX8 n General Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080810, 0xFFFFFFFFU ,0x0E00B03CU)
*/
PSU_Mask_Write(DDR_PHY_DX1GCR4_OFFSET, 0xFFFFFFFFU, 0x0E00B03CU);
/*##################################################################### */
/*
* Register : DX1GCR5 @ 0XFD080814
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR5_RESERVED_31 0x0
* Byte Lane internal VREF Select for Rank 3
* PSU_DDR_PHY_DX1GCR5_DXREFISELR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR5_RESERVED_23 0x0
* Byte Lane internal VREF Select for Rank 2
* PSU_DDR_PHY_DX1GCR5_DXREFISELR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR5_RESERVED_15 0x0
* Byte Lane internal VREF Select for Rank 1
* PSU_DDR_PHY_DX1GCR5_DXREFISELR1 0x55
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR5_RESERVED_7 0x0
* Byte Lane internal VREF Select for Rank 0
* PSU_DDR_PHY_DX1GCR5_DXREFISELR0 0x55
* DATX8 n General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080814, 0xFFFFFFFFU ,0x09095555U)
*/
PSU_Mask_Write(DDR_PHY_DX1GCR5_OFFSET, 0xFFFFFFFFU, 0x09095555U);
/*##################################################################### */
/*
* Register : DX1GCR6 @ 0XFD080818
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR6_RESERVED_31_30 0x0
* DRAM DQ VREF Select for Rank3
* PSU_DDR_PHY_DX1GCR6_DXDQVREFR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR6_RESERVED_23_22 0x0
* DRAM DQ VREF Select for Rank2
* PSU_DDR_PHY_DX1GCR6_DXDQVREFR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR6_RESERVED_15_14 0x0
* DRAM DQ VREF Select for Rank1
* PSU_DDR_PHY_DX1GCR6_DXDQVREFR1 0x2b
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX1GCR6_RESERVED_7_6 0x0
* DRAM DQ VREF Select for Rank0
* PSU_DDR_PHY_DX1GCR6_DXDQVREFR0 0x2b
* DATX8 n General Configuration Register 6
* (OFFSET, MASK, VALUE) (0XFD080818, 0xFFFFFFFFU ,0x09092B2BU)
*/
PSU_Mask_Write(DDR_PHY_DX1GCR6_OFFSET, 0xFFFFFFFFU, 0x09092B2BU);
/*##################################################################### */
/*
* Register : DX2GCR0 @ 0XFD080900
* Calibration Bypass
* PSU_DDR_PHY_DX2GCR0_CALBYP 0x0
* Master Delay Line Enable
* PSU_DDR_PHY_DX2GCR0_MDLEN 0x1
* Configurable ODT(TE) Phase Shift
* PSU_DDR_PHY_DX2GCR0_CODTSHFT 0x0
* DQS Duty Cycle Correction
* PSU_DDR_PHY_DX2GCR0_DQSDCC 0x0
* Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
* input for the respective bypte lane of the PHY
* PSU_DDR_PHY_DX2GCR0_RDDLY 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX2GCR0_RESERVED_19_14 0x0
* DQSNSE Power Down Receiver
* PSU_DDR_PHY_DX2GCR0_DQSNSEPDR 0x0
* DQSSE Power Down Receiver
* PSU_DDR_PHY_DX2GCR0_DQSSEPDR 0x0
* RTT On Additive Latency
* PSU_DDR_PHY_DX2GCR0_RTTOAL 0x0
* RTT Output Hold
* PSU_DDR_PHY_DX2GCR0_RTTOH 0x3
* Configurable PDR Phase Shift
* PSU_DDR_PHY_DX2GCR0_CPDRSHFT 0x0
* DQSR Power Down
* PSU_DDR_PHY_DX2GCR0_DQSRPD 0x0
* DQSG Power Down Receiver
* PSU_DDR_PHY_DX2GCR0_DQSGPDR 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX2GCR0_RESERVED_4 0x0
* DQSG On-Die Termination
* PSU_DDR_PHY_DX2GCR0_DQSGODT 0x0
* DQSG Output Enable
* PSU_DDR_PHY_DX2GCR0_DQSGOE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX2GCR0_RESERVED_1_0 0x0
* DATX8 n General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080900, 0xFFFFFFFFU ,0x40800604U)
*/
PSU_Mask_Write(DDR_PHY_DX2GCR0_OFFSET, 0xFFFFFFFFU, 0x40800604U);
/*##################################################################### */
/*
* Register : DX2GCR1 @ 0XFD080904
* Enables the PDR mode for DQ[7:0]
* PSU_DDR_PHY_DX2GCR1_DXPDRMODE 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_DX2GCR1_RESERVED_15 0x0
* Select the delayed or non-delayed read data strobe #
* PSU_DDR_PHY_DX2GCR1_QSNSEL 0x1
* Select the delayed or non-delayed read data strobe
* PSU_DDR_PHY_DX2GCR1_QSSEL 0x1
* Enables Read Data Strobe in a byte lane
* PSU_DDR_PHY_DX2GCR1_OEEN 0x1
* Enables PDR in a byte lane
* PSU_DDR_PHY_DX2GCR1_PDREN 0x1
* Enables ODT/TE in a byte lane
* PSU_DDR_PHY_DX2GCR1_TEEN 0x1
* Enables Write Data strobe in a byte lane
* PSU_DDR_PHY_DX2GCR1_DSEN 0x1
* Enables DM pin in a byte lane
* PSU_DDR_PHY_DX2GCR1_DMEN 0x1
* Enables DQ corresponding to each bit in a byte
* PSU_DDR_PHY_DX2GCR1_DQEN 0xff
* DATX8 n General Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD080904, 0xFFFFFFFFU ,0x00007FFFU)
*/
PSU_Mask_Write(DDR_PHY_DX2GCR1_OFFSET, 0xFFFFFFFFU, 0x00007FFFU);
/*##################################################################### */
/*
* Register : DX2GCR4 @ 0XFD080910
* Byte lane VREF IOM (Used only by D4MU IOs)
* PSU_DDR_PHY_DX2GCR4_RESERVED_31_29 0x0
* Byte Lane VREF Pad Enable
* PSU_DDR_PHY_DX2GCR4_DXREFPEN 0x0
* Byte Lane Internal VREF Enable
* PSU_DDR_PHY_DX2GCR4_DXREFEEN 0x3
* Byte Lane Single-End VREF Enable
* PSU_DDR_PHY_DX2GCR4_DXREFSEN 0x1
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR4_RESERVED_24 0x0
* External VREF generator REFSEL range select
* PSU_DDR_PHY_DX2GCR4_DXREFESELRANGE 0x0
* Byte Lane External VREF Select
* PSU_DDR_PHY_DX2GCR4_DXREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_DX2GCR4_DXREFSSELRANGE 0x1
* Byte Lane Single-End VREF Select
* PSU_DDR_PHY_DX2GCR4_DXREFSSEL 0x30
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR4_RESERVED_7_6 0x0
* VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX2GCR4_DXREFIEN 0xf
* VRMON control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX2GCR4_DXREFIMON 0x0
* DATX8 n General Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080910, 0xFFFFFFFFU ,0x0E00B03CU)
*/
PSU_Mask_Write(DDR_PHY_DX2GCR4_OFFSET, 0xFFFFFFFFU, 0x0E00B03CU);
/*##################################################################### */
/*
* Register : DX2GCR5 @ 0XFD080914
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR5_RESERVED_31 0x0
* Byte Lane internal VREF Select for Rank 3
* PSU_DDR_PHY_DX2GCR5_DXREFISELR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR5_RESERVED_23 0x0
* Byte Lane internal VREF Select for Rank 2
* PSU_DDR_PHY_DX2GCR5_DXREFISELR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR5_RESERVED_15 0x0
* Byte Lane internal VREF Select for Rank 1
* PSU_DDR_PHY_DX2GCR5_DXREFISELR1 0x55
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR5_RESERVED_7 0x0
* Byte Lane internal VREF Select for Rank 0
* PSU_DDR_PHY_DX2GCR5_DXREFISELR0 0x55
* DATX8 n General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080914, 0xFFFFFFFFU ,0x09095555U)
*/
PSU_Mask_Write(DDR_PHY_DX2GCR5_OFFSET, 0xFFFFFFFFU, 0x09095555U);
/*##################################################################### */
/*
* Register : DX2GCR6 @ 0XFD080918
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR6_RESERVED_31_30 0x0
* DRAM DQ VREF Select for Rank3
* PSU_DDR_PHY_DX2GCR6_DXDQVREFR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR6_RESERVED_23_22 0x0
* DRAM DQ VREF Select for Rank2
* PSU_DDR_PHY_DX2GCR6_DXDQVREFR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR6_RESERVED_15_14 0x0
* DRAM DQ VREF Select for Rank1
* PSU_DDR_PHY_DX2GCR6_DXDQVREFR1 0x2b
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX2GCR6_RESERVED_7_6 0x0
* DRAM DQ VREF Select for Rank0
* PSU_DDR_PHY_DX2GCR6_DXDQVREFR0 0x2b
* DATX8 n General Configuration Register 6
* (OFFSET, MASK, VALUE) (0XFD080918, 0xFFFFFFFFU ,0x09092B2BU)
*/
PSU_Mask_Write(DDR_PHY_DX2GCR6_OFFSET, 0xFFFFFFFFU, 0x09092B2BU);
/*##################################################################### */
/*
* Register : DX3GCR0 @ 0XFD080A00
* Calibration Bypass
* PSU_DDR_PHY_DX3GCR0_CALBYP 0x0
* Master Delay Line Enable
* PSU_DDR_PHY_DX3GCR0_MDLEN 0x1
* Configurable ODT(TE) Phase Shift
* PSU_DDR_PHY_DX3GCR0_CODTSHFT 0x0
* DQS Duty Cycle Correction
* PSU_DDR_PHY_DX3GCR0_DQSDCC 0x0
* Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
* input for the respective bypte lane of the PHY
* PSU_DDR_PHY_DX3GCR0_RDDLY 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX3GCR0_RESERVED_19_14 0x0
* DQSNSE Power Down Receiver
* PSU_DDR_PHY_DX3GCR0_DQSNSEPDR 0x0
* DQSSE Power Down Receiver
* PSU_DDR_PHY_DX3GCR0_DQSSEPDR 0x0
* RTT On Additive Latency
* PSU_DDR_PHY_DX3GCR0_RTTOAL 0x0
* RTT Output Hold
* PSU_DDR_PHY_DX3GCR0_RTTOH 0x3
* Configurable PDR Phase Shift
* PSU_DDR_PHY_DX3GCR0_CPDRSHFT 0x0
* DQSR Power Down
* PSU_DDR_PHY_DX3GCR0_DQSRPD 0x0
* DQSG Power Down Receiver
* PSU_DDR_PHY_DX3GCR0_DQSGPDR 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX3GCR0_RESERVED_4 0x0
* DQSG On-Die Termination
* PSU_DDR_PHY_DX3GCR0_DQSGODT 0x0
* DQSG Output Enable
* PSU_DDR_PHY_DX3GCR0_DQSGOE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX3GCR0_RESERVED_1_0 0x0
* DATX8 n General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080A00, 0xFFFFFFFFU ,0x40800604U)
*/
PSU_Mask_Write(DDR_PHY_DX3GCR0_OFFSET, 0xFFFFFFFFU, 0x40800604U);
/*##################################################################### */
/*
* Register : DX3GCR1 @ 0XFD080A04
* Enables the PDR mode for DQ[7:0]
* PSU_DDR_PHY_DX3GCR1_DXPDRMODE 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_DX3GCR1_RESERVED_15 0x0
* Select the delayed or non-delayed read data strobe #
* PSU_DDR_PHY_DX3GCR1_QSNSEL 0x1
* Select the delayed or non-delayed read data strobe
* PSU_DDR_PHY_DX3GCR1_QSSEL 0x1
* Enables Read Data Strobe in a byte lane
* PSU_DDR_PHY_DX3GCR1_OEEN 0x1
* Enables PDR in a byte lane
* PSU_DDR_PHY_DX3GCR1_PDREN 0x1
* Enables ODT/TE in a byte lane
* PSU_DDR_PHY_DX3GCR1_TEEN 0x1
* Enables Write Data strobe in a byte lane
* PSU_DDR_PHY_DX3GCR1_DSEN 0x1
* Enables DM pin in a byte lane
* PSU_DDR_PHY_DX3GCR1_DMEN 0x1
* Enables DQ corresponding to each bit in a byte
* PSU_DDR_PHY_DX3GCR1_DQEN 0xff
* DATX8 n General Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD080A04, 0xFFFFFFFFU ,0x00007FFFU)
*/
PSU_Mask_Write(DDR_PHY_DX3GCR1_OFFSET, 0xFFFFFFFFU, 0x00007FFFU);
/*##################################################################### */
/*
* Register : DX3GCR4 @ 0XFD080A10
* Byte lane VREF IOM (Used only by D4MU IOs)
* PSU_DDR_PHY_DX3GCR4_RESERVED_31_29 0x0
* Byte Lane VREF Pad Enable
* PSU_DDR_PHY_DX3GCR4_DXREFPEN 0x0
* Byte Lane Internal VREF Enable
* PSU_DDR_PHY_DX3GCR4_DXREFEEN 0x3
* Byte Lane Single-End VREF Enable
* PSU_DDR_PHY_DX3GCR4_DXREFSEN 0x1
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR4_RESERVED_24 0x0
* External VREF generator REFSEL range select
* PSU_DDR_PHY_DX3GCR4_DXREFESELRANGE 0x0
* Byte Lane External VREF Select
* PSU_DDR_PHY_DX3GCR4_DXREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_DX3GCR4_DXREFSSELRANGE 0x1
* Byte Lane Single-End VREF Select
* PSU_DDR_PHY_DX3GCR4_DXREFSSEL 0x30
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR4_RESERVED_7_6 0x0
* VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX3GCR4_DXREFIEN 0xf
* VRMON control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX3GCR4_DXREFIMON 0x0
* DATX8 n General Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080A10, 0xFFFFFFFFU ,0x0E00B03CU)
*/
PSU_Mask_Write(DDR_PHY_DX3GCR4_OFFSET, 0xFFFFFFFFU, 0x0E00B03CU);
/*##################################################################### */
/*
* Register : DX3GCR5 @ 0XFD080A14
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR5_RESERVED_31 0x0
* Byte Lane internal VREF Select for Rank 3
* PSU_DDR_PHY_DX3GCR5_DXREFISELR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR5_RESERVED_23 0x0
* Byte Lane internal VREF Select for Rank 2
* PSU_DDR_PHY_DX3GCR5_DXREFISELR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR5_RESERVED_15 0x0
* Byte Lane internal VREF Select for Rank 1
* PSU_DDR_PHY_DX3GCR5_DXREFISELR1 0x55
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR5_RESERVED_7 0x0
* Byte Lane internal VREF Select for Rank 0
* PSU_DDR_PHY_DX3GCR5_DXREFISELR0 0x55
* DATX8 n General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080A14, 0xFFFFFFFFU ,0x09095555U)
*/
PSU_Mask_Write(DDR_PHY_DX3GCR5_OFFSET, 0xFFFFFFFFU, 0x09095555U);
/*##################################################################### */
/*
* Register : DX3GCR6 @ 0XFD080A18
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR6_RESERVED_31_30 0x0
* DRAM DQ VREF Select for Rank3
* PSU_DDR_PHY_DX3GCR6_DXDQVREFR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR6_RESERVED_23_22 0x0
* DRAM DQ VREF Select for Rank2
* PSU_DDR_PHY_DX3GCR6_DXDQVREFR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR6_RESERVED_15_14 0x0
* DRAM DQ VREF Select for Rank1
* PSU_DDR_PHY_DX3GCR6_DXDQVREFR1 0x2b
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX3GCR6_RESERVED_7_6 0x0
* DRAM DQ VREF Select for Rank0
* PSU_DDR_PHY_DX3GCR6_DXDQVREFR0 0x2b
* DATX8 n General Configuration Register 6
* (OFFSET, MASK, VALUE) (0XFD080A18, 0xFFFFFFFFU ,0x09092B2BU)
*/
PSU_Mask_Write(DDR_PHY_DX3GCR6_OFFSET, 0xFFFFFFFFU, 0x09092B2BU);
/*##################################################################### */
/*
* Register : DX4GCR0 @ 0XFD080B00
* Calibration Bypass
* PSU_DDR_PHY_DX4GCR0_CALBYP 0x0
* Master Delay Line Enable
* PSU_DDR_PHY_DX4GCR0_MDLEN 0x1
* Configurable ODT(TE) Phase Shift
* PSU_DDR_PHY_DX4GCR0_CODTSHFT 0x0
* DQS Duty Cycle Correction
* PSU_DDR_PHY_DX4GCR0_DQSDCC 0x0
* Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
* input for the respective bypte lane of the PHY
* PSU_DDR_PHY_DX4GCR0_RDDLY 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX4GCR0_RESERVED_19_14 0x0
* DQSNSE Power Down Receiver
* PSU_DDR_PHY_DX4GCR0_DQSNSEPDR 0x0
* DQSSE Power Down Receiver
* PSU_DDR_PHY_DX4GCR0_DQSSEPDR 0x0
* RTT On Additive Latency
* PSU_DDR_PHY_DX4GCR0_RTTOAL 0x0
* RTT Output Hold
* PSU_DDR_PHY_DX4GCR0_RTTOH 0x3
* Configurable PDR Phase Shift
* PSU_DDR_PHY_DX4GCR0_CPDRSHFT 0x0
* DQSR Power Down
* PSU_DDR_PHY_DX4GCR0_DQSRPD 0x0
* DQSG Power Down Receiver
* PSU_DDR_PHY_DX4GCR0_DQSGPDR 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX4GCR0_RESERVED_4 0x0
* DQSG On-Die Termination
* PSU_DDR_PHY_DX4GCR0_DQSGODT 0x0
* DQSG Output Enable
* PSU_DDR_PHY_DX4GCR0_DQSGOE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX4GCR0_RESERVED_1_0 0x0
* DATX8 n General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080B00, 0xFFFFFFFFU ,0x40800604U)
*/
PSU_Mask_Write(DDR_PHY_DX4GCR0_OFFSET, 0xFFFFFFFFU, 0x40800604U);
/*##################################################################### */
/*
* Register : DX4GCR1 @ 0XFD080B04
* Enables the PDR mode for DQ[7:0]
* PSU_DDR_PHY_DX4GCR1_DXPDRMODE 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_DX4GCR1_RESERVED_15 0x0
* Select the delayed or non-delayed read data strobe #
* PSU_DDR_PHY_DX4GCR1_QSNSEL 0x1
* Select the delayed or non-delayed read data strobe
* PSU_DDR_PHY_DX4GCR1_QSSEL 0x1
* Enables Read Data Strobe in a byte lane
* PSU_DDR_PHY_DX4GCR1_OEEN 0x1
* Enables PDR in a byte lane
* PSU_DDR_PHY_DX4GCR1_PDREN 0x1
* Enables ODT/TE in a byte lane
* PSU_DDR_PHY_DX4GCR1_TEEN 0x1
* Enables Write Data strobe in a byte lane
* PSU_DDR_PHY_DX4GCR1_DSEN 0x1
* Enables DM pin in a byte lane
* PSU_DDR_PHY_DX4GCR1_DMEN 0x1
* Enables DQ corresponding to each bit in a byte
* PSU_DDR_PHY_DX4GCR1_DQEN 0xff
* DATX8 n General Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD080B04, 0xFFFFFFFFU ,0x00007FFFU)
*/
PSU_Mask_Write(DDR_PHY_DX4GCR1_OFFSET, 0xFFFFFFFFU, 0x00007FFFU);
/*##################################################################### */
/*
* Register : DX4GCR4 @ 0XFD080B10
* Byte lane VREF IOM (Used only by D4MU IOs)
* PSU_DDR_PHY_DX4GCR4_RESERVED_31_29 0x0
* Byte Lane VREF Pad Enable
* PSU_DDR_PHY_DX4GCR4_DXREFPEN 0x0
* Byte Lane Internal VREF Enable
* PSU_DDR_PHY_DX4GCR4_DXREFEEN 0x3
* Byte Lane Single-End VREF Enable
* PSU_DDR_PHY_DX4GCR4_DXREFSEN 0x1
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR4_RESERVED_24 0x0
* External VREF generator REFSEL range select
* PSU_DDR_PHY_DX4GCR4_DXREFESELRANGE 0x0
* Byte Lane External VREF Select
* PSU_DDR_PHY_DX4GCR4_DXREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_DX4GCR4_DXREFSSELRANGE 0x1
* Byte Lane Single-End VREF Select
* PSU_DDR_PHY_DX4GCR4_DXREFSSEL 0x30
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR4_RESERVED_7_6 0x0
* VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX4GCR4_DXREFIEN 0xf
* VRMON control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX4GCR4_DXREFIMON 0x0
* DATX8 n General Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080B10, 0xFFFFFFFFU ,0x0E00B03CU)
*/
PSU_Mask_Write(DDR_PHY_DX4GCR4_OFFSET, 0xFFFFFFFFU, 0x0E00B03CU);
/*##################################################################### */
/*
* Register : DX4GCR5 @ 0XFD080B14
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR5_RESERVED_31 0x0
* Byte Lane internal VREF Select for Rank 3
* PSU_DDR_PHY_DX4GCR5_DXREFISELR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR5_RESERVED_23 0x0
* Byte Lane internal VREF Select for Rank 2
* PSU_DDR_PHY_DX4GCR5_DXREFISELR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR5_RESERVED_15 0x0
* Byte Lane internal VREF Select for Rank 1
* PSU_DDR_PHY_DX4GCR5_DXREFISELR1 0x55
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR5_RESERVED_7 0x0
* Byte Lane internal VREF Select for Rank 0
* PSU_DDR_PHY_DX4GCR5_DXREFISELR0 0x55
* DATX8 n General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080B14, 0xFFFFFFFFU ,0x09095555U)
*/
PSU_Mask_Write(DDR_PHY_DX4GCR5_OFFSET, 0xFFFFFFFFU, 0x09095555U);
/*##################################################################### */
/*
* Register : DX4GCR6 @ 0XFD080B18
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR6_RESERVED_31_30 0x0
* DRAM DQ VREF Select for Rank3
* PSU_DDR_PHY_DX4GCR6_DXDQVREFR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR6_RESERVED_23_22 0x0
* DRAM DQ VREF Select for Rank2
* PSU_DDR_PHY_DX4GCR6_DXDQVREFR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR6_RESERVED_15_14 0x0
* DRAM DQ VREF Select for Rank1
* PSU_DDR_PHY_DX4GCR6_DXDQVREFR1 0x2b
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX4GCR6_RESERVED_7_6 0x0
* DRAM DQ VREF Select for Rank0
* PSU_DDR_PHY_DX4GCR6_DXDQVREFR0 0x2b
* DATX8 n General Configuration Register 6
* (OFFSET, MASK, VALUE) (0XFD080B18, 0xFFFFFFFFU ,0x09092B2BU)
*/
PSU_Mask_Write(DDR_PHY_DX4GCR6_OFFSET, 0xFFFFFFFFU, 0x09092B2BU);
/*##################################################################### */
/*
* Register : DX5GCR0 @ 0XFD080C00
* Calibration Bypass
* PSU_DDR_PHY_DX5GCR0_CALBYP 0x0
* Master Delay Line Enable
* PSU_DDR_PHY_DX5GCR0_MDLEN 0x1
* Configurable ODT(TE) Phase Shift
* PSU_DDR_PHY_DX5GCR0_CODTSHFT 0x0
* DQS Duty Cycle Correction
* PSU_DDR_PHY_DX5GCR0_DQSDCC 0x0
* Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
* input for the respective bypte lane of the PHY
* PSU_DDR_PHY_DX5GCR0_RDDLY 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX5GCR0_RESERVED_19_14 0x0
* DQSNSE Power Down Receiver
* PSU_DDR_PHY_DX5GCR0_DQSNSEPDR 0x0
* DQSSE Power Down Receiver
* PSU_DDR_PHY_DX5GCR0_DQSSEPDR 0x0
* RTT On Additive Latency
* PSU_DDR_PHY_DX5GCR0_RTTOAL 0x0
* RTT Output Hold
* PSU_DDR_PHY_DX5GCR0_RTTOH 0x3
* Configurable PDR Phase Shift
* PSU_DDR_PHY_DX5GCR0_CPDRSHFT 0x0
* DQSR Power Down
* PSU_DDR_PHY_DX5GCR0_DQSRPD 0x0
* DQSG Power Down Receiver
* PSU_DDR_PHY_DX5GCR0_DQSGPDR 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX5GCR0_RESERVED_4 0x0
* DQSG On-Die Termination
* PSU_DDR_PHY_DX5GCR0_DQSGODT 0x0
* DQSG Output Enable
* PSU_DDR_PHY_DX5GCR0_DQSGOE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX5GCR0_RESERVED_1_0 0x0
* DATX8 n General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080C00, 0xFFFFFFFFU ,0x40800604U)
*/
PSU_Mask_Write(DDR_PHY_DX5GCR0_OFFSET, 0xFFFFFFFFU, 0x40800604U);
/*##################################################################### */
/*
* Register : DX5GCR1 @ 0XFD080C04
* Enables the PDR mode for DQ[7:0]
* PSU_DDR_PHY_DX5GCR1_DXPDRMODE 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_DX5GCR1_RESERVED_15 0x0
* Select the delayed or non-delayed read data strobe #
* PSU_DDR_PHY_DX5GCR1_QSNSEL 0x1
* Select the delayed or non-delayed read data strobe
* PSU_DDR_PHY_DX5GCR1_QSSEL 0x1
* Enables Read Data Strobe in a byte lane
* PSU_DDR_PHY_DX5GCR1_OEEN 0x1
* Enables PDR in a byte lane
* PSU_DDR_PHY_DX5GCR1_PDREN 0x1
* Enables ODT/TE in a byte lane
* PSU_DDR_PHY_DX5GCR1_TEEN 0x1
* Enables Write Data strobe in a byte lane
* PSU_DDR_PHY_DX5GCR1_DSEN 0x1
* Enables DM pin in a byte lane
* PSU_DDR_PHY_DX5GCR1_DMEN 0x1
* Enables DQ corresponding to each bit in a byte
* PSU_DDR_PHY_DX5GCR1_DQEN 0xff
* DATX8 n General Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD080C04, 0xFFFFFFFFU ,0x00007FFFU)
*/
PSU_Mask_Write(DDR_PHY_DX5GCR1_OFFSET, 0xFFFFFFFFU, 0x00007FFFU);
/*##################################################################### */
/*
* Register : DX5GCR4 @ 0XFD080C10
* Byte lane VREF IOM (Used only by D4MU IOs)
* PSU_DDR_PHY_DX5GCR4_RESERVED_31_29 0x0
* Byte Lane VREF Pad Enable
* PSU_DDR_PHY_DX5GCR4_DXREFPEN 0x0
* Byte Lane Internal VREF Enable
* PSU_DDR_PHY_DX5GCR4_DXREFEEN 0x3
* Byte Lane Single-End VREF Enable
* PSU_DDR_PHY_DX5GCR4_DXREFSEN 0x1
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR4_RESERVED_24 0x0
* External VREF generator REFSEL range select
* PSU_DDR_PHY_DX5GCR4_DXREFESELRANGE 0x0
* Byte Lane External VREF Select
* PSU_DDR_PHY_DX5GCR4_DXREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_DX5GCR4_DXREFSSELRANGE 0x1
* Byte Lane Single-End VREF Select
* PSU_DDR_PHY_DX5GCR4_DXREFSSEL 0x30
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR4_RESERVED_7_6 0x0
* VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX5GCR4_DXREFIEN 0xf
* VRMON control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX5GCR4_DXREFIMON 0x0
* DATX8 n General Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080C10, 0xFFFFFFFFU ,0x0E00B03CU)
*/
PSU_Mask_Write(DDR_PHY_DX5GCR4_OFFSET, 0xFFFFFFFFU, 0x0E00B03CU);
/*##################################################################### */
/*
* Register : DX5GCR5 @ 0XFD080C14
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR5_RESERVED_31 0x0
* Byte Lane internal VREF Select for Rank 3
* PSU_DDR_PHY_DX5GCR5_DXREFISELR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR5_RESERVED_23 0x0
* Byte Lane internal VREF Select for Rank 2
* PSU_DDR_PHY_DX5GCR5_DXREFISELR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR5_RESERVED_15 0x0
* Byte Lane internal VREF Select for Rank 1
* PSU_DDR_PHY_DX5GCR5_DXREFISELR1 0x55
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR5_RESERVED_7 0x0
* Byte Lane internal VREF Select for Rank 0
* PSU_DDR_PHY_DX5GCR5_DXREFISELR0 0x55
* DATX8 n General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080C14, 0xFFFFFFFFU ,0x09095555U)
*/
PSU_Mask_Write(DDR_PHY_DX5GCR5_OFFSET, 0xFFFFFFFFU, 0x09095555U);
/*##################################################################### */
/*
* Register : DX5GCR6 @ 0XFD080C18
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR6_RESERVED_31_30 0x0
* DRAM DQ VREF Select for Rank3
* PSU_DDR_PHY_DX5GCR6_DXDQVREFR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR6_RESERVED_23_22 0x0
* DRAM DQ VREF Select for Rank2
* PSU_DDR_PHY_DX5GCR6_DXDQVREFR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR6_RESERVED_15_14 0x0
* DRAM DQ VREF Select for Rank1
* PSU_DDR_PHY_DX5GCR6_DXDQVREFR1 0x2b
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX5GCR6_RESERVED_7_6 0x0
* DRAM DQ VREF Select for Rank0
* PSU_DDR_PHY_DX5GCR6_DXDQVREFR0 0x2b
* DATX8 n General Configuration Register 6
* (OFFSET, MASK, VALUE) (0XFD080C18, 0xFFFFFFFFU ,0x09092B2BU)
*/
PSU_Mask_Write(DDR_PHY_DX5GCR6_OFFSET, 0xFFFFFFFFU, 0x09092B2BU);
/*##################################################################### */
/*
* Register : DX6GCR0 @ 0XFD080D00
* Calibration Bypass
* PSU_DDR_PHY_DX6GCR0_CALBYP 0x0
* Master Delay Line Enable
* PSU_DDR_PHY_DX6GCR0_MDLEN 0x1
* Configurable ODT(TE) Phase Shift
* PSU_DDR_PHY_DX6GCR0_CODTSHFT 0x0
* DQS Duty Cycle Correction
* PSU_DDR_PHY_DX6GCR0_DQSDCC 0x0
* Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
* input for the respective bypte lane of the PHY
* PSU_DDR_PHY_DX6GCR0_RDDLY 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX6GCR0_RESERVED_19_14 0x0
* DQSNSE Power Down Receiver
* PSU_DDR_PHY_DX6GCR0_DQSNSEPDR 0x0
* DQSSE Power Down Receiver
* PSU_DDR_PHY_DX6GCR0_DQSSEPDR 0x0
* RTT On Additive Latency
* PSU_DDR_PHY_DX6GCR0_RTTOAL 0x0
* RTT Output Hold
* PSU_DDR_PHY_DX6GCR0_RTTOH 0x3
* Configurable PDR Phase Shift
* PSU_DDR_PHY_DX6GCR0_CPDRSHFT 0x0
* DQSR Power Down
* PSU_DDR_PHY_DX6GCR0_DQSRPD 0x0
* DQSG Power Down Receiver
* PSU_DDR_PHY_DX6GCR0_DQSGPDR 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX6GCR0_RESERVED_4 0x0
* DQSG On-Die Termination
* PSU_DDR_PHY_DX6GCR0_DQSGODT 0x0
* DQSG Output Enable
* PSU_DDR_PHY_DX6GCR0_DQSGOE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX6GCR0_RESERVED_1_0 0x0
* DATX8 n General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080D00, 0xFFFFFFFFU ,0x40800604U)
*/
PSU_Mask_Write(DDR_PHY_DX6GCR0_OFFSET, 0xFFFFFFFFU, 0x40800604U);
/*##################################################################### */
/*
* Register : DX6GCR1 @ 0XFD080D04
* Enables the PDR mode for DQ[7:0]
* PSU_DDR_PHY_DX6GCR1_DXPDRMODE 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_DX6GCR1_RESERVED_15 0x0
* Select the delayed or non-delayed read data strobe #
* PSU_DDR_PHY_DX6GCR1_QSNSEL 0x1
* Select the delayed or non-delayed read data strobe
* PSU_DDR_PHY_DX6GCR1_QSSEL 0x1
* Enables Read Data Strobe in a byte lane
* PSU_DDR_PHY_DX6GCR1_OEEN 0x1
* Enables PDR in a byte lane
* PSU_DDR_PHY_DX6GCR1_PDREN 0x1
* Enables ODT/TE in a byte lane
* PSU_DDR_PHY_DX6GCR1_TEEN 0x1
* Enables Write Data strobe in a byte lane
* PSU_DDR_PHY_DX6GCR1_DSEN 0x1
* Enables DM pin in a byte lane
* PSU_DDR_PHY_DX6GCR1_DMEN 0x1
* Enables DQ corresponding to each bit in a byte
* PSU_DDR_PHY_DX6GCR1_DQEN 0xff
* DATX8 n General Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD080D04, 0xFFFFFFFFU ,0x00007FFFU)
*/
PSU_Mask_Write(DDR_PHY_DX6GCR1_OFFSET, 0xFFFFFFFFU, 0x00007FFFU);
/*##################################################################### */
/*
* Register : DX6GCR4 @ 0XFD080D10
* Byte lane VREF IOM (Used only by D4MU IOs)
* PSU_DDR_PHY_DX6GCR4_RESERVED_31_29 0x0
* Byte Lane VREF Pad Enable
* PSU_DDR_PHY_DX6GCR4_DXREFPEN 0x0
* Byte Lane Internal VREF Enable
* PSU_DDR_PHY_DX6GCR4_DXREFEEN 0x3
* Byte Lane Single-End VREF Enable
* PSU_DDR_PHY_DX6GCR4_DXREFSEN 0x1
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR4_RESERVED_24 0x0
* External VREF generator REFSEL range select
* PSU_DDR_PHY_DX6GCR4_DXREFESELRANGE 0x0
* Byte Lane External VREF Select
* PSU_DDR_PHY_DX6GCR4_DXREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_DX6GCR4_DXREFSSELRANGE 0x1
* Byte Lane Single-End VREF Select
* PSU_DDR_PHY_DX6GCR4_DXREFSSEL 0x30
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR4_RESERVED_7_6 0x0
* VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX6GCR4_DXREFIEN 0xf
* VRMON control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX6GCR4_DXREFIMON 0x0
* DATX8 n General Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080D10, 0xFFFFFFFFU ,0x0E00B03CU)
*/
PSU_Mask_Write(DDR_PHY_DX6GCR4_OFFSET, 0xFFFFFFFFU, 0x0E00B03CU);
/*##################################################################### */
/*
* Register : DX6GCR5 @ 0XFD080D14
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR5_RESERVED_31 0x0
* Byte Lane internal VREF Select for Rank 3
* PSU_DDR_PHY_DX6GCR5_DXREFISELR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR5_RESERVED_23 0x0
* Byte Lane internal VREF Select for Rank 2
* PSU_DDR_PHY_DX6GCR5_DXREFISELR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR5_RESERVED_15 0x0
* Byte Lane internal VREF Select for Rank 1
* PSU_DDR_PHY_DX6GCR5_DXREFISELR1 0x55
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR5_RESERVED_7 0x0
* Byte Lane internal VREF Select for Rank 0
* PSU_DDR_PHY_DX6GCR5_DXREFISELR0 0x55
* DATX8 n General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080D14, 0xFFFFFFFFU ,0x09095555U)
*/
PSU_Mask_Write(DDR_PHY_DX6GCR5_OFFSET, 0xFFFFFFFFU, 0x09095555U);
/*##################################################################### */
/*
* Register : DX6GCR6 @ 0XFD080D18
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR6_RESERVED_31_30 0x0
* DRAM DQ VREF Select for Rank3
* PSU_DDR_PHY_DX6GCR6_DXDQVREFR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR6_RESERVED_23_22 0x0
* DRAM DQ VREF Select for Rank2
* PSU_DDR_PHY_DX6GCR6_DXDQVREFR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR6_RESERVED_15_14 0x0
* DRAM DQ VREF Select for Rank1
* PSU_DDR_PHY_DX6GCR6_DXDQVREFR1 0x2b
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX6GCR6_RESERVED_7_6 0x0
* DRAM DQ VREF Select for Rank0
* PSU_DDR_PHY_DX6GCR6_DXDQVREFR0 0x2b
* DATX8 n General Configuration Register 6
* (OFFSET, MASK, VALUE) (0XFD080D18, 0xFFFFFFFFU ,0x09092B2BU)
*/
PSU_Mask_Write(DDR_PHY_DX6GCR6_OFFSET, 0xFFFFFFFFU, 0x09092B2BU);
/*##################################################################### */
/*
* Register : DX7GCR0 @ 0XFD080E00
* Calibration Bypass
* PSU_DDR_PHY_DX7GCR0_CALBYP 0x0
* Master Delay Line Enable
* PSU_DDR_PHY_DX7GCR0_MDLEN 0x1
* Configurable ODT(TE) Phase Shift
* PSU_DDR_PHY_DX7GCR0_CODTSHFT 0x0
* DQS Duty Cycle Correction
* PSU_DDR_PHY_DX7GCR0_DQSDCC 0x0
* Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
* input for the respective bypte lane of the PHY
* PSU_DDR_PHY_DX7GCR0_RDDLY 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX7GCR0_RESERVED_19_14 0x0
* DQSNSE Power Down Receiver
* PSU_DDR_PHY_DX7GCR0_DQSNSEPDR 0x0
* DQSSE Power Down Receiver
* PSU_DDR_PHY_DX7GCR0_DQSSEPDR 0x0
* RTT On Additive Latency
* PSU_DDR_PHY_DX7GCR0_RTTOAL 0x0
* RTT Output Hold
* PSU_DDR_PHY_DX7GCR0_RTTOH 0x3
* Configurable PDR Phase Shift
* PSU_DDR_PHY_DX7GCR0_CPDRSHFT 0x0
* DQSR Power Down
* PSU_DDR_PHY_DX7GCR0_DQSRPD 0x0
* DQSG Power Down Receiver
* PSU_DDR_PHY_DX7GCR0_DQSGPDR 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX7GCR0_RESERVED_4 0x0
* DQSG On-Die Termination
* PSU_DDR_PHY_DX7GCR0_DQSGODT 0x0
* DQSG Output Enable
* PSU_DDR_PHY_DX7GCR0_DQSGOE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX7GCR0_RESERVED_1_0 0x0
* DATX8 n General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080E00, 0xFFFFFFFFU ,0x40800604U)
*/
PSU_Mask_Write(DDR_PHY_DX7GCR0_OFFSET, 0xFFFFFFFFU, 0x40800604U);
/*##################################################################### */
/*
* Register : DX7GCR1 @ 0XFD080E04
* Enables the PDR mode for DQ[7:0]
* PSU_DDR_PHY_DX7GCR1_DXPDRMODE 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_DX7GCR1_RESERVED_15 0x0
* Select the delayed or non-delayed read data strobe #
* PSU_DDR_PHY_DX7GCR1_QSNSEL 0x1
* Select the delayed or non-delayed read data strobe
* PSU_DDR_PHY_DX7GCR1_QSSEL 0x1
* Enables Read Data Strobe in a byte lane
* PSU_DDR_PHY_DX7GCR1_OEEN 0x1
* Enables PDR in a byte lane
* PSU_DDR_PHY_DX7GCR1_PDREN 0x1
* Enables ODT/TE in a byte lane
* PSU_DDR_PHY_DX7GCR1_TEEN 0x1
* Enables Write Data strobe in a byte lane
* PSU_DDR_PHY_DX7GCR1_DSEN 0x1
* Enables DM pin in a byte lane
* PSU_DDR_PHY_DX7GCR1_DMEN 0x1
* Enables DQ corresponding to each bit in a byte
* PSU_DDR_PHY_DX7GCR1_DQEN 0xff
* DATX8 n General Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD080E04, 0xFFFFFFFFU ,0x00007FFFU)
*/
PSU_Mask_Write(DDR_PHY_DX7GCR1_OFFSET, 0xFFFFFFFFU, 0x00007FFFU);
/*##################################################################### */
/*
* Register : DX7GCR4 @ 0XFD080E10
* Byte lane VREF IOM (Used only by D4MU IOs)
* PSU_DDR_PHY_DX7GCR4_RESERVED_31_29 0x0
* Byte Lane VREF Pad Enable
* PSU_DDR_PHY_DX7GCR4_DXREFPEN 0x0
* Byte Lane Internal VREF Enable
* PSU_DDR_PHY_DX7GCR4_DXREFEEN 0x3
* Byte Lane Single-End VREF Enable
* PSU_DDR_PHY_DX7GCR4_DXREFSEN 0x1
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR4_RESERVED_24 0x0
* External VREF generator REFSEL range select
* PSU_DDR_PHY_DX7GCR4_DXREFESELRANGE 0x0
* Byte Lane External VREF Select
* PSU_DDR_PHY_DX7GCR4_DXREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_DX7GCR4_DXREFSSELRANGE 0x1
* Byte Lane Single-End VREF Select
* PSU_DDR_PHY_DX7GCR4_DXREFSSEL 0x30
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR4_RESERVED_7_6 0x0
* VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX7GCR4_DXREFIEN 0xf
* VRMON control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX7GCR4_DXREFIMON 0x0
* DATX8 n General Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080E10, 0xFFFFFFFFU ,0x0E00B03CU)
*/
PSU_Mask_Write(DDR_PHY_DX7GCR4_OFFSET, 0xFFFFFFFFU, 0x0E00B03CU);
/*##################################################################### */
/*
* Register : DX7GCR5 @ 0XFD080E14
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR5_RESERVED_31 0x0
* Byte Lane internal VREF Select for Rank 3
* PSU_DDR_PHY_DX7GCR5_DXREFISELR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR5_RESERVED_23 0x0
* Byte Lane internal VREF Select for Rank 2
* PSU_DDR_PHY_DX7GCR5_DXREFISELR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR5_RESERVED_15 0x0
* Byte Lane internal VREF Select for Rank 1
* PSU_DDR_PHY_DX7GCR5_DXREFISELR1 0x55
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR5_RESERVED_7 0x0
* Byte Lane internal VREF Select for Rank 0
* PSU_DDR_PHY_DX7GCR5_DXREFISELR0 0x55
* DATX8 n General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080E14, 0xFFFFFFFFU ,0x09095555U)
*/
PSU_Mask_Write(DDR_PHY_DX7GCR5_OFFSET, 0xFFFFFFFFU, 0x09095555U);
/*##################################################################### */
/*
* Register : DX7GCR6 @ 0XFD080E18
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR6_RESERVED_31_30 0x0
* DRAM DQ VREF Select for Rank3
* PSU_DDR_PHY_DX7GCR6_DXDQVREFR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR6_RESERVED_23_22 0x0
* DRAM DQ VREF Select for Rank2
* PSU_DDR_PHY_DX7GCR6_DXDQVREFR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR6_RESERVED_15_14 0x0
* DRAM DQ VREF Select for Rank1
* PSU_DDR_PHY_DX7GCR6_DXDQVREFR1 0x2b
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX7GCR6_RESERVED_7_6 0x0
* DRAM DQ VREF Select for Rank0
* PSU_DDR_PHY_DX7GCR6_DXDQVREFR0 0x2b
* DATX8 n General Configuration Register 6
* (OFFSET, MASK, VALUE) (0XFD080E18, 0xFFFFFFFFU ,0x09092B2BU)
*/
PSU_Mask_Write(DDR_PHY_DX7GCR6_OFFSET, 0xFFFFFFFFU, 0x09092B2BU);
/*##################################################################### */
/*
* Register : DX8GCR0 @ 0XFD080F00
* Calibration Bypass
* PSU_DDR_PHY_DX8GCR0_CALBYP 0x0
* Master Delay Line Enable
* PSU_DDR_PHY_DX8GCR0_MDLEN 0x1
* Configurable ODT(TE) Phase Shift
* PSU_DDR_PHY_DX8GCR0_CODTSHFT 0x0
* DQS Duty Cycle Correction
* PSU_DDR_PHY_DX8GCR0_DQSDCC 0x0
* Number of Cycles ( in terms of ctl_clk) to generate ctl_dx_get_static_rd
* input for the respective bypte lane of the PHY
* PSU_DDR_PHY_DX8GCR0_RDDLY 0x8
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8GCR0_RESERVED_19_14 0x0
* DQSNSE Power Down Receiver
* PSU_DDR_PHY_DX8GCR0_DQSNSEPDR 0x0
* DQSSE Power Down Receiver
* PSU_DDR_PHY_DX8GCR0_DQSSEPDR 0x0
* RTT On Additive Latency
* PSU_DDR_PHY_DX8GCR0_RTTOAL 0x0
* RTT Output Hold
* PSU_DDR_PHY_DX8GCR0_RTTOH 0x3
* Configurable PDR Phase Shift
* PSU_DDR_PHY_DX8GCR0_CPDRSHFT 0x0
* DQSR Power Down
* PSU_DDR_PHY_DX8GCR0_DQSRPD 0x0
* DQSG Power Down Receiver
* PSU_DDR_PHY_DX8GCR0_DQSGPDR 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8GCR0_RESERVED_4 0x0
* DQSG On-Die Termination
* PSU_DDR_PHY_DX8GCR0_DQSGODT 0x0
* DQSG Output Enable
* PSU_DDR_PHY_DX8GCR0_DQSGOE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8GCR0_RESERVED_1_0 0x0
* DATX8 n General Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD080F00, 0xFFFFFFFFU ,0x40800624U)
*/
PSU_Mask_Write(DDR_PHY_DX8GCR0_OFFSET, 0xFFFFFFFFU, 0x40800624U);
/*##################################################################### */
/*
* Register : DX8GCR1 @ 0XFD080F04
* Enables the PDR mode for DQ[7:0]
* PSU_DDR_PHY_DX8GCR1_DXPDRMODE 0x0
* Reserved. Returns zeroes on reads.
* PSU_DDR_PHY_DX8GCR1_RESERVED_15 0x0
* Select the delayed or non-delayed read data strobe #
* PSU_DDR_PHY_DX8GCR1_QSNSEL 0x1
* Select the delayed or non-delayed read data strobe
* PSU_DDR_PHY_DX8GCR1_QSSEL 0x1
* Enables Read Data Strobe in a byte lane
* PSU_DDR_PHY_DX8GCR1_OEEN 0x1
* Enables PDR in a byte lane
* PSU_DDR_PHY_DX8GCR1_PDREN 0x1
* Enables ODT/TE in a byte lane
* PSU_DDR_PHY_DX8GCR1_TEEN 0x1
* Enables Write Data strobe in a byte lane
* PSU_DDR_PHY_DX8GCR1_DSEN 0x1
* Enables DM pin in a byte lane
* PSU_DDR_PHY_DX8GCR1_DMEN 0x1
* Enables DQ corresponding to each bit in a byte
* PSU_DDR_PHY_DX8GCR1_DQEN 0x0
* DATX8 n General Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD080F04, 0xFFFFFFFFU ,0x00007F00U)
*/
PSU_Mask_Write(DDR_PHY_DX8GCR1_OFFSET, 0xFFFFFFFFU, 0x00007F00U);
/*##################################################################### */
/*
* Register : DX8GCR4 @ 0XFD080F10
* Byte lane VREF IOM (Used only by D4MU IOs)
* PSU_DDR_PHY_DX8GCR4_RESERVED_31_29 0x0
* Byte Lane VREF Pad Enable
* PSU_DDR_PHY_DX8GCR4_DXREFPEN 0x0
* Byte Lane Internal VREF Enable
* PSU_DDR_PHY_DX8GCR4_DXREFEEN 0x3
* Byte Lane Single-End VREF Enable
* PSU_DDR_PHY_DX8GCR4_DXREFSEN 0x1
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR4_RESERVED_24 0x0
* External VREF generator REFSEL range select
* PSU_DDR_PHY_DX8GCR4_DXREFESELRANGE 0x0
* Byte Lane External VREF Select
* PSU_DDR_PHY_DX8GCR4_DXREFESEL 0x0
* Single ended VREF generator REFSEL range select
* PSU_DDR_PHY_DX8GCR4_DXREFSSELRANGE 0x1
* Byte Lane Single-End VREF Select
* PSU_DDR_PHY_DX8GCR4_DXREFSSEL 0x30
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR4_RESERVED_7_6 0x0
* VREF Enable control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX8GCR4_DXREFIEN 0xf
* VRMON control for DQ IO (Single Ended) buffers of a byte lane.
* PSU_DDR_PHY_DX8GCR4_DXREFIMON 0x0
* DATX8 n General Configuration Register 4
* (OFFSET, MASK, VALUE) (0XFD080F10, 0xFFFFFFFFU ,0x0E00B03CU)
*/
PSU_Mask_Write(DDR_PHY_DX8GCR4_OFFSET, 0xFFFFFFFFU, 0x0E00B03CU);
/*##################################################################### */
/*
* Register : DX8GCR5 @ 0XFD080F14
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR5_RESERVED_31 0x0
* Byte Lane internal VREF Select for Rank 3
* PSU_DDR_PHY_DX8GCR5_DXREFISELR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR5_RESERVED_23 0x0
* Byte Lane internal VREF Select for Rank 2
* PSU_DDR_PHY_DX8GCR5_DXREFISELR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR5_RESERVED_15 0x0
* Byte Lane internal VREF Select for Rank 1
* PSU_DDR_PHY_DX8GCR5_DXREFISELR1 0x55
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR5_RESERVED_7 0x0
* Byte Lane internal VREF Select for Rank 0
* PSU_DDR_PHY_DX8GCR5_DXREFISELR0 0x55
* DATX8 n General Configuration Register 5
* (OFFSET, MASK, VALUE) (0XFD080F14, 0xFFFFFFFFU ,0x09095555U)
*/
PSU_Mask_Write(DDR_PHY_DX8GCR5_OFFSET, 0xFFFFFFFFU, 0x09095555U);
/*##################################################################### */
/*
* Register : DX8GCR6 @ 0XFD080F18
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR6_RESERVED_31_30 0x0
* DRAM DQ VREF Select for Rank3
* PSU_DDR_PHY_DX8GCR6_DXDQVREFR3 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR6_RESERVED_23_22 0x0
* DRAM DQ VREF Select for Rank2
* PSU_DDR_PHY_DX8GCR6_DXDQVREFR2 0x9
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR6_RESERVED_15_14 0x0
* DRAM DQ VREF Select for Rank1
* PSU_DDR_PHY_DX8GCR6_DXDQVREFR1 0x2b
* Reserved. Returns zeros on reads.
* PSU_DDR_PHY_DX8GCR6_RESERVED_7_6 0x0
* DRAM DQ VREF Select for Rank0
* PSU_DDR_PHY_DX8GCR6_DXDQVREFR0 0x2b
* DATX8 n General Configuration Register 6
* (OFFSET, MASK, VALUE) (0XFD080F18, 0xFFFFFFFFU ,0x09092B2BU)
*/
PSU_Mask_Write(DDR_PHY_DX8GCR6_OFFSET, 0xFFFFFFFFU, 0x09092B2BU);
/*##################################################################### */
/*
* Register : DX8SL0OSC @ 0XFD081400
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0OSC_RESERVED_31_30 0x0
* Enable Clock Gating for DX ddr_clk
* PSU_DDR_PHY_DX8SL0OSC_GATEDXRDCLK 0x2
* Enable Clock Gating for DX ctl_rd_clk
* PSU_DDR_PHY_DX8SL0OSC_GATEDXDDRCLK 0x2
* Enable Clock Gating for DX ctl_clk
* PSU_DDR_PHY_DX8SL0OSC_GATEDXCTLCLK 0x2
* Selects the level to which clocks will be stalled when clock gating is e
* nabled.
* PSU_DDR_PHY_DX8SL0OSC_CLKLEVEL 0x0
* Loopback Mode
* PSU_DDR_PHY_DX8SL0OSC_LBMODE 0x0
* Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
* PSU_DDR_PHY_DX8SL0OSC_LBGSDQS 0x0
* Loopback DQS Gating
* PSU_DDR_PHY_DX8SL0OSC_LBGDQS 0x0
* Loopback DQS Shift
* PSU_DDR_PHY_DX8SL0OSC_LBDQSS 0x0
* PHY High-Speed Reset
* PSU_DDR_PHY_DX8SL0OSC_PHYHRST 0x1
* PHY FIFO Reset
* PSU_DDR_PHY_DX8SL0OSC_PHYFRST 0x1
* Delay Line Test Start
* PSU_DDR_PHY_DX8SL0OSC_DLTST 0x0
* Delay Line Test Mode
* PSU_DDR_PHY_DX8SL0OSC_DLTMODE 0x0
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL0OSC_RESERVED_12_11 0x3
* Oscillator Mode Write-Data Delay Line Select
* PSU_DDR_PHY_DX8SL0OSC_OSCWDDL 0x3
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL0OSC_RESERVED_8_7 0x3
* Oscillator Mode Write-Leveling Delay Line Select
* PSU_DDR_PHY_DX8SL0OSC_OSCWDL 0x3
* Oscillator Mode Division
* PSU_DDR_PHY_DX8SL0OSC_OSCDIV 0xf
* Oscillator Enable
* PSU_DDR_PHY_DX8SL0OSC_OSCEN 0x0
* DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
* opback, and Gated Clock Control Register
* (OFFSET, MASK, VALUE) (0XFD081400, 0xFFFFFFFFU ,0x2A019FFEU)
*/
PSU_Mask_Write(DDR_PHY_DX8SL0OSC_OFFSET, 0xFFFFFFFFU, 0x2A019FFEU);
/*##################################################################### */
/*
* Register : DX8SL0PLLCR0 @ 0XFD081404
* PLL Bypass
* PSU_DDR_PHY_DX8SL0PLLCR0_PLLBYP 0x0
* PLL Reset
* PSU_DDR_PHY_DX8SL0PLLCR0_PLLRST 0x0
* PLL Power Down
* PSU_DDR_PHY_DX8SL0PLLCR0_PLLPD 0x0
* Reference Stop Mode
* PSU_DDR_PHY_DX8SL0PLLCR0_RSTOPM 0x0
* PLL Frequency Select
* PSU_DDR_PHY_DX8SL0PLLCR0_FRQSEL 0x1
* Relock Mode
* PSU_DDR_PHY_DX8SL0PLLCR0_RLOCKM 0x0
* Charge Pump Proportional Current Control
* PSU_DDR_PHY_DX8SL0PLLCR0_CPPC 0x8
* Charge Pump Integrating Current Control
* PSU_DDR_PHY_DX8SL0PLLCR0_CPIC 0x0
* Gear Shift
* PSU_DDR_PHY_DX8SL0PLLCR0_GSHIFT 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0PLLCR0_RESERVED_11_9 0x0
* Analog Test Enable (ATOEN)
* PSU_DDR_PHY_DX8SL0PLLCR0_ATOEN 0x0
* Analog Test Control
* PSU_DDR_PHY_DX8SL0PLLCR0_ATC 0x0
* Digital Test Control
* PSU_DDR_PHY_DX8SL0PLLCR0_DTC 0x0
* DAXT8 0-1 PLL Control Register 0
* (OFFSET, MASK, VALUE) (0XFD081404, 0xFFFFFFFFU ,0x01100000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL0PLLCR0_OFFSET,
0xFFFFFFFFU, 0x01100000U);
/*##################################################################### */
/*
* Register : DX8SL0DQSCTL @ 0XFD08141C
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_31_25 0x0
* Read Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL0DQSCTL_RRRMODE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_23_22 0x0
* Write Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL0DQSCTL_WRRMODE 0x1
* DQS Gate Extension
* PSU_DDR_PHY_DX8SL0DQSCTL_DQSGX 0x0
* Low Power PLL Power Down
* PSU_DDR_PHY_DX8SL0DQSCTL_LPPLLPD 0x1
* Low Power I/O Power Down
* PSU_DDR_PHY_DX8SL0DQSCTL_LPIOPD 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_16_15 0x0
* QS Counter Enable
* PSU_DDR_PHY_DX8SL0DQSCTL_QSCNTEN 0x1
* Unused DQ I/O Mode
* PSU_DDR_PHY_DX8SL0DQSCTL_UDQIOM 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0DQSCTL_RESERVED_12_10 0x0
* Data Slew Rate
* PSU_DDR_PHY_DX8SL0DQSCTL_DXSR 0x3
* DQS_N Resistor
* PSU_DDR_PHY_DX8SL0DQSCTL_DQSNRES 0x0
* DQS Resistor
* PSU_DDR_PHY_DX8SL0DQSCTL_DQSRES 0x0
* DATX8 0-1 DQS Control Register
* (OFFSET, MASK, VALUE) (0XFD08141C, 0xFFFFFFFFU ,0x01264300U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL0DQSCTL_OFFSET,
0xFFFFFFFFU, 0x01264300U);
/*##################################################################### */
/*
* Register : DX8SL0DXCTL2 @ 0XFD08142C
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_31_24 0x0
* Configurable Read Data Enable
* PSU_DDR_PHY_DX8SL0DXCTL2_CRDEN 0x0
* OX Extension during Post-amble
* PSU_DDR_PHY_DX8SL0DXCTL2_POSOEX 0x0
* OE Extension during Pre-amble
* PSU_DDR_PHY_DX8SL0DXCTL2_PREOEX 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_17 0x0
* I/O Assisted Gate Select
* PSU_DDR_PHY_DX8SL0DXCTL2_IOAG 0x0
* I/O Loopback Select
* PSU_DDR_PHY_DX8SL0DXCTL2_IOLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_14_13 0x0
* Low Power Wakeup Threshold
* PSU_DDR_PHY_DX8SL0DXCTL2_LPWAKEUP_THRSH 0xc
* Read Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL0DXCTL2_RDBI 0x0
* Write Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL0DXCTL2_WDBI 0x0
* PUB Read FIFO Bypass
* PSU_DDR_PHY_DX8SL0DXCTL2_PRFBYP 0x0
* DATX8 Receive FIFO Read Mode
* PSU_DDR_PHY_DX8SL0DXCTL2_RDMODE 0x0
* Disables the Read FIFO Reset
* PSU_DDR_PHY_DX8SL0DXCTL2_DISRST 0x0
* Read DQS Gate I/O Loopback
* PSU_DDR_PHY_DX8SL0DXCTL2_DQSGLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0DXCTL2_RESERVED_0 0x0
* DATX8 0-1 DX Control Register 2
* (OFFSET, MASK, VALUE) (0XFD08142C, 0xFFFFFFFFU ,0x00041800U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL0DXCTL2_OFFSET,
0xFFFFFFFFU, 0x00041800U);
/*##################################################################### */
/*
* Register : DX8SL0IOCR @ 0XFD081430
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL0IOCR_RESERVED_31 0x0
* PVREF_DAC REFSEL range select
* PSU_DDR_PHY_DX8SL0IOCR_DXDACRANGE 0x7
* IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
* PSU_DDR_PHY_DX8SL0IOCR_DXVREFIOM 0x0
* DX IO Mode
* PSU_DDR_PHY_DX8SL0IOCR_DXIOM 0x2
* DX IO Transmitter Mode
* PSU_DDR_PHY_DX8SL0IOCR_DXTXM 0x0
* DX IO Receiver Mode
* PSU_DDR_PHY_DX8SL0IOCR_DXRXM 0x0
* DATX8 0-1 I/O Configuration Register
* (OFFSET, MASK, VALUE) (0XFD081430, 0xFFFFFFFFU ,0x70800000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL0IOCR_OFFSET, 0xFFFFFFFFU, 0x70800000U);
/*##################################################################### */
/*
* Register : DX8SL1OSC @ 0XFD081440
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1OSC_RESERVED_31_30 0x0
* Enable Clock Gating for DX ddr_clk
* PSU_DDR_PHY_DX8SL1OSC_GATEDXRDCLK 0x2
* Enable Clock Gating for DX ctl_rd_clk
* PSU_DDR_PHY_DX8SL1OSC_GATEDXDDRCLK 0x2
* Enable Clock Gating for DX ctl_clk
* PSU_DDR_PHY_DX8SL1OSC_GATEDXCTLCLK 0x2
* Selects the level to which clocks will be stalled when clock gating is e
* nabled.
* PSU_DDR_PHY_DX8SL1OSC_CLKLEVEL 0x0
* Loopback Mode
* PSU_DDR_PHY_DX8SL1OSC_LBMODE 0x0
* Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
* PSU_DDR_PHY_DX8SL1OSC_LBGSDQS 0x0
* Loopback DQS Gating
* PSU_DDR_PHY_DX8SL1OSC_LBGDQS 0x0
* Loopback DQS Shift
* PSU_DDR_PHY_DX8SL1OSC_LBDQSS 0x0
* PHY High-Speed Reset
* PSU_DDR_PHY_DX8SL1OSC_PHYHRST 0x1
* PHY FIFO Reset
* PSU_DDR_PHY_DX8SL1OSC_PHYFRST 0x1
* Delay Line Test Start
* PSU_DDR_PHY_DX8SL1OSC_DLTST 0x0
* Delay Line Test Mode
* PSU_DDR_PHY_DX8SL1OSC_DLTMODE 0x0
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL1OSC_RESERVED_12_11 0x3
* Oscillator Mode Write-Data Delay Line Select
* PSU_DDR_PHY_DX8SL1OSC_OSCWDDL 0x3
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL1OSC_RESERVED_8_7 0x3
* Oscillator Mode Write-Leveling Delay Line Select
* PSU_DDR_PHY_DX8SL1OSC_OSCWDL 0x3
* Oscillator Mode Division
* PSU_DDR_PHY_DX8SL1OSC_OSCDIV 0xf
* Oscillator Enable
* PSU_DDR_PHY_DX8SL1OSC_OSCEN 0x0
* DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
* opback, and Gated Clock Control Register
* (OFFSET, MASK, VALUE) (0XFD081440, 0xFFFFFFFFU ,0x2A019FFEU)
*/
PSU_Mask_Write(DDR_PHY_DX8SL1OSC_OFFSET, 0xFFFFFFFFU, 0x2A019FFEU);
/*##################################################################### */
/*
* Register : DX8SL1PLLCR0 @ 0XFD081444
* PLL Bypass
* PSU_DDR_PHY_DX8SL1PLLCR0_PLLBYP 0x0
* PLL Reset
* PSU_DDR_PHY_DX8SL1PLLCR0_PLLRST 0x0
* PLL Power Down
* PSU_DDR_PHY_DX8SL1PLLCR0_PLLPD 0x0
* Reference Stop Mode
* PSU_DDR_PHY_DX8SL1PLLCR0_RSTOPM 0x0
* PLL Frequency Select
* PSU_DDR_PHY_DX8SL1PLLCR0_FRQSEL 0x1
* Relock Mode
* PSU_DDR_PHY_DX8SL1PLLCR0_RLOCKM 0x0
* Charge Pump Proportional Current Control
* PSU_DDR_PHY_DX8SL1PLLCR0_CPPC 0x8
* Charge Pump Integrating Current Control
* PSU_DDR_PHY_DX8SL1PLLCR0_CPIC 0x0
* Gear Shift
* PSU_DDR_PHY_DX8SL1PLLCR0_GSHIFT 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1PLLCR0_RESERVED_11_9 0x0
* Analog Test Enable (ATOEN)
* PSU_DDR_PHY_DX8SL1PLLCR0_ATOEN 0x0
* Analog Test Control
* PSU_DDR_PHY_DX8SL1PLLCR0_ATC 0x0
* Digital Test Control
* PSU_DDR_PHY_DX8SL1PLLCR0_DTC 0x0
* DAXT8 0-1 PLL Control Register 0
* (OFFSET, MASK, VALUE) (0XFD081444, 0xFFFFFFFFU ,0x01100000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL1PLLCR0_OFFSET,
0xFFFFFFFFU, 0x01100000U);
/*##################################################################### */
/*
* Register : DX8SL1DQSCTL @ 0XFD08145C
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_31_25 0x0
* Read Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL1DQSCTL_RRRMODE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_23_22 0x0
* Write Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL1DQSCTL_WRRMODE 0x1
* DQS Gate Extension
* PSU_DDR_PHY_DX8SL1DQSCTL_DQSGX 0x0
* Low Power PLL Power Down
* PSU_DDR_PHY_DX8SL1DQSCTL_LPPLLPD 0x1
* Low Power I/O Power Down
* PSU_DDR_PHY_DX8SL1DQSCTL_LPIOPD 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_16_15 0x0
* QS Counter Enable
* PSU_DDR_PHY_DX8SL1DQSCTL_QSCNTEN 0x1
* Unused DQ I/O Mode
* PSU_DDR_PHY_DX8SL1DQSCTL_UDQIOM 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1DQSCTL_RESERVED_12_10 0x0
* Data Slew Rate
* PSU_DDR_PHY_DX8SL1DQSCTL_DXSR 0x3
* DQS_N Resistor
* PSU_DDR_PHY_DX8SL1DQSCTL_DQSNRES 0x0
* DQS Resistor
* PSU_DDR_PHY_DX8SL1DQSCTL_DQSRES 0x0
* DATX8 0-1 DQS Control Register
* (OFFSET, MASK, VALUE) (0XFD08145C, 0xFFFFFFFFU ,0x01264300U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL1DQSCTL_OFFSET,
0xFFFFFFFFU, 0x01264300U);
/*##################################################################### */
/*
* Register : DX8SL1DXCTL2 @ 0XFD08146C
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_31_24 0x0
* Configurable Read Data Enable
* PSU_DDR_PHY_DX8SL1DXCTL2_CRDEN 0x0
* OX Extension during Post-amble
* PSU_DDR_PHY_DX8SL1DXCTL2_POSOEX 0x0
* OE Extension during Pre-amble
* PSU_DDR_PHY_DX8SL1DXCTL2_PREOEX 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_17 0x0
* I/O Assisted Gate Select
* PSU_DDR_PHY_DX8SL1DXCTL2_IOAG 0x0
* I/O Loopback Select
* PSU_DDR_PHY_DX8SL1DXCTL2_IOLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_14_13 0x0
* Low Power Wakeup Threshold
* PSU_DDR_PHY_DX8SL1DXCTL2_LPWAKEUP_THRSH 0xc
* Read Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL1DXCTL2_RDBI 0x0
* Write Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL1DXCTL2_WDBI 0x0
* PUB Read FIFO Bypass
* PSU_DDR_PHY_DX8SL1DXCTL2_PRFBYP 0x0
* DATX8 Receive FIFO Read Mode
* PSU_DDR_PHY_DX8SL1DXCTL2_RDMODE 0x0
* Disables the Read FIFO Reset
* PSU_DDR_PHY_DX8SL1DXCTL2_DISRST 0x0
* Read DQS Gate I/O Loopback
* PSU_DDR_PHY_DX8SL1DXCTL2_DQSGLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1DXCTL2_RESERVED_0 0x0
* DATX8 0-1 DX Control Register 2
* (OFFSET, MASK, VALUE) (0XFD08146C, 0xFFFFFFFFU ,0x00041800U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL1DXCTL2_OFFSET,
0xFFFFFFFFU, 0x00041800U);
/*##################################################################### */
/*
* Register : DX8SL1IOCR @ 0XFD081470
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL1IOCR_RESERVED_31 0x0
* PVREF_DAC REFSEL range select
* PSU_DDR_PHY_DX8SL1IOCR_DXDACRANGE 0x7
* IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
* PSU_DDR_PHY_DX8SL1IOCR_DXVREFIOM 0x0
* DX IO Mode
* PSU_DDR_PHY_DX8SL1IOCR_DXIOM 0x2
* DX IO Transmitter Mode
* PSU_DDR_PHY_DX8SL1IOCR_DXTXM 0x0
* DX IO Receiver Mode
* PSU_DDR_PHY_DX8SL1IOCR_DXRXM 0x0
* DATX8 0-1 I/O Configuration Register
* (OFFSET, MASK, VALUE) (0XFD081470, 0xFFFFFFFFU ,0x70800000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL1IOCR_OFFSET, 0xFFFFFFFFU, 0x70800000U);
/*##################################################################### */
/*
* Register : DX8SL2OSC @ 0XFD081480
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2OSC_RESERVED_31_30 0x0
* Enable Clock Gating for DX ddr_clk
* PSU_DDR_PHY_DX8SL2OSC_GATEDXRDCLK 0x2
* Enable Clock Gating for DX ctl_rd_clk
* PSU_DDR_PHY_DX8SL2OSC_GATEDXDDRCLK 0x2
* Enable Clock Gating for DX ctl_clk
* PSU_DDR_PHY_DX8SL2OSC_GATEDXCTLCLK 0x2
* Selects the level to which clocks will be stalled when clock gating is e
* nabled.
* PSU_DDR_PHY_DX8SL2OSC_CLKLEVEL 0x0
* Loopback Mode
* PSU_DDR_PHY_DX8SL2OSC_LBMODE 0x0
* Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
* PSU_DDR_PHY_DX8SL2OSC_LBGSDQS 0x0
* Loopback DQS Gating
* PSU_DDR_PHY_DX8SL2OSC_LBGDQS 0x0
* Loopback DQS Shift
* PSU_DDR_PHY_DX8SL2OSC_LBDQSS 0x0
* PHY High-Speed Reset
* PSU_DDR_PHY_DX8SL2OSC_PHYHRST 0x1
* PHY FIFO Reset
* PSU_DDR_PHY_DX8SL2OSC_PHYFRST 0x1
* Delay Line Test Start
* PSU_DDR_PHY_DX8SL2OSC_DLTST 0x0
* Delay Line Test Mode
* PSU_DDR_PHY_DX8SL2OSC_DLTMODE 0x0
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL2OSC_RESERVED_12_11 0x3
* Oscillator Mode Write-Data Delay Line Select
* PSU_DDR_PHY_DX8SL2OSC_OSCWDDL 0x3
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL2OSC_RESERVED_8_7 0x3
* Oscillator Mode Write-Leveling Delay Line Select
* PSU_DDR_PHY_DX8SL2OSC_OSCWDL 0x3
* Oscillator Mode Division
* PSU_DDR_PHY_DX8SL2OSC_OSCDIV 0xf
* Oscillator Enable
* PSU_DDR_PHY_DX8SL2OSC_OSCEN 0x0
* DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
* opback, and Gated Clock Control Register
* (OFFSET, MASK, VALUE) (0XFD081480, 0xFFFFFFFFU ,0x2A019FFEU)
*/
PSU_Mask_Write(DDR_PHY_DX8SL2OSC_OFFSET, 0xFFFFFFFFU, 0x2A019FFEU);
/*##################################################################### */
/*
* Register : DX8SL2PLLCR0 @ 0XFD081484
* PLL Bypass
* PSU_DDR_PHY_DX8SL2PLLCR0_PLLBYP 0x0
* PLL Reset
* PSU_DDR_PHY_DX8SL2PLLCR0_PLLRST 0x0
* PLL Power Down
* PSU_DDR_PHY_DX8SL2PLLCR0_PLLPD 0x0
* Reference Stop Mode
* PSU_DDR_PHY_DX8SL2PLLCR0_RSTOPM 0x0
* PLL Frequency Select
* PSU_DDR_PHY_DX8SL2PLLCR0_FRQSEL 0x1
* Relock Mode
* PSU_DDR_PHY_DX8SL2PLLCR0_RLOCKM 0x0
* Charge Pump Proportional Current Control
* PSU_DDR_PHY_DX8SL2PLLCR0_CPPC 0x8
* Charge Pump Integrating Current Control
* PSU_DDR_PHY_DX8SL2PLLCR0_CPIC 0x0
* Gear Shift
* PSU_DDR_PHY_DX8SL2PLLCR0_GSHIFT 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2PLLCR0_RESERVED_11_9 0x0
* Analog Test Enable (ATOEN)
* PSU_DDR_PHY_DX8SL2PLLCR0_ATOEN 0x0
* Analog Test Control
* PSU_DDR_PHY_DX8SL2PLLCR0_ATC 0x0
* Digital Test Control
* PSU_DDR_PHY_DX8SL2PLLCR0_DTC 0x0
* DAXT8 0-1 PLL Control Register 0
* (OFFSET, MASK, VALUE) (0XFD081484, 0xFFFFFFFFU ,0x01100000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL2PLLCR0_OFFSET,
0xFFFFFFFFU, 0x01100000U);
/*##################################################################### */
/*
* Register : DX8SL2DQSCTL @ 0XFD08149C
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_31_25 0x0
* Read Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL2DQSCTL_RRRMODE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_23_22 0x0
* Write Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL2DQSCTL_WRRMODE 0x1
* DQS Gate Extension
* PSU_DDR_PHY_DX8SL2DQSCTL_DQSGX 0x0
* Low Power PLL Power Down
* PSU_DDR_PHY_DX8SL2DQSCTL_LPPLLPD 0x1
* Low Power I/O Power Down
* PSU_DDR_PHY_DX8SL2DQSCTL_LPIOPD 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_16_15 0x0
* QS Counter Enable
* PSU_DDR_PHY_DX8SL2DQSCTL_QSCNTEN 0x1
* Unused DQ I/O Mode
* PSU_DDR_PHY_DX8SL2DQSCTL_UDQIOM 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2DQSCTL_RESERVED_12_10 0x0
* Data Slew Rate
* PSU_DDR_PHY_DX8SL2DQSCTL_DXSR 0x3
* DQS_N Resistor
* PSU_DDR_PHY_DX8SL2DQSCTL_DQSNRES 0x0
* DQS Resistor
* PSU_DDR_PHY_DX8SL2DQSCTL_DQSRES 0x0
* DATX8 0-1 DQS Control Register
* (OFFSET, MASK, VALUE) (0XFD08149C, 0xFFFFFFFFU ,0x01264300U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL2DQSCTL_OFFSET,
0xFFFFFFFFU, 0x01264300U);
/*##################################################################### */
/*
* Register : DX8SL2DXCTL2 @ 0XFD0814AC
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_31_24 0x0
* Configurable Read Data Enable
* PSU_DDR_PHY_DX8SL2DXCTL2_CRDEN 0x0
* OX Extension during Post-amble
* PSU_DDR_PHY_DX8SL2DXCTL2_POSOEX 0x0
* OE Extension during Pre-amble
* PSU_DDR_PHY_DX8SL2DXCTL2_PREOEX 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_17 0x0
* I/O Assisted Gate Select
* PSU_DDR_PHY_DX8SL2DXCTL2_IOAG 0x0
* I/O Loopback Select
* PSU_DDR_PHY_DX8SL2DXCTL2_IOLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_14_13 0x0
* Low Power Wakeup Threshold
* PSU_DDR_PHY_DX8SL2DXCTL2_LPWAKEUP_THRSH 0xc
* Read Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL2DXCTL2_RDBI 0x0
* Write Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL2DXCTL2_WDBI 0x0
* PUB Read FIFO Bypass
* PSU_DDR_PHY_DX8SL2DXCTL2_PRFBYP 0x0
* DATX8 Receive FIFO Read Mode
* PSU_DDR_PHY_DX8SL2DXCTL2_RDMODE 0x0
* Disables the Read FIFO Reset
* PSU_DDR_PHY_DX8SL2DXCTL2_DISRST 0x0
* Read DQS Gate I/O Loopback
* PSU_DDR_PHY_DX8SL2DXCTL2_DQSGLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2DXCTL2_RESERVED_0 0x0
* DATX8 0-1 DX Control Register 2
* (OFFSET, MASK, VALUE) (0XFD0814AC, 0xFFFFFFFFU ,0x00041800U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL2DXCTL2_OFFSET,
0xFFFFFFFFU, 0x00041800U);
/*##################################################################### */
/*
* Register : DX8SL2IOCR @ 0XFD0814B0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL2IOCR_RESERVED_31 0x0
* PVREF_DAC REFSEL range select
* PSU_DDR_PHY_DX8SL2IOCR_DXDACRANGE 0x7
* IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
* PSU_DDR_PHY_DX8SL2IOCR_DXVREFIOM 0x0
* DX IO Mode
* PSU_DDR_PHY_DX8SL2IOCR_DXIOM 0x2
* DX IO Transmitter Mode
* PSU_DDR_PHY_DX8SL2IOCR_DXTXM 0x0
* DX IO Receiver Mode
* PSU_DDR_PHY_DX8SL2IOCR_DXRXM 0x0
* DATX8 0-1 I/O Configuration Register
* (OFFSET, MASK, VALUE) (0XFD0814B0, 0xFFFFFFFFU ,0x70800000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL2IOCR_OFFSET, 0xFFFFFFFFU, 0x70800000U);
/*##################################################################### */
/*
* Register : DX8SL3OSC @ 0XFD0814C0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3OSC_RESERVED_31_30 0x0
* Enable Clock Gating for DX ddr_clk
* PSU_DDR_PHY_DX8SL3OSC_GATEDXRDCLK 0x2
* Enable Clock Gating for DX ctl_rd_clk
* PSU_DDR_PHY_DX8SL3OSC_GATEDXDDRCLK 0x2
* Enable Clock Gating for DX ctl_clk
* PSU_DDR_PHY_DX8SL3OSC_GATEDXCTLCLK 0x2
* Selects the level to which clocks will be stalled when clock gating is e
* nabled.
* PSU_DDR_PHY_DX8SL3OSC_CLKLEVEL 0x0
* Loopback Mode
* PSU_DDR_PHY_DX8SL3OSC_LBMODE 0x0
* Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
* PSU_DDR_PHY_DX8SL3OSC_LBGSDQS 0x0
* Loopback DQS Gating
* PSU_DDR_PHY_DX8SL3OSC_LBGDQS 0x0
* Loopback DQS Shift
* PSU_DDR_PHY_DX8SL3OSC_LBDQSS 0x0
* PHY High-Speed Reset
* PSU_DDR_PHY_DX8SL3OSC_PHYHRST 0x1
* PHY FIFO Reset
* PSU_DDR_PHY_DX8SL3OSC_PHYFRST 0x1
* Delay Line Test Start
* PSU_DDR_PHY_DX8SL3OSC_DLTST 0x0
* Delay Line Test Mode
* PSU_DDR_PHY_DX8SL3OSC_DLTMODE 0x0
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL3OSC_RESERVED_12_11 0x3
* Oscillator Mode Write-Data Delay Line Select
* PSU_DDR_PHY_DX8SL3OSC_OSCWDDL 0x3
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL3OSC_RESERVED_8_7 0x3
* Oscillator Mode Write-Leveling Delay Line Select
* PSU_DDR_PHY_DX8SL3OSC_OSCWDL 0x3
* Oscillator Mode Division
* PSU_DDR_PHY_DX8SL3OSC_OSCDIV 0xf
* Oscillator Enable
* PSU_DDR_PHY_DX8SL3OSC_OSCEN 0x0
* DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
* opback, and Gated Clock Control Register
* (OFFSET, MASK, VALUE) (0XFD0814C0, 0xFFFFFFFFU ,0x2A019FFEU)
*/
PSU_Mask_Write(DDR_PHY_DX8SL3OSC_OFFSET, 0xFFFFFFFFU, 0x2A019FFEU);
/*##################################################################### */
/*
* Register : DX8SL3PLLCR0 @ 0XFD0814C4
* PLL Bypass
* PSU_DDR_PHY_DX8SL3PLLCR0_PLLBYP 0x0
* PLL Reset
* PSU_DDR_PHY_DX8SL3PLLCR0_PLLRST 0x0
* PLL Power Down
* PSU_DDR_PHY_DX8SL3PLLCR0_PLLPD 0x0
* Reference Stop Mode
* PSU_DDR_PHY_DX8SL3PLLCR0_RSTOPM 0x0
* PLL Frequency Select
* PSU_DDR_PHY_DX8SL3PLLCR0_FRQSEL 0x1
* Relock Mode
* PSU_DDR_PHY_DX8SL3PLLCR0_RLOCKM 0x0
* Charge Pump Proportional Current Control
* PSU_DDR_PHY_DX8SL3PLLCR0_CPPC 0x8
* Charge Pump Integrating Current Control
* PSU_DDR_PHY_DX8SL3PLLCR0_CPIC 0x0
* Gear Shift
* PSU_DDR_PHY_DX8SL3PLLCR0_GSHIFT 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3PLLCR0_RESERVED_11_9 0x0
* Analog Test Enable (ATOEN)
* PSU_DDR_PHY_DX8SL3PLLCR0_ATOEN 0x0
* Analog Test Control
* PSU_DDR_PHY_DX8SL3PLLCR0_ATC 0x0
* Digital Test Control
* PSU_DDR_PHY_DX8SL3PLLCR0_DTC 0x0
* DAXT8 0-1 PLL Control Register 0
* (OFFSET, MASK, VALUE) (0XFD0814C4, 0xFFFFFFFFU ,0x01100000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL3PLLCR0_OFFSET,
0xFFFFFFFFU, 0x01100000U);
/*##################################################################### */
/*
* Register : DX8SL3DQSCTL @ 0XFD0814DC
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_31_25 0x0
* Read Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL3DQSCTL_RRRMODE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_23_22 0x0
* Write Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL3DQSCTL_WRRMODE 0x1
* DQS Gate Extension
* PSU_DDR_PHY_DX8SL3DQSCTL_DQSGX 0x0
* Low Power PLL Power Down
* PSU_DDR_PHY_DX8SL3DQSCTL_LPPLLPD 0x1
* Low Power I/O Power Down
* PSU_DDR_PHY_DX8SL3DQSCTL_LPIOPD 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_16_15 0x0
* QS Counter Enable
* PSU_DDR_PHY_DX8SL3DQSCTL_QSCNTEN 0x1
* Unused DQ I/O Mode
* PSU_DDR_PHY_DX8SL3DQSCTL_UDQIOM 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3DQSCTL_RESERVED_12_10 0x0
* Data Slew Rate
* PSU_DDR_PHY_DX8SL3DQSCTL_DXSR 0x3
* DQS_N Resistor
* PSU_DDR_PHY_DX8SL3DQSCTL_DQSNRES 0x0
* DQS Resistor
* PSU_DDR_PHY_DX8SL3DQSCTL_DQSRES 0x0
* DATX8 0-1 DQS Control Register
* (OFFSET, MASK, VALUE) (0XFD0814DC, 0xFFFFFFFFU ,0x01264300U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL3DQSCTL_OFFSET,
0xFFFFFFFFU, 0x01264300U);
/*##################################################################### */
/*
* Register : DX8SL3DXCTL2 @ 0XFD0814EC
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_31_24 0x0
* Configurable Read Data Enable
* PSU_DDR_PHY_DX8SL3DXCTL2_CRDEN 0x0
* OX Extension during Post-amble
* PSU_DDR_PHY_DX8SL3DXCTL2_POSOEX 0x0
* OE Extension during Pre-amble
* PSU_DDR_PHY_DX8SL3DXCTL2_PREOEX 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_17 0x0
* I/O Assisted Gate Select
* PSU_DDR_PHY_DX8SL3DXCTL2_IOAG 0x0
* I/O Loopback Select
* PSU_DDR_PHY_DX8SL3DXCTL2_IOLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_14_13 0x0
* Low Power Wakeup Threshold
* PSU_DDR_PHY_DX8SL3DXCTL2_LPWAKEUP_THRSH 0xc
* Read Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL3DXCTL2_RDBI 0x0
* Write Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL3DXCTL2_WDBI 0x0
* PUB Read FIFO Bypass
* PSU_DDR_PHY_DX8SL3DXCTL2_PRFBYP 0x0
* DATX8 Receive FIFO Read Mode
* PSU_DDR_PHY_DX8SL3DXCTL2_RDMODE 0x0
* Disables the Read FIFO Reset
* PSU_DDR_PHY_DX8SL3DXCTL2_DISRST 0x0
* Read DQS Gate I/O Loopback
* PSU_DDR_PHY_DX8SL3DXCTL2_DQSGLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3DXCTL2_RESERVED_0 0x0
* DATX8 0-1 DX Control Register 2
* (OFFSET, MASK, VALUE) (0XFD0814EC, 0xFFFFFFFFU ,0x00041800U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL3DXCTL2_OFFSET,
0xFFFFFFFFU, 0x00041800U);
/*##################################################################### */
/*
* Register : DX8SL3IOCR @ 0XFD0814F0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL3IOCR_RESERVED_31 0x0
* PVREF_DAC REFSEL range select
* PSU_DDR_PHY_DX8SL3IOCR_DXDACRANGE 0x7
* IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
* PSU_DDR_PHY_DX8SL3IOCR_DXVREFIOM 0x0
* DX IO Mode
* PSU_DDR_PHY_DX8SL3IOCR_DXIOM 0x2
* DX IO Transmitter Mode
* PSU_DDR_PHY_DX8SL3IOCR_DXTXM 0x0
* DX IO Receiver Mode
* PSU_DDR_PHY_DX8SL3IOCR_DXRXM 0x0
* DATX8 0-1 I/O Configuration Register
* (OFFSET, MASK, VALUE) (0XFD0814F0, 0xFFFFFFFFU ,0x70800000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL3IOCR_OFFSET, 0xFFFFFFFFU, 0x70800000U);
/*##################################################################### */
/*
* Register : DX8SL4OSC @ 0XFD081500
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4OSC_RESERVED_31_30 0x0
* Enable Clock Gating for DX ddr_clk
* PSU_DDR_PHY_DX8SL4OSC_GATEDXRDCLK 0x2
* Enable Clock Gating for DX ctl_rd_clk
* PSU_DDR_PHY_DX8SL4OSC_GATEDXDDRCLK 0x2
* Enable Clock Gating for DX ctl_clk
* PSU_DDR_PHY_DX8SL4OSC_GATEDXCTLCLK 0x2
* Selects the level to which clocks will be stalled when clock gating is e
* nabled.
* PSU_DDR_PHY_DX8SL4OSC_CLKLEVEL 0x0
* Loopback Mode
* PSU_DDR_PHY_DX8SL4OSC_LBMODE 0x0
* Load GSDQS LCDL with 2x the calibrated GSDQSPRD value
* PSU_DDR_PHY_DX8SL4OSC_LBGSDQS 0x0
* Loopback DQS Gating
* PSU_DDR_PHY_DX8SL4OSC_LBGDQS 0x0
* Loopback DQS Shift
* PSU_DDR_PHY_DX8SL4OSC_LBDQSS 0x0
* PHY High-Speed Reset
* PSU_DDR_PHY_DX8SL4OSC_PHYHRST 0x1
* PHY FIFO Reset
* PSU_DDR_PHY_DX8SL4OSC_PHYFRST 0x1
* Delay Line Test Start
* PSU_DDR_PHY_DX8SL4OSC_DLTST 0x0
* Delay Line Test Mode
* PSU_DDR_PHY_DX8SL4OSC_DLTMODE 0x0
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL4OSC_RESERVED_12_11 0x3
* Oscillator Mode Write-Data Delay Line Select
* PSU_DDR_PHY_DX8SL4OSC_OSCWDDL 0x3
* Reserved. Caution, do not write to this register field.
* PSU_DDR_PHY_DX8SL4OSC_RESERVED_8_7 0x3
* Oscillator Mode Write-Leveling Delay Line Select
* PSU_DDR_PHY_DX8SL4OSC_OSCWDL 0x3
* Oscillator Mode Division
* PSU_DDR_PHY_DX8SL4OSC_OSCDIV 0xf
* Oscillator Enable
* PSU_DDR_PHY_DX8SL4OSC_OSCEN 0x0
* DATX8 0-1 Oscillator, Delay Line Test, PHY FIFO and High Speed Reset, Lo
* opback, and Gated Clock Control Register
* (OFFSET, MASK, VALUE) (0XFD081500, 0xFFFFFFFFU ,0x2A019FFEU)
*/
PSU_Mask_Write(DDR_PHY_DX8SL4OSC_OFFSET, 0xFFFFFFFFU, 0x2A019FFEU);
/*##################################################################### */
/*
* Register : DX8SL4PLLCR0 @ 0XFD081504
* PLL Bypass
* PSU_DDR_PHY_DX8SL4PLLCR0_PLLBYP 0x0
* PLL Reset
* PSU_DDR_PHY_DX8SL4PLLCR0_PLLRST 0x0
* PLL Power Down
* PSU_DDR_PHY_DX8SL4PLLCR0_PLLPD 0x0
* Reference Stop Mode
* PSU_DDR_PHY_DX8SL4PLLCR0_RSTOPM 0x0
* PLL Frequency Select
* PSU_DDR_PHY_DX8SL4PLLCR0_FRQSEL 0x1
* Relock Mode
* PSU_DDR_PHY_DX8SL4PLLCR0_RLOCKM 0x0
* Charge Pump Proportional Current Control
* PSU_DDR_PHY_DX8SL4PLLCR0_CPPC 0x8
* Charge Pump Integrating Current Control
* PSU_DDR_PHY_DX8SL4PLLCR0_CPIC 0x0
* Gear Shift
* PSU_DDR_PHY_DX8SL4PLLCR0_GSHIFT 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4PLLCR0_RESERVED_11_9 0x0
* Analog Test Enable (ATOEN)
* PSU_DDR_PHY_DX8SL4PLLCR0_ATOEN 0x0
* Analog Test Control
* PSU_DDR_PHY_DX8SL4PLLCR0_ATC 0x0
* Digital Test Control
* PSU_DDR_PHY_DX8SL4PLLCR0_DTC 0x0
* DAXT8 0-1 PLL Control Register 0
* (OFFSET, MASK, VALUE) (0XFD081504, 0xFFFFFFFFU ,0x01100000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL4PLLCR0_OFFSET,
0xFFFFFFFFU, 0x01100000U);
/*##################################################################### */
/*
* Register : DX8SL4DQSCTL @ 0XFD08151C
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_31_25 0x0
* Read Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL4DQSCTL_RRRMODE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_23_22 0x0
* Write Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SL4DQSCTL_WRRMODE 0x1
* DQS Gate Extension
* PSU_DDR_PHY_DX8SL4DQSCTL_DQSGX 0x0
* Low Power PLL Power Down
* PSU_DDR_PHY_DX8SL4DQSCTL_LPPLLPD 0x1
* Low Power I/O Power Down
* PSU_DDR_PHY_DX8SL4DQSCTL_LPIOPD 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_16_15 0x0
* QS Counter Enable
* PSU_DDR_PHY_DX8SL4DQSCTL_QSCNTEN 0x1
* Unused DQ I/O Mode
* PSU_DDR_PHY_DX8SL4DQSCTL_UDQIOM 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4DQSCTL_RESERVED_12_10 0x0
* Data Slew Rate
* PSU_DDR_PHY_DX8SL4DQSCTL_DXSR 0x3
* DQS_N Resistor
* PSU_DDR_PHY_DX8SL4DQSCTL_DQSNRES 0x0
* DQS Resistor
* PSU_DDR_PHY_DX8SL4DQSCTL_DQSRES 0x0
* DATX8 0-1 DQS Control Register
* (OFFSET, MASK, VALUE) (0XFD08151C, 0xFFFFFFFFU ,0x01264300U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL4DQSCTL_OFFSET,
0xFFFFFFFFU, 0x01264300U);
/*##################################################################### */
/*
* Register : DX8SL4DXCTL2 @ 0XFD08152C
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_31_24 0x0
* Configurable Read Data Enable
* PSU_DDR_PHY_DX8SL4DXCTL2_CRDEN 0x0
* OX Extension during Post-amble
* PSU_DDR_PHY_DX8SL4DXCTL2_POSOEX 0x0
* OE Extension during Pre-amble
* PSU_DDR_PHY_DX8SL4DXCTL2_PREOEX 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_17 0x0
* I/O Assisted Gate Select
* PSU_DDR_PHY_DX8SL4DXCTL2_IOAG 0x0
* I/O Loopback Select
* PSU_DDR_PHY_DX8SL4DXCTL2_IOLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_14_13 0x0
* Low Power Wakeup Threshold
* PSU_DDR_PHY_DX8SL4DXCTL2_LPWAKEUP_THRSH 0xc
* Read Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL4DXCTL2_RDBI 0x0
* Write Data Bus Inversion Enable
* PSU_DDR_PHY_DX8SL4DXCTL2_WDBI 0x0
* PUB Read FIFO Bypass
* PSU_DDR_PHY_DX8SL4DXCTL2_PRFBYP 0x0
* DATX8 Receive FIFO Read Mode
* PSU_DDR_PHY_DX8SL4DXCTL2_RDMODE 0x0
* Disables the Read FIFO Reset
* PSU_DDR_PHY_DX8SL4DXCTL2_DISRST 0x0
* Read DQS Gate I/O Loopback
* PSU_DDR_PHY_DX8SL4DXCTL2_DQSGLB 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4DXCTL2_RESERVED_0 0x0
* DATX8 0-1 DX Control Register 2
* (OFFSET, MASK, VALUE) (0XFD08152C, 0xFFFFFFFFU ,0x00041800U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL4DXCTL2_OFFSET,
0xFFFFFFFFU, 0x00041800U);
/*##################################################################### */
/*
* Register : DX8SL4IOCR @ 0XFD081530
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SL4IOCR_RESERVED_31 0x0
* PVREF_DAC REFSEL range select
* PSU_DDR_PHY_DX8SL4IOCR_DXDACRANGE 0x7
* IOM bits for PVREF, PVREF_DAC and PVREFE cells in DX IO ring
* PSU_DDR_PHY_DX8SL4IOCR_DXVREFIOM 0x0
* DX IO Mode
* PSU_DDR_PHY_DX8SL4IOCR_DXIOM 0x2
* DX IO Transmitter Mode
* PSU_DDR_PHY_DX8SL4IOCR_DXTXM 0x0
* DX IO Receiver Mode
* PSU_DDR_PHY_DX8SL4IOCR_DXRXM 0x0
* DATX8 0-1 I/O Configuration Register
* (OFFSET, MASK, VALUE) (0XFD081530, 0xFFFFFFFFU ,0x70800000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SL4IOCR_OFFSET, 0xFFFFFFFFU, 0x70800000U);
/*##################################################################### */
/*
* Register : DX8SLbPLLCR0 @ 0XFD0817C4
* PLL Bypass
* PSU_DDR_PHY_DX8SLBPLLCR0_PLLBYP 0x0
* PLL Reset
* PSU_DDR_PHY_DX8SLBPLLCR0_PLLRST 0x0
* PLL Power Down
* PSU_DDR_PHY_DX8SLBPLLCR0_PLLPD 0x0
* Reference Stop Mode
* PSU_DDR_PHY_DX8SLBPLLCR0_RSTOPM 0x0
* PLL Frequency Select
* PSU_DDR_PHY_DX8SLBPLLCR0_FRQSEL 0x1
* Relock Mode
* PSU_DDR_PHY_DX8SLBPLLCR0_RLOCKM 0x0
* Charge Pump Proportional Current Control
* PSU_DDR_PHY_DX8SLBPLLCR0_CPPC 0x8
* Charge Pump Integrating Current Control
* PSU_DDR_PHY_DX8SLBPLLCR0_CPIC 0x0
* Gear Shift
* PSU_DDR_PHY_DX8SLBPLLCR0_GSHIFT 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SLBPLLCR0_RESERVED_11_9 0x0
* Analog Test Enable (ATOEN)
* PSU_DDR_PHY_DX8SLBPLLCR0_ATOEN 0x0
* Analog Test Control
* PSU_DDR_PHY_DX8SLBPLLCR0_ATC 0x0
* Digital Test Control
* PSU_DDR_PHY_DX8SLBPLLCR0_DTC 0x0
* DAXT8 0-8 PLL Control Register 0
* (OFFSET, MASK, VALUE) (0XFD0817C4, 0xFFFFFFFFU ,0x01100000U)
*/
PSU_Mask_Write(DDR_PHY_DX8SLBPLLCR0_OFFSET,
0xFFFFFFFFU, 0x01100000U);
/*##################################################################### */
/*
* Register : DX8SLbDQSCTL @ 0XFD0817DC
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_31_25 0x0
* Read Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SLBDQSCTL_RRRMODE 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_23_22 0x0
* Write Path Rise-to-Rise Mode
* PSU_DDR_PHY_DX8SLBDQSCTL_WRRMODE 0x1
* DQS Gate Extension
* PSU_DDR_PHY_DX8SLBDQSCTL_DQSGX 0x0
* Low Power PLL Power Down
* PSU_DDR_PHY_DX8SLBDQSCTL_LPPLLPD 0x1
* Low Power I/O Power Down
* PSU_DDR_PHY_DX8SLBDQSCTL_LPIOPD 0x1
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_16_15 0x0
* QS Counter Enable
* PSU_DDR_PHY_DX8SLBDQSCTL_QSCNTEN 0x1
* Unused DQ I/O Mode
* PSU_DDR_PHY_DX8SLBDQSCTL_UDQIOM 0x0
* Reserved. Return zeroes on reads.
* PSU_DDR_PHY_DX8SLBDQSCTL_RESERVED_12_10 0x0
* Data Slew Rate
* PSU_DDR_PHY_DX8SLBDQSCTL_DXSR 0x3
* DQS# Resistor
* PSU_DDR_PHY_DX8SLBDQSCTL_DQSNRES 0xc
* DQS Resistor
* PSU_DDR_PHY_DX8SLBDQSCTL_DQSRES 0x4
* DATX8 0-8 DQS Control Register
* (OFFSET, MASK, VALUE) (0XFD0817DC, 0xFFFFFFFFU ,0x012643C4U)
*/
PSU_Mask_Write(DDR_PHY_DX8SLBDQSCTL_OFFSET,
0xFFFFFFFFU, 0x012643C4U);
/*##################################################################### */
return 1;
}
unsigned long psu_ddr_qos_init_data(void)
{
return 1;
}
unsigned long psu_mio_init_data(void)
{
/*
* MIO PROGRAMMING
*/
/*
* Register : MIO_PIN_0 @ 0XFF180000
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_sclk_out-
* (QSPI Clock)
* PSU_IOU_SLCR_MIO_PIN_0_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_0_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[0]- (Test Scan Port) = test_scan, Output, test_scan_out[0
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_0_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[0]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[0]- (GPIO bank 0) 1= can1, Output, can1_phy
* _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
* 1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTAG
* TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_sc
* lk_out- (SPI Clock) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Out
* put, ua1_txd- (UART transmitter serial output) 7= trace, Output, trace_c
* lk- (Trace Port Clock)
* PSU_IOU_SLCR_MIO_PIN_0_L3_SEL 0
* Configures MIO Pin 0 peripheral interface mapping. S
* (OFFSET, MASK, VALUE) (0XFF180000, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_0_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_1 @ 0XFF180004
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_mi1- (Q
* SPI Databus) 1= qspi, Output, qspi_so_mo1- (QSPI Databus)
* PSU_IOU_SLCR_MIO_PIN_1_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_1_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[1]- (Test Scan Port) = test_scan, Output, test_scan_out[1
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_1_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[1]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[1]- (GPIO bank 0) 1= can1, Input, can1_phy_
* rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
* , Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTAG
* TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc3, Ou
* tput, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART
* receiver serial input) 7= trace, Output, trace_ctl- (Trace Port Control
* Signal)
* PSU_IOU_SLCR_MIO_PIN_1_L3_SEL 0
* Configures MIO Pin 1 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180004, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_1_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_2 @ 0XFF180008
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi2- (QSPI
* Databus) 1= qspi, Output, qspi_mo2- (QSPI Databus)
* PSU_IOU_SLCR_MIO_PIN_2_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_2_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[2]- (Test Scan Port) = test_scan, Output, test_scan_out[2
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_2_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[2]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[2]- (GPIO bank 0) 1= can0, Input, can0_phy_
* rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
* , Output, i2c0_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJTAG
* TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc2, I
* nput, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver se
* rial input) 7= trace, Output, tracedq[0]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_2_L3_SEL 0
* Configures MIO Pin 2 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180008, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_2_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_3 @ 0XFF18000C
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi3- (QSPI
* Databus) 1= qspi, Output, qspi_mo3- (QSPI Databus)
* PSU_IOU_SLCR_MIO_PIN_3_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_3_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[3]- (Test Scan Port) = test_scan, Output, test_scan_out[3
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_3_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[3]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[3]- (GPIO bank 0) 1= can0, Output, can0_phy
* _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
* 0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTAG
* TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output
* , spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc2, Output, ttc2_wave_out-
* (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial
* output) 7= trace, Output, tracedq[1]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_3_L3_SEL 0
* Configures MIO Pin 3 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18000C, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_3_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_4 @ 0XFF180010
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_mo_mo0- (
* QSPI Databus) 1= qspi, Input, qspi_si_mi0- (QSPI Databus)
* PSU_IOU_SLCR_MIO_PIN_4_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_4_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[4]- (Test Scan Port) = test_scan, Output, test_scan_out[4
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_4_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[4]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[4]- (GPIO bank 0) 1= can1, Output, can1_phy
* _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
* 1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (Wa
* tch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi
* 0, Output, spi0_so- (MISO signal) 5= ttc1, Input, ttc1_clk_in- (TTC Cloc
* k) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, O
* utput, tracedq[2]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_4_L3_SEL 0
* Configures MIO Pin 4 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180010, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_4_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_5 @ 0XFF180014
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_n_ss_out-
* (QSPI Slave Select)
* PSU_IOU_SLCR_MIO_PIN_5_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_5_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[5]- (Test Scan Port) = test_scan, Output, test_scan_out[5
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_5_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[5]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[5]- (GPIO bank 0) 1= can1, Input, can1_phy_
* rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
* , Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out- (W
* atch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4=
* spi0, Input, spi0_si- (MOSI signal) 5= ttc1, Output, ttc1_wave_out- (TTC
* Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7=
* trace, Output, tracedq[3]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_5_L3_SEL 0
* Configures MIO Pin 5 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180014, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_5_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_6 @ 0XFF180018
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_clk_for_l
* pbk- (QSPI Clock to be fed-back)
* PSU_IOU_SLCR_MIO_PIN_6_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_6_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[6]- (Test Scan Port) = test_scan, Output, test_scan_out[6
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_6_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[6]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[6]- (GPIO bank 0) 1= can0, Input, can0_phy_
* rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
* , Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (Wat
* ch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= s
* pi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (TT
* C Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace,
* Output, tracedq[4]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_6_L3_SEL 0
* Configures MIO Pin 6 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180018, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_6_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_7 @ 0XFF18001C
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_n_ss_out_
* upper- (QSPI Slave Select upper)
* PSU_IOU_SLCR_MIO_PIN_7_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_7_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[7]- (Test Scan Port) = test_scan, Output, test_scan_out[7
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_7_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[7]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[7]- (GPIO bank 0) 1= can0, Output, can0_phy
* _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
* 0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out- (
* Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Ma
* ster Selects) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua
* 0, Output, ua0_txd- (UART transmitter serial output) 7= trace, Output, t
* racedq[5]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_7_L3_SEL 0
* Configures MIO Pin 7 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18001C, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_7_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_8 @ 0XFF180020
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[0
* ]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_upper[0]- (QSPI Upper D
* atabus)
* PSU_IOU_SLCR_MIO_PIN_8_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_8_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[8]- (Test Scan Port) = test_scan, Output, test_scan_out[8
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_8_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[8]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[8]- (GPIO bank 0) 1= can1, Output, can1_phy
* _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
* 1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (Wa
* tch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Maste
* r Selects) 5= ttc3, Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_
* txd- (UART transmitter serial output) 7= trace, Output, tracedq[6]- (Tra
* ce Port Databus)
* PSU_IOU_SLCR_MIO_PIN_8_L3_SEL 0
* Configures MIO Pin 8 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180020, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_8_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_9 @ 0XFF180024
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[1
* ]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_upper[1]- (QSPI Upper D
* atabus)
* PSU_IOU_SLCR_MIO_PIN_9_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ce[1]- (NA
* ND chip enable)
* PSU_IOU_SLCR_MIO_PIN_9_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[9]- (Test Scan Port) = test_scan, Output, test_scan_out[9
* ]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_9_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[9]- (GPIO bank 0) 0= g
* pio0, Output, gpio_0_pin_out[9]- (GPIO bank 0) 1= can1, Input, can1_phy_
* rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
* , Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out- (W
* atch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master S
* elects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc3,
* Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UA
* RT receiver serial input) 7= trace, Output, tracedq[7]- (Trace Port Data
* bus)
* PSU_IOU_SLCR_MIO_PIN_9_L3_SEL 0
* Configures MIO Pin 9 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180024, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_9_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_10 @ 0XFF180028
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[2
* ]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_upper[2]- (QSPI Upper D
* atabus)
* PSU_IOU_SLCR_MIO_PIN_10_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[0]- (N
* AND Ready/Busy)
* PSU_IOU_SLCR_MIO_PIN_10_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[10]- (Test Scan Port) = test_scan, Output, test_scan_out[
* 10]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_10_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[10]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[10]- (GPIO bank 0) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= sp
* i1, Output, spi1_so- (MISO signal) 5= ttc2, Input, ttc2_clk_in- (TTC Clo
* ck) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Outpu
* t, tracedq[8]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_10_L3_SEL 0
* Configures MIO Pin 10 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180028, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_10_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_11 @ 0XFF18002C
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Input, qspi_mi_upper[3
* ]- (QSPI Upper Databus) 1= qspi, Output, qspi_mo_upper[3]- (QSPI Upper D
* atabus)
* PSU_IOU_SLCR_MIO_PIN_11_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[1]- (N
* AND Ready/Busy)
* PSU_IOU_SLCR_MIO_PIN_11_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[11]- (Test Scan Port) = test_scan, Output, test_scan_out[
* 11]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_11_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[11]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[11]- (GPIO bank 0) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal)
* 4= spi1, Input, spi1_si- (MOSI signal) 5= ttc2, Output, ttc2_wave_out- (
* TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial ou
* tput) 7= trace, Output, tracedq[9]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_11_L3_SEL 0
* Configures MIO Pin 11 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18002C, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_11_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_12 @ 0XFF180030
* Level 0 Mux Select 0= Level 1 Mux Output 1= qspi, Output, qspi_sclk_out_
* upper- (QSPI Upper Clock)
* PSU_IOU_SLCR_MIO_PIN_12_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dqs_in- (NA
* ND Strobe) 1= nand, Output, nfc_dqs_out- (NAND Strobe)
* PSU_IOU_SLCR_MIO_PIN_12_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= test_scan, Input
* , test_scan_in[12]- (Test Scan Port) = test_scan, Output, test_scan_out[
* 12]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_12_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[12]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[12]- (GPIO bank 0) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJT
* AG TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_
* sclk_out- (SPI Clock) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, O
* utput, ua1_txd- (UART transmitter serial output) 7= trace, Output, trace
* dq[10]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_12_L3_SEL 0
* Configures MIO Pin 12 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180030, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_12_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_13 @ 0XFF180034
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_13_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ce[0]- (NA
* ND chip enable)
* PSU_IOU_SLCR_MIO_PIN_13_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[0]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[0]- (8-bit Data bus) 2= t
* est_scan, Input, test_scan_in[13]- (Test Scan Port) = test_scan, Output,
* test_scan_out[13]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_13_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[13]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[13]- (GPIO bank 0) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTA
* G TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc1,
* Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UAR
* T receiver serial input) 7= trace, Output, tracedq[11]- (Trace Port Data
* bus)
* PSU_IOU_SLCR_MIO_PIN_13_L3_SEL 0
* Configures MIO Pin 13 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180034, 0x000000FEU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_13_OFFSET, 0x000000FEU, 0x00000000U);
/*##################################################################### */
/*
* Register : MIO_PIN_14 @ 0XFF180038
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_14_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_cle- (NAND
* Command Latch Enable)
* PSU_IOU_SLCR_MIO_PIN_14_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[1]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[1]- (8-bit Data bus) 2= t
* est_scan, Input, test_scan_in[14]- (Test Scan Port) = test_scan, Output,
* test_scan_out[14]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_14_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[14]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[14]- (GPIO bank 0) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJT
* AG TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc0,
* Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver
* serial input) 7= trace, Output, tracedq[12]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_14_L3_SEL 2
* Configures MIO Pin 14 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180038, 0x000000FEU ,0x00000040U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_14_OFFSET, 0x000000FEU, 0x00000040U);
/*##################################################################### */
/*
* Register : MIO_PIN_15 @ 0XFF18003C
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_15_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ale- (NAND
* Address Latch Enable)
* PSU_IOU_SLCR_MIO_PIN_15_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[2]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[2]- (8-bit Data bus) 2= t
* est_scan, Input, test_scan_in[15]- (Test Scan Port) = test_scan, Output,
* test_scan_out[15]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_15_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[15]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[15]- (GPIO bank 0) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJT
* AG TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Outp
* ut, spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc0, Output, ttc0_wave_ou
* t- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter seria
* l output) 7= trace, Output, tracedq[13]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_15_L3_SEL 2
* Configures MIO Pin 15 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18003C, 0x000000FEU ,0x00000040U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_15_OFFSET, 0x000000FEU, 0x00000040U);
/*##################################################################### */
/*
* Register : MIO_PIN_16 @ 0XFF180040
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_16_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[0]- (
* NAND Data Bus) 1= nand, Output, nfc_dq_out[0]- (NAND Data Bus)
* PSU_IOU_SLCR_MIO_PIN_16_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[3]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[3]- (8-bit Data bus) 2= t
* est_scan, Input, test_scan_in[16]- (Test Scan Port) = test_scan, Output,
* test_scan_out[16]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_16_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[16]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[16]- (GPIO bank 0) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
* Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= s
* pi0, Output, spi0_so- (MISO signal) 5= ttc3, Input, ttc3_clk_in- (TTC Cl
* ock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace,
* Output, tracedq[14]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_16_L3_SEL 2
* Configures MIO Pin 16 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180040, 0x000000FEU ,0x00000040U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_16_OFFSET, 0x000000FEU, 0x00000040U);
/*##################################################################### */
/*
* Register : MIO_PIN_17 @ 0XFF180044
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_17_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[1]- (
* NAND Data Bus) 1= nand, Output, nfc_dq_out[1]- (NAND Data Bus)
* PSU_IOU_SLCR_MIO_PIN_17_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[4]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[4]- (8-bit Data bus) 2= t
* est_scan, Input, test_scan_in[17]- (Test Scan Port) = test_scan, Output,
* test_scan_out[17]- (Test Scan Port) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_17_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[17]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[17]- (GPIO bank 0) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
* (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4
* = spi0, Input, spi0_si- (MOSI signal) 5= ttc3, Output, ttc3_wave_out- (T
* TC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
* 7= trace, Output, tracedq[15]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_17_L3_SEL 2
* Configures MIO Pin 17 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180044, 0x000000FEU ,0x00000040U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_17_OFFSET, 0x000000FEU, 0x00000040U);
/*##################################################################### */
/*
* Register : MIO_PIN_18 @ 0XFF180048
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_18_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[2]- (
* NAND Data Bus) 1= nand, Output, nfc_dq_out[2]- (NAND Data Bus)
* PSU_IOU_SLCR_MIO_PIN_18_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[5]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[5]- (8-bit Data bus) 2= t
* est_scan, Input, test_scan_in[18]- (Test Scan Port) = test_scan, Output,
* test_scan_out[18]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU
* Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_18_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[18]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[18]- (GPIO bank 0) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= sp
* i1, Output, spi1_so- (MISO signal) 5= ttc2, Input, ttc2_clk_in- (TTC Clo
* ck) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_18_L3_SEL 6
* Configures MIO Pin 18 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180048, 0x000000FEU ,0x000000C0U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_18_OFFSET, 0x000000FEU, 0x000000C0U);
/*##################################################################### */
/*
* Register : MIO_PIN_19 @ 0XFF18004C
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_19_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[3]- (
* NAND Data Bus) 1= nand, Output, nfc_dq_out[3]- (NAND Data Bus)
* PSU_IOU_SLCR_MIO_PIN_19_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[6]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[6]- (8-bit Data bus) 2= t
* est_scan, Input, test_scan_in[19]- (Test Scan Port) = test_scan, Output,
* test_scan_out[19]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU
* Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_19_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[19]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[19]- (GPIO bank 0) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI
* Master Selects) 5= ttc2, Output, ttc2_wave_out- (TTC Waveform Clock) 6=
* ua0, Output, ua0_txd- (UART transmitter serial output) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_19_L3_SEL 6
* Configures MIO Pin 19 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18004C, 0x000000FEU ,0x000000C0U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_19_OFFSET, 0x000000FEU, 0x000000C0U);
/*##################################################################### */
/*
* Register : MIO_PIN_20 @ 0XFF180050
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_20_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[4]- (
* NAND Data Bus) 1= nand, Output, nfc_dq_out[4]- (NAND Data Bus)
* PSU_IOU_SLCR_MIO_PIN_20_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[7]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[7]- (8-bit Data bus) 2= t
* est_scan, Input, test_scan_in[20]- (Test Scan Port) = test_scan, Output,
* test_scan_out[20]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU
* Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_20_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[20]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[20]- (GPIO bank 0) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
* Watch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Mas
* ter Selects) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua
* 1_txd- (UART transmitter serial output) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_20_L3_SEL 6
* Configures MIO Pin 20 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180050, 0x000000FEU ,0x000000C0U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_20_OFFSET, 0x000000FEU, 0x000000C0U);
/*##################################################################### */
/*
* Register : MIO_PIN_21 @ 0XFF180054
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_21_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[5]- (
* NAND Data Bus) 1= nand, Output, nfc_dq_out[5]- (NAND Data Bus)
* PSU_IOU_SLCR_MIO_PIN_21_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_cmd_in- (Com
* mand Indicator) = sd0, Output, sdio0_cmd_out- (Command Indicator) 2= tes
* t_scan, Input, test_scan_in[21]- (Test Scan Port) = test_scan, Output, t
* est_scan_out[21]- (Test Scan Port) 3= csu, Input, csu_ext_tamper- (CSU E
* xt Tamper)
* PSU_IOU_SLCR_MIO_PIN_21_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[21]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[21]- (GPIO bank 0) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master
* Selects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc
* 1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (
* UART receiver serial input) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_21_L3_SEL 6
* Configures MIO Pin 21 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180054, 0x000000FEU ,0x000000C0U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_21_OFFSET, 0x000000FEU, 0x000000C0U);
/*##################################################################### */
/*
* Register : MIO_PIN_22 @ 0XFF180058
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_22_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_we_b- (NAN
* D Write Enable)
* PSU_IOU_SLCR_MIO_PIN_22_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_clk_out-
* (SDSDIO clock) 2= test_scan, Input, test_scan_in[22]- (Test Scan Port) =
* test_scan, Output, test_scan_out[22]- (Test Scan Port) 3= csu, Input, c
* su_ext_tamper- (CSU Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_22_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[22]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[22]- (GPIO bank 0) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4=
* spi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (
* TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not U
* sed
* PSU_IOU_SLCR_MIO_PIN_22_L3_SEL 0
* Configures MIO Pin 22 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180058, 0x000000FEU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_22_OFFSET, 0x000000FEU, 0x00000000U);
/*##################################################################### */
/*
* Register : MIO_PIN_23 @ 0XFF18005C
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_23_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[6]- (
* NAND Data Bus) 1= nand, Output, nfc_dq_out[6]- (NAND Data Bus)
* PSU_IOU_SLCR_MIO_PIN_23_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_bus_pow-
* (SD card bus power) 2= test_scan, Input, test_scan_in[23]- (Test Scan Po
* rt) = test_scan, Output, test_scan_out[23]- (Test Scan Port) 3= csu, Inp
* ut, csu_ext_tamper- (CSU Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_23_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[23]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[23]- (GPIO bank 0) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal)
* 4= spi1, Input, spi1_si- (MOSI signal) 5= ttc0, Output, ttc0_wave_out- (
* TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial ou
* tput) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_23_L3_SEL 0
* Configures MIO Pin 23 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18005C, 0x000000FEU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_23_OFFSET, 0x000000FEU, 0x00000000U);
/*##################################################################### */
/*
* Register : MIO_PIN_24 @ 0XFF180060
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_24_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dq_in[7]- (
* NAND Data Bus) 1= nand, Output, nfc_dq_out[7]- (NAND Data Bus)
* PSU_IOU_SLCR_MIO_PIN_24_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_cd_n- (SD
* card detect from connector) 2= test_scan, Input, test_scan_in[24]- (Test
* Scan Port) = test_scan, Output, test_scan_out[24]- (Test Scan Port) 3=
* csu, Input, csu_ext_tamper- (CSU Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_24_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[24]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[24]- (GPIO bank 0) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
* Watch Dog Timer Input clock) 4= Not Used 5= ttc3, Input, ttc3_clk_in- (T
* TC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= N
* ot Used
* PSU_IOU_SLCR_MIO_PIN_24_L3_SEL 1
* Configures MIO Pin 24 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180060, 0x000000FEU ,0x00000020U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_24_OFFSET, 0x000000FEU, 0x00000020U);
/*##################################################################### */
/*
* Register : MIO_PIN_25 @ 0XFF180064
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_25_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_re_n- (NAN
* D Read Enable)
* PSU_IOU_SLCR_MIO_PIN_25_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_wp- (SD ca
* rd write protect from connector) 2= test_scan, Input, test_scan_in[25]-
* (Test Scan Port) = test_scan, Output, test_scan_out[25]- (Test Scan Port
* ) 3= csu, Input, csu_ext_tamper- (CSU Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_25_L2_SEL 0
* Level 3 Mux Select 0= gpio0, Input, gpio_0_pin_in[25]- (GPIO bank 0) 0=
* gpio0, Output, gpio_0_pin_out[25]- (GPIO bank 0) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
* (Watch Dog Timer Output clock) 4= Not Used 5= ttc3, Output, ttc3_wave_ou
* t- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial in
* put) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_25_L3_SEL 1
* Configures MIO Pin 25 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180064, 0x000000FEU ,0x00000020U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_25_OFFSET, 0x000000FEU, 0x00000020U);
/*##################################################################### */
/*
* Register : MIO_PIN_26 @ 0XFF180068
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_tx_
* clk- (TX RGMII clock)
* PSU_IOU_SLCR_MIO_PIN_26_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Output, nfc_ce[1]- (NA
* ND chip enable)
* PSU_IOU_SLCR_MIO_PIN_26_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[0]- (PMU
* GPI) 2= test_scan, Input, test_scan_in[26]- (Test Scan Port) = test_sca
* n, Output, test_scan_out[26]- (Test Scan Port) 3= csu, Input, csu_ext_ta
* mper- (CSU Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_26_L2_SEL 0
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[0]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[0]- (GPIO bank 1) 1= can0, Input, can0_phy_
* rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
* , Output, i2c0_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTAG
* TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_scl
* k_out- (SPI Clock) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Inpu
* t, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[4]- (
* Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_26_L3_SEL 0
* Configures MIO Pin 26 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180068, 0x000000FEU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_26_OFFSET, 0x000000FEU, 0x00000000U);
/*##################################################################### */
/*
* Register : MIO_PIN_27 @ 0XFF18006C
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd
* [0]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_27_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[0]- (N
* AND Ready/Busy)
* PSU_IOU_SLCR_MIO_PIN_27_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[1]- (PMU
* GPI) 2= test_scan, Input, test_scan_in[27]- (Test Scan Port) = test_sca
* n, Output, test_scan_out[27]- (Test Scan Port) 3= dpaux, Input, dp_aux_d
* ata_in- (Dp Aux Data) = dpaux, Output, dp_aux_data_out- (Dp Aux Data)
* PSU_IOU_SLCR_MIO_PIN_27_L2_SEL 3
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[1]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[1]- (GPIO bank 1) 1= can0, Output, can0_phy
* _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
* 0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTAG
* TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc2, O
* utput, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UAR
* T transmitter serial output) 7= trace, Output, tracedq[5]- (Trace Port D
* atabus)
* PSU_IOU_SLCR_MIO_PIN_27_L3_SEL 0
* Configures MIO Pin 27 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18006C, 0x000000FEU ,0x00000018U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_27_OFFSET, 0x000000FEU, 0x00000018U);
/*##################################################################### */
/*
* Register : MIO_PIN_28 @ 0XFF180070
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd
* [1]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_28_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_rb_n[1]- (N
* AND Ready/Busy)
* PSU_IOU_SLCR_MIO_PIN_28_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[2]- (PMU
* GPI) 2= test_scan, Input, test_scan_in[28]- (Test Scan Port) = test_sca
* n, Output, test_scan_out[28]- (Test Scan Port) 3= dpaux, Input, dp_hot_p
* lug_detect- (Dp Aux Hot Plug)
* PSU_IOU_SLCR_MIO_PIN_28_L2_SEL 3
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[2]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[2]- (GPIO bank 1) 1= can1, Output, can1_phy
* _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
* 1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJTA
* G TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc1,
* Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitt
* er serial output) 7= trace, Output, tracedq[6]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_28_L3_SEL 0
* Configures MIO Pin 28 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180070, 0x000000FEU ,0x00000018U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_28_OFFSET, 0x000000FEU, 0x00000018U);
/*##################################################################### */
/*
* Register : MIO_PIN_29 @ 0XFF180074
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd
* [2]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_29_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
* PCIE Reset signal)
* PSU_IOU_SLCR_MIO_PIN_29_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[3]- (PMU
* GPI) 2= test_scan, Input, test_scan_in[29]- (Test Scan Port) = test_sca
* n, Output, test_scan_out[29]- (Test Scan Port) 3= dpaux, Input, dp_aux_d
* ata_in- (Dp Aux Data) = dpaux, Output, dp_aux_data_out- (Dp Aux Data)
* PSU_IOU_SLCR_MIO_PIN_29_L2_SEL 3
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[3]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[3]- (GPIO bank 1) 1= can1, Input, can1_phy_
* rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
* , Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTAG
* TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output,
* spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc1, Output, ttc1_wave_out-
* (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input
* ) 7= trace, Output, tracedq[7]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_29_L3_SEL 0
* Configures MIO Pin 29 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180074, 0x000000FEU ,0x00000018U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_29_OFFSET, 0x000000FEU, 0x00000018U);
/*##################################################################### */
/*
* Register : MIO_PIN_30 @ 0XFF180078
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_txd
* [3]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_30_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
* PCIE Reset signal)
* PSU_IOU_SLCR_MIO_PIN_30_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[4]- (PMU
* GPI) 2= test_scan, Input, test_scan_in[30]- (Test Scan Port) = test_sca
* n, Output, test_scan_out[30]- (Test Scan Port) 3= dpaux, Input, dp_hot_p
* lug_detect- (Dp Aux Hot Plug)
* PSU_IOU_SLCR_MIO_PIN_30_L2_SEL 3
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[4]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[4]- (GPIO bank 1) 1= can0, Input, can0_phy_
* rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
* , Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (Wat
* ch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi0
* , Output, spi0_so- (MISO signal) 5= ttc0, Input, ttc0_clk_in- (TTC Clock
* ) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Output,
* tracedq[8]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_30_L3_SEL 0
* Configures MIO Pin 30 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180078, 0x000000FEU ,0x00000018U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_30_OFFSET, 0x000000FEU, 0x00000018U);
/*##################################################################### */
/*
* Register : MIO_PIN_31 @ 0XFF18007C
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Output, gem0_rgmii_tx_
* ctl- (TX RGMII control)
* PSU_IOU_SLCR_MIO_PIN_31_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
* PCIE Reset signal)
* PSU_IOU_SLCR_MIO_PIN_31_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Input, pmu_gpi[5]- (PMU
* GPI) 2= test_scan, Input, test_scan_in[31]- (Test Scan Port) = test_sca
* n, Output, test_scan_out[31]- (Test Scan Port) 3= csu, Input, csu_ext_ta
* mper- (CSU Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_31_L2_SEL 0
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[5]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[5]- (GPIO bank 1) 1= can0, Output, can0_phy
* _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
* 0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out- (
* Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4=
* spi0, Input, spi0_si- (MOSI signal) 5= ttc0, Output, ttc0_wave_out- (TT
* C Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial outp
* ut) 7= trace, Output, tracedq[9]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_31_L3_SEL 0
* Configures MIO Pin 31 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18007C, 0x000000FEU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_31_OFFSET, 0x000000FEU, 0x00000000U);
/*##################################################################### */
/*
* Register : MIO_PIN_32 @ 0XFF180080
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rx_c
* lk- (RX RGMII clock)
* PSU_IOU_SLCR_MIO_PIN_32_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= nand, Input, nfc_dqs_in- (NA
* ND Strobe) 1= nand, Output, nfc_dqs_out- (NAND Strobe)
* PSU_IOU_SLCR_MIO_PIN_32_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[0]- (PM
* U GPI) 2= test_scan, Input, test_scan_in[32]- (Test Scan Port) = test_sc
* an, Output, test_scan_out[32]- (Test Scan Port) 3= csu, Input, csu_ext_t
* amper- (CSU Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_32_L2_SEL 1
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[6]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[6]- (GPIO bank 1) 1= can1, Output, can1_phy
* _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
* 1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (Wa
* tch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4=
* spi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc3, Input, ttc3_clk_in- (T
* TC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= t
* race, Output, tracedq[10]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_32_L3_SEL 0
* Configures MIO Pin 32 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180080, 0x000000FEU ,0x00000008U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_32_OFFSET, 0x000000FEU, 0x00000008U);
/*##################################################################### */
/*
* Register : MIO_PIN_33 @ 0XFF180084
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[
* 0]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_33_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
* PCIE Reset signal)
* PSU_IOU_SLCR_MIO_PIN_33_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[1]- (PM
* U GPI) 2= test_scan, Input, test_scan_in[33]- (Test Scan Port) = test_sc
* an, Output, test_scan_out[33]- (Test Scan Port) 3= csu, Input, csu_ext_t
* amper- (CSU Ext Tamper)
* PSU_IOU_SLCR_MIO_PIN_33_L2_SEL 1
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[7]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[7]- (GPIO bank 1) 1= can1, Input, can1_phy_
* rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
* , Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out- (W
* atch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Mas
* ter Selects) 5= ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= ua1
* , Input, ua1_rxd- (UART receiver serial input) 7= trace, Output, tracedq
* [11]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_33_L3_SEL 0
* Configures MIO Pin 33 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180084, 0x000000FEU ,0x00000008U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_33_OFFSET, 0x000000FEU, 0x00000008U);
/*##################################################################### */
/*
* Register : MIO_PIN_34 @ 0XFF180088
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[
* 1]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_34_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
* PCIE Reset signal)
* PSU_IOU_SLCR_MIO_PIN_34_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[2]- (PM
* U GPI) 2= test_scan, Input, test_scan_in[34]- (Test Scan Port) = test_sc
* an, Output, test_scan_out[34]- (Test Scan Port) 3= dpaux, Input, dp_aux_
* data_in- (Dp Aux Data) = dpaux, Output, dp_aux_data_out- (Dp Aux Data)
* PSU_IOU_SLCR_MIO_PIN_34_L2_SEL 1
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[8]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[8]- (GPIO bank 1) 1= can0, Input, can0_phy_
* rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
* , Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (Wat
* ch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master
* Selects) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rx
* d- (UART receiver serial input) 7= trace, Output, tracedq[12]- (Trace Po
* rt Databus)
* PSU_IOU_SLCR_MIO_PIN_34_L3_SEL 0
* Configures MIO Pin 34 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180088, 0x000000FEU ,0x00000008U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_34_OFFSET, 0x000000FEU, 0x00000008U);
/*##################################################################### */
/*
* Register : MIO_PIN_35 @ 0XFF18008C
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[
* 2]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_35_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
* PCIE Reset signal)
* PSU_IOU_SLCR_MIO_PIN_35_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[3]- (PM
* U GPI) 2= test_scan, Input, test_scan_in[35]- (Test Scan Port) = test_sc
* an, Output, test_scan_out[35]- (Test Scan Port) 3= dpaux, Input, dp_hot_
* plug_detect- (Dp Aux Hot Plug)
* PSU_IOU_SLCR_MIO_PIN_35_L2_SEL 1
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[9]- (GPIO bank 1) 0= g
* pio1, Output, gpio_1_pin_out[9]- (GPIO bank 1) 1= can0, Output, can0_phy
* _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
* 0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out- (
* Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master
* Selects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc2
* , Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (
* UART transmitter serial output) 7= trace, Output, tracedq[13]- (Trace Po
* rt Databus)
* PSU_IOU_SLCR_MIO_PIN_35_L3_SEL 0
* Configures MIO Pin 35 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18008C, 0x000000FEU ,0x00000008U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_35_OFFSET, 0x000000FEU, 0x00000008U);
/*##################################################################### */
/*
* Register : MIO_PIN_36 @ 0XFF180090
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rxd[
* 3]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_36_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
* PCIE Reset signal)
* PSU_IOU_SLCR_MIO_PIN_36_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[4]- (PM
* U GPI) 2= test_scan, Input, test_scan_in[36]- (Test Scan Port) = test_sc
* an, Output, test_scan_out[36]- (Test Scan Port) 3= dpaux, Input, dp_aux_
* data_in- (Dp Aux Data) = dpaux, Output, dp_aux_data_out- (Dp Aux Data)
* PSU_IOU_SLCR_MIO_PIN_36_L2_SEL 1
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[10]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[10]- (GPIO bank 1) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
* Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= s
* pi1, Output, spi1_so- (MISO signal) 5= ttc1, Input, ttc1_clk_in- (TTC Cl
* ock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace,
* Output, tracedq[14]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_36_L3_SEL 0
* Configures MIO Pin 36 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180090, 0x000000FEU ,0x00000008U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_36_OFFSET, 0x000000FEU, 0x00000008U);
/*##################################################################### */
/*
* Register : MIO_PIN_37 @ 0XFF180094
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem0, Input, gem0_rgmii_rx_c
* tl- (RX RGMII control )
* PSU_IOU_SLCR_MIO_PIN_37_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= pcie, Input, pcie_reset_n- (
* PCIE Reset signal)
* PSU_IOU_SLCR_MIO_PIN_37_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= pmu, Output, pmu_gpo[5]- (PM
* U GPI) 2= test_scan, Input, test_scan_in[37]- (Test Scan Port) = test_sc
* an, Output, test_scan_out[37]- (Test Scan Port) 3= dpaux, Input, dp_hot_
* plug_detect- (Dp Aux Hot Plug)
* PSU_IOU_SLCR_MIO_PIN_37_L2_SEL 1
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[11]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[11]- (GPIO bank 1) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4
* = spi1, Input, spi1_si- (MOSI signal) 5= ttc1, Output, ttc1_wave_out- (T
* TC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
* 7= trace, Output, tracedq[15]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_37_L3_SEL 0
* Configures MIO Pin 37 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180094, 0x000000FEU ,0x00000008U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_37_OFFSET, 0x000000FEU, 0x00000008U);
/*##################################################################### */
/*
* Register : MIO_PIN_38 @ 0XFF180098
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_tx_
* clk- (TX RGMII clock)
* PSU_IOU_SLCR_MIO_PIN_38_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_38_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_clk_out-
* (SDSDIO clock) 2= Not Used 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_38_L2_SEL 0
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[12]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[12]- (GPIO bank 1) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTA
* G TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_s
* clk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, In
* put, ua0_rxd- (UART receiver serial input) 7= trace, Output, trace_clk-
* (Trace Port Clock)
* PSU_IOU_SLCR_MIO_PIN_38_L3_SEL 0
* Configures MIO Pin 38 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180098, 0x000000FEU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_38_OFFSET, 0x000000FEU, 0x00000000U);
/*##################################################################### */
/*
* Register : MIO_PIN_39 @ 0XFF18009C
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd
* [0]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_39_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_39_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_cd_n- (SD
* card detect from connector) 2= sd1, Input, sd1_data_in[4]- (8-bit Data b
* us) = sd1, Output, sdio1_data_out[4]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_39_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[13]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[13]- (GPIO bank 1) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJT
* AG TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc0,
* Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (U
* ART transmitter serial output) 7= trace, Output, trace_ctl- (Trace Port
* Control Signal)
* PSU_IOU_SLCR_MIO_PIN_39_L3_SEL 0
* Configures MIO Pin 39 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18009C, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_39_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_40 @ 0XFF1800A0
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd
* [1]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_40_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_40_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_cmd_in- (Com
* mand Indicator) = sd0, Output, sdio0_cmd_out- (Command Indicator) 2= sd1
* , Input, sd1_data_in[5]- (8-bit Data bus) = sd1, Output, sdio1_data_out[
* 5]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_40_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[14]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[14]- (GPIO bank 1) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJ
* TAG TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc3
* , Input, ttc3_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmi
* tter serial output) 7= trace, Output, tracedq[0]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_40_L3_SEL 0
* Configures MIO Pin 40 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800A0, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_40_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_41 @ 0XFF1800A4
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd
* [2]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_41_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_41_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[0]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[0]- (8-bit Data bus) 2= s
* d1, Input, sd1_data_in[6]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
* t[6]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_41_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[15]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[15]- (GPIO bank 1) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTA
* G TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Outpu
* t, spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc3, Output, ttc3_wave_out
* - (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial inp
* ut) 7= trace, Output, tracedq[1]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_41_L3_SEL 0
* Configures MIO Pin 41 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800A4, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_41_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_42 @ 0XFF1800A8
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_txd
* [3]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_42_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_42_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[1]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[1]- (8-bit Data bus) 2= s
* d1, Input, sd1_data_in[7]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
* t[7]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_42_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[16]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[16]- (GPIO bank 1) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= sp
* i0, Output, spi0_so- (MISO signal) 5= ttc2, Input, ttc2_clk_in- (TTC Clo
* ck) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Outpu
* t, tracedq[2]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_42_L3_SEL 0
* Configures MIO Pin 42 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800A8, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_42_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_43 @ 0XFF1800AC
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Output, gem1_rgmii_tx_
* ctl- (TX RGMII control)
* PSU_IOU_SLCR_MIO_PIN_43_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_43_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[2]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[2]- (8-bit Data bus) 2= s
* d1, Output, sdio1_bus_pow- (SD card bus power) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_43_L2_SEL 0
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[17]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[17]- (GPIO bank 1) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal)
* 4= spi0, Input, spi0_si- (MOSI signal) 5= ttc2, Output, ttc2_wave_out- (
* TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial ou
* tput) 7= trace, Output, tracedq[3]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_43_L3_SEL 0
* Configures MIO Pin 43 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800AC, 0x000000FEU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_43_OFFSET, 0x000000FEU, 0x00000000U);
/*##################################################################### */
/*
* Register : MIO_PIN_44 @ 0XFF1800B0
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rx_c
* lk- (RX RGMII clock)
* PSU_IOU_SLCR_MIO_PIN_44_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_44_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[3]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[3]- (8-bit Data bus) 2= s
* d1, Input, sdio1_wp- (SD card write protect from connector) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_44_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[18]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[18]- (GPIO bank 1) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
* Watch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4
* = spi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc1, Input, ttc1_clk_in-
* (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7=
* Not Used
* PSU_IOU_SLCR_MIO_PIN_44_L3_SEL 0
* Configures MIO Pin 44 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800B0, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_44_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_45 @ 0XFF1800B4
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[
* 0]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_45_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_45_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[4]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[4]- (8-bit Data bus) 2= s
* d1, Input, sdio1_cd_n- (SD card detect from connector) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_45_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[19]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[19]- (GPIO bank 1) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI M
* aster Selects) 5= ttc1, Output, ttc1_wave_out- (TTC Waveform Clock) 6= u
* a1, Input, ua1_rxd- (UART receiver serial input) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_45_L3_SEL 0
* Configures MIO Pin 45 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800B4, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_45_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_46 @ 0XFF1800B8
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[
* 1]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_46_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_46_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[5]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[5]- (8-bit Data bus) 2= s
* d1, Input, sd1_data_in[0]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
* t[0]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_46_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[20]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[20]- (GPIO bank 1) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Mast
* er Selects) 5= ttc0, Input, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_
* rxd- (UART receiver serial input) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_46_L3_SEL 0
* Configures MIO Pin 46 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800B8, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_46_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_47 @ 0XFF1800BC
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[
* 2]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_47_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_47_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[6]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[6]- (8-bit Data bus) 2= s
* d1, Input, sd1_data_in[1]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
* t[1]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_47_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[21]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[21]- (GPIO bank 1) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Maste
* r Selects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= tt
* c0, Output, ttc0_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd-
* (UART transmitter serial output) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_47_L3_SEL 0
* Configures MIO Pin 47 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800BC, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_47_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_48 @ 0XFF1800C0
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rxd[
* 3]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_48_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_48_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[7]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[7]- (8-bit Data bus) 2= s
* d1, Input, sd1_data_in[2]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
* t[2]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_48_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[22]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[22]- (GPIO bank 1) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
* Watch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= s
* pi1, Output, spi1_so- (MISO signal) 5= ttc3, Input, ttc3_clk_in- (TTC Cl
* ock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= Not Us
* ed
* PSU_IOU_SLCR_MIO_PIN_48_L3_SEL 0
* Configures MIO Pin 48 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800C0, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_48_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_49 @ 0XFF1800C4
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem1, Input, gem1_rgmii_rx_c
* tl- (RX RGMII control )
* PSU_IOU_SLCR_MIO_PIN_49_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_49_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_bus_pow-
* (SD card bus power) 2= sd1, Input, sd1_data_in[3]- (8-bit Data bus) = sd
* 1, Output, sdio1_data_out[3]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_49_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[23]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[23]- (GPIO bank 1) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal) 4
* = spi1, Input, spi1_si- (MOSI signal) 5= ttc3, Output, ttc3_wave_out- (T
* TC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
* 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_49_L3_SEL 0
* Configures MIO Pin 49 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800C4, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_49_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_50 @ 0XFF1800C8
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem_tsu, Input, gem_tsu_clk-
* (TSU clock)
* PSU_IOU_SLCR_MIO_PIN_50_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_50_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_wp- (SD ca
* rd write protect from connector) 2= sd1, Input, sd1_cmd_in- (Command Ind
* icator) = sd1, Output, sdio1_cmd_out- (Command Indicator) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_50_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[24]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[24]- (GPIO bank 1) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= mdio1, Output, gem1_mdc- (MDIO Clock) 5=
* ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART rece
* iver serial input) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_50_L3_SEL 0
* Configures MIO Pin 50 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800C8, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_50_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_51 @ 0XFF1800CC
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem_tsu, Input, gem_tsu_clk-
* (TSU clock)
* PSU_IOU_SLCR_MIO_PIN_51_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_51_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= sd1, Output, sdi
* o1_clk_out- (SDSDIO clock) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_51_L2_SEL 2
* Level 3 Mux Select 0= gpio1, Input, gpio_1_pin_in[25]- (GPIO bank 1) 0=
* gpio1, Output, gpio_1_pin_out[25]- (GPIO bank 1) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= mdio1, Input, gem1_mdio_in- (MDIO Dat
* a) 4= mdio1, Output, gem1_mdio_out- (MDIO Data) 5= ttc2, Output, ttc2_wa
* ve_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter
* serial output) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_51_L3_SEL 0
* Configures MIO Pin 51 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800CC, 0x000000FEU ,0x00000010U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_51_OFFSET, 0x000000FEU, 0x00000010U);
/*##################################################################### */
/*
* Register : MIO_PIN_52 @ 0XFF1800D0
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_tx_
* clk- (TX RGMII clock)
* PSU_IOU_SLCR_MIO_PIN_52_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_clk_i
* n- (ULPI Clock)
* PSU_IOU_SLCR_MIO_PIN_52_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_52_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[0]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[0]- (GPIO bank 2) 1= can1, Output, can1_phy
* _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
* 1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTAG
* TCK) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4= spi0, Output, spi0_sc
* lk_out- (SPI Clock) 5= ttc1, Input, ttc1_clk_in- (TTC Clock) 6= ua1, Out
* put, ua1_txd- (UART transmitter serial output) 7= trace, Output, trace_c
* lk- (Trace Port Clock)
* PSU_IOU_SLCR_MIO_PIN_52_L3_SEL 0
* Configures MIO Pin 52 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800D0, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_52_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_53 @ 0XFF1800D4
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd
* [0]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_53_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_dir-
* (Data bus direction control)
* PSU_IOU_SLCR_MIO_PIN_53_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_53_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[1]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[1]- (GPIO bank 2) 1= can1, Input, can1_phy_
* rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
* , Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTAG
* TDI) 4= spi0, Output, spi0_n_ss_out[2]- (SPI Master Selects) 5= ttc1, Ou
* tput, ttc1_wave_out- (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART
* receiver serial input) 7= trace, Output, trace_ctl- (Trace Port Control
* Signal)
* PSU_IOU_SLCR_MIO_PIN_53_L3_SEL 0
* Configures MIO Pin 53 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800D4, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_53_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_54 @ 0XFF1800D8
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd
* [1]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_54_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
* ta[2]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[2]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_54_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_54_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[2]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[2]- (GPIO bank 2) 1= can0, Input, can0_phy_
* rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
* , Output, i2c0_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJTAG
* TDO) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Master Selects) 5= ttc0, I
* nput, ttc0_clk_in- (TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver se
* rial input) 7= trace, Output, tracedq[0]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_54_L3_SEL 0
* Configures MIO Pin 54 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800D8, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_54_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_55 @ 0XFF1800DC
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd
* [2]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_55_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_nxt-
* (Data flow control signal from the PHY)
* PSU_IOU_SLCR_MIO_PIN_55_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_55_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[3]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[3]- (GPIO bank 2) 1= can0, Output, can0_phy
* _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
* 0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTAG
* TMS) 4= spi0, Input, spi0_n_ss_in- (SPI Master Selects) 4= spi0, Output
* , spi0_n_ss_out[0]- (SPI Master Selects) 5= ttc0, Output, ttc0_wave_out-
* (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial
* output) 7= trace, Output, tracedq[1]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_55_L3_SEL 0
* Configures MIO Pin 55 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800DC, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_55_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_56 @ 0XFF1800E0
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_txd
* [3]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_56_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
* ta[0]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[0]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_56_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_56_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[4]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[4]- (GPIO bank 2) 1= can1, Output, can1_phy
* _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
* 1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (Wa
* tch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= spi
* 0, Output, spi0_so- (MISO signal) 5= ttc3, Input, ttc3_clk_in- (TTC Cloc
* k) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace, O
* utput, tracedq[2]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_56_L3_SEL 0
* Configures MIO Pin 56 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800E0, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_56_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_57 @ 0XFF1800E4
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Output, gem2_rgmii_tx_
* ctl- (TX RGMII control)
* PSU_IOU_SLCR_MIO_PIN_57_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
* ta[1]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[1]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_57_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_57_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[5]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[5]- (GPIO bank 2) 1= can1, Input, can1_phy_
* rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
* , Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out- (W
* atch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4=
* spi0, Input, spi0_si- (MOSI signal) 5= ttc3, Output, ttc3_wave_out- (TTC
* Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7=
* trace, Output, tracedq[3]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_57_L3_SEL 0
* Configures MIO Pin 57 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800E4, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_57_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_58 @ 0XFF1800E8
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rx_c
* lk- (RX RGMII clock)
* PSU_IOU_SLCR_MIO_PIN_58_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Output, usb0_ulpi_stp-
* (Asserted to end or interrupt transfers)
* PSU_IOU_SLCR_MIO_PIN_58_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_58_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[6]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[6]- (GPIO bank 2) 1= can0, Input, can0_phy_
* rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2c0
* , Output, i2c0_scl_out- (SCL signal) 3= pjtag, Input, pjtag_tck- (PJTAG
* TCK) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4= spi1, Output, spi1_scl
* k_out- (SPI Clock) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Inpu
* t, ua0_rxd- (UART receiver serial input) 7= trace, Output, tracedq[4]- (
* Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_58_L3_SEL 0
* Configures MIO Pin 58 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800E8, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_58_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_59 @ 0XFF1800EC
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[
* 0]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_59_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
* ta[3]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[3]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_59_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_59_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[7]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[7]- (GPIO bank 2) 1= can0, Output, can0_phy
* _tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i2c
* 0, Output, i2c0_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tdi- (PJTAG
* TDI) 4= spi1, Output, spi1_n_ss_out[2]- (SPI Master Selects) 5= ttc2, O
* utput, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UAR
* T transmitter serial output) 7= trace, Output, tracedq[5]- (Trace Port D
* atabus)
* PSU_IOU_SLCR_MIO_PIN_59_L3_SEL 0
* Configures MIO Pin 59 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800EC, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_59_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_60 @ 0XFF1800F0
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[
* 1]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_60_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
* ta[4]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[4]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_60_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_60_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[8]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[8]- (GPIO bank 2) 1= can1, Output, can1_phy
* _tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i2c
* 1, Output, i2c1_scl_out- (SCL signal) 3= pjtag, Output, pjtag_tdo- (PJTA
* G TDO) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Master Selects) 5= ttc1,
* Input, ttc1_clk_in- (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitt
* er serial output) 7= trace, Output, tracedq[6]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_60_L3_SEL 0
* Configures MIO Pin 60 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800F0, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_60_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_61 @ 0XFF1800F4
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[
* 2]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_61_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
* ta[5]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[5]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_61_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_61_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[9]- (GPIO bank 2) 0= g
* pio2, Output, gpio_2_pin_out[9]- (GPIO bank 2) 1= can1, Input, can1_phy_
* rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2c1
* , Output, i2c1_sda_out- (SDA signal) 3= pjtag, Input, pjtag_tms- (PJTAG
* TMS) 4= spi1, Input, spi1_n_ss_in- (SPI Master Selects) 4= spi1, Output,
* spi1_n_ss_out[0]- (SPI Master Selects) 5= ttc1, Output, ttc1_wave_out-
* (TTC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input
* ) 7= trace, Output, tracedq[7]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_61_L3_SEL 0
* Configures MIO Pin 61 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800F4, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_61_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_62 @ 0XFF1800F8
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rxd[
* 3]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_62_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
* ta[6]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[6]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_62_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_62_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[10]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[10]- (GPIO bank 2) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= sp
* i1, Output, spi1_so- (MISO signal) 5= ttc0, Input, ttc0_clk_in- (TTC Clo
* ck) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= trace, Outpu
* t, tracedq[8]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_62_L3_SEL 0
* Configures MIO Pin 62 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800F8, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_62_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_63 @ 0XFF1800FC
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem2, Input, gem2_rgmii_rx_c
* tl- (RX RGMII control )
* PSU_IOU_SLCR_MIO_PIN_63_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb0, Input, usb0_ulpi_rx_da
* ta[7]- (ULPI data bus) 1= usb0, Output, usb0_ulpi_tx_data[7]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_63_L1_SEL 1
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= Not Used 3= Not
* Used
* PSU_IOU_SLCR_MIO_PIN_63_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[11]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[11]- (GPIO bank 2) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal)
* 4= spi1, Input, spi1_si- (MOSI signal) 5= ttc0, Output, ttc0_wave_out- (
* TTC Waveform Clock) 6= ua0, Output, ua0_txd- (UART transmitter serial ou
* tput) 7= trace, Output, tracedq[9]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_63_L3_SEL 0
* Configures MIO Pin 63 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF1800FC, 0x000000FEU ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_63_OFFSET, 0x000000FEU, 0x00000004U);
/*##################################################################### */
/*
* Register : MIO_PIN_64 @ 0XFF180100
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_tx_
* clk- (TX RGMII clock)
* PSU_IOU_SLCR_MIO_PIN_64_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_clk_i
* n- (ULPI Clock)
* PSU_IOU_SLCR_MIO_PIN_64_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_clk_out-
* (SDSDIO clock) 2= Not Used 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_64_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[12]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[12]- (GPIO bank 2) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
* Watch Dog Timer Input clock) 4= spi0, Input, spi0_sclk_in- (SPI Clock) 4
* = spi0, Output, spi0_sclk_out- (SPI Clock) 5= ttc3, Input, ttc3_clk_in-
* (TTC Clock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7=
* trace, Output, tracedq[10]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_64_L3_SEL 0
* Configures MIO Pin 64 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180100, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_64_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_65 @ 0XFF180104
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd
* [0]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_65_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_dir-
* (Data bus direction control)
* PSU_IOU_SLCR_MIO_PIN_65_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_cd_n- (SD
* card detect from connector) 2= Not Used 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_65_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[13]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[13]- (GPIO bank 2) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
* (Watch Dog Timer Output clock) 4= spi0, Output, spi0_n_ss_out[2]- (SPI M
* aster Selects) 5= ttc3, Output, ttc3_wave_out- (TTC Waveform Clock) 6= u
* a1, Input, ua1_rxd- (UART receiver serial input) 7= trace, Output, trace
* dq[11]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_65_L3_SEL 0
* Configures MIO Pin 65 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180104, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_65_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_66 @ 0XFF180108
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd
* [1]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_66_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
* ta[2]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[2]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_66_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_cmd_in- (Com
* mand Indicator) = sd0, Output, sdio0_cmd_out- (Command Indicator) 2= Not
* Used 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_66_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[14]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[14]- (GPIO bank 2) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= spi0, Output, spi0_n_ss_out[1]- (SPI Mast
* er Selects) 5= ttc2, Input, ttc2_clk_in- (TTC Clock) 6= ua0, Input, ua0_
* rxd- (UART receiver serial input) 7= trace, Output, tracedq[12]- (Trace
* Port Databus)
* PSU_IOU_SLCR_MIO_PIN_66_L3_SEL 0
* Configures MIO Pin 66 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180108, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_66_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_67 @ 0XFF18010C
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd
* [2]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_67_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_nxt-
* (Data flow control signal from the PHY)
* PSU_IOU_SLCR_MIO_PIN_67_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[0]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[0]- (8-bit Data bus) 2= N
* ot Used 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_67_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[15]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[15]- (GPIO bank 2) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= spi0, Input, spi0_n_ss_in- (SPI Maste
* r Selects) 4= spi0, Output, spi0_n_ss_out[0]- (SPI Master Selects) 5= tt
* c2, Output, ttc2_wave_out- (TTC Waveform Clock) 6= ua0, Output, ua0_txd-
* (UART transmitter serial output) 7= trace, Output, tracedq[13]- (Trace
* Port Databus)
* PSU_IOU_SLCR_MIO_PIN_67_L3_SEL 0
* Configures MIO Pin 67 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18010C, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_67_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_68 @ 0XFF180110
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_txd
* [3]- (TX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_68_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
* ta[0]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[0]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_68_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[1]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[1]- (8-bit Data bus) 2= N
* ot Used 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_68_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[16]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[16]- (GPIO bank 2) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
* Watch Dog Timer Input clock) 4= spi0, Input, spi0_mi- (MISO signal) 4= s
* pi0, Output, spi0_so- (MISO signal) 5= ttc1, Input, ttc1_clk_in- (TTC Cl
* ock) 6= ua1, Output, ua1_txd- (UART transmitter serial output) 7= trace,
* Output, tracedq[14]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_68_L3_SEL 0
* Configures MIO Pin 68 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180110, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_68_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_69 @ 0XFF180114
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Output, gem3_rgmii_tx_
* ctl- (TX RGMII control)
* PSU_IOU_SLCR_MIO_PIN_69_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
* ta[1]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[1]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_69_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[2]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[2]- (8-bit Data bus) 2= s
* d1, Input, sdio1_wp- (SD card write protect from connector) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_69_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[17]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[17]- (GPIO bank 2) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
* (Watch Dog Timer Output clock) 4= spi0, Output, spi0_mo- (MOSI signal) 4
* = spi0, Input, spi0_si- (MOSI signal) 5= ttc1, Output, ttc1_wave_out- (T
* TC Waveform Clock) 6= ua1, Input, ua1_rxd- (UART receiver serial input)
* 7= trace, Output, tracedq[15]- (Trace Port Databus)
* PSU_IOU_SLCR_MIO_PIN_69_L3_SEL 0
* Configures MIO Pin 69 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180114, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_69_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_70 @ 0XFF180118
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rx_c
* lk- (RX RGMII clock)
* PSU_IOU_SLCR_MIO_PIN_70_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Output, usb1_ulpi_stp-
* (Asserted to end or interrupt transfers)
* PSU_IOU_SLCR_MIO_PIN_70_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[3]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[3]- (8-bit Data bus) 2= s
* d1, Output, sdio1_bus_pow- (SD card bus power) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_70_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[18]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[18]- (GPIO bank 2) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= spi1, Input, spi1_sclk_in- (SPI Clock) 4=
* spi1, Output, spi1_sclk_out- (SPI Clock) 5= ttc0, Input, ttc0_clk_in- (
* TTC Clock) 6= ua0, Input, ua0_rxd- (UART receiver serial input) 7= Not U
* sed
* PSU_IOU_SLCR_MIO_PIN_70_L3_SEL 0
* Configures MIO Pin 70 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180118, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_70_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_71 @ 0XFF18011C
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[
* 0]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_71_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
* ta[3]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[3]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_71_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[4]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[4]- (8-bit Data bus) 2= s
* d1, Input, sd1_data_in[0]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
* t[0]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_71_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[19]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[19]- (GPIO bank 2) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Output, spi1_n_ss_out[2]- (SPI
* Master Selects) 5= ttc0, Output, ttc0_wave_out- (TTC Waveform Clock) 6=
* ua0, Output, ua0_txd- (UART transmitter serial output) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_71_L3_SEL 0
* Configures MIO Pin 71 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18011C, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_71_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_72 @ 0XFF180120
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[
* 1]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_72_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
* ta[4]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[4]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_72_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[5]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[5]- (8-bit Data bus) 2= s
* d1, Input, sd1_data_in[1]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
* t[1]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_72_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[20]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[20]- (GPIO bank 2) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= swdt1, Input, swdt1_clk_in- (
* Watch Dog Timer Input clock) 4= spi1, Output, spi1_n_ss_out[1]- (SPI Mas
* ter Selects) 5= Not Used 6= ua1, Output, ua1_txd- (UART transmitter seri
* al output) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_72_L3_SEL 0
* Configures MIO Pin 72 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180120, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_72_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_73 @ 0XFF180124
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[
* 2]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_73_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
* ta[5]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[5]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_73_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[6]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[6]- (8-bit Data bus) 2= s
* d1, Input, sd1_data_in[2]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
* t[2]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_73_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[21]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[21]- (GPIO bank 2) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= swdt1, Output, swdt1_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Input, spi1_n_ss_in- (SPI Master
* Selects) 4= spi1, Output, spi1_n_ss_out[0]- (SPI Master Selects) 5= Not
* Used 6= ua1, Input, ua1_rxd- (UART receiver serial input) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_73_L3_SEL 0
* Configures MIO Pin 73 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180124, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_73_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_74 @ 0XFF180128
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rxd[
* 3]- (RX RGMII data)
* PSU_IOU_SLCR_MIO_PIN_74_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
* ta[6]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[6]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_74_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sd0_data_in[7]-
* (8-bit Data bus) = sd0, Output, sdio0_data_out[7]- (8-bit Data bus) 2= s
* d1, Input, sd1_data_in[3]- (8-bit Data bus) = sd1, Output, sdio1_data_ou
* t[3]- (8-bit Data bus) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_74_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[22]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[22]- (GPIO bank 2) 1= can0, Input, can0_ph
* y_rx- (Can RX signal) 2= i2c0, Input, i2c0_scl_input- (SCL signal) 2= i2
* c0, Output, i2c0_scl_out- (SCL signal) 3= swdt0, Input, swdt0_clk_in- (W
* atch Dog Timer Input clock) 4= spi1, Input, spi1_mi- (MISO signal) 4= sp
* i1, Output, spi1_so- (MISO signal) 5= Not Used 6= ua0, Input, ua0_rxd- (
* UART receiver serial input) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_74_L3_SEL 0
* Configures MIO Pin 74 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180128, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_74_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_75 @ 0XFF18012C
* Level 0 Mux Select 0= Level 1 Mux Output 1= gem3, Input, gem3_rgmii_rx_c
* tl- (RX RGMII control )
* PSU_IOU_SLCR_MIO_PIN_75_L0_SEL 1
* Level 1 Mux Select 0= Level 2 Mux Output 1= usb1, Input, usb1_ulpi_rx_da
* ta[7]- (ULPI data bus) 1= usb1, Output, usb1_ulpi_tx_data[7]- (ULPI data
* bus)
* PSU_IOU_SLCR_MIO_PIN_75_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Output, sdio0_bus_pow-
* (SD card bus power) 2= sd1, Input, sd1_cmd_in- (Command Indicator) = sd1
* , Output, sdio1_cmd_out- (Command Indicator) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_75_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[23]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[23]- (GPIO bank 2) 1= can0, Output, can0_p
* hy_tx- (Can TX signal) 2= i2c0, Input, i2c0_sda_input- (SDA signal) 2= i
* 2c0, Output, i2c0_sda_out- (SDA signal) 3= swdt0, Output, swdt0_rst_out-
* (Watch Dog Timer Output clock) 4= spi1, Output, spi1_mo- (MOSI signal)
* 4= spi1, Input, spi1_si- (MOSI signal) 5= Not Used 6= ua0, Output, ua0_t
* xd- (UART transmitter serial output) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_75_L3_SEL 0
* Configures MIO Pin 75 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF18012C, 0x000000FEU ,0x00000002U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_75_OFFSET, 0x000000FEU, 0x00000002U);
/*##################################################################### */
/*
* Register : MIO_PIN_76 @ 0XFF180130
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_76_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_76_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= sd0, Input, sdio0_wp- (SD ca
* rd write protect from connector) 2= sd1, Output, sdio1_clk_out- (SDSDIO
* clock) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_76_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[24]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[24]- (GPIO bank 2) 1= can1, Output, can1_p
* hy_tx- (Can TX signal) 2= i2c1, Input, i2c1_scl_input- (SCL signal) 2= i
* 2c1, Output, i2c1_scl_out- (SCL signal) 3= mdio0, Output, gem0_mdc- (MDI
* O Clock) 4= mdio1, Output, gem1_mdc- (MDIO Clock) 5= mdio2, Output, gem2
* _mdc- (MDIO Clock) 6= mdio3, Output, gem3_mdc- (MDIO Clock) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_76_L3_SEL 6
* Configures MIO Pin 76 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180130, 0x000000FEU ,0x000000C0U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_76_OFFSET, 0x000000FEU, 0x000000C0U);
/*##################################################################### */
/*
* Register : MIO_PIN_77 @ 0XFF180134
* Level 0 Mux Select 0= Level 1 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_77_L0_SEL 0
* Level 1 Mux Select 0= Level 2 Mux Output 1= Not Used
* PSU_IOU_SLCR_MIO_PIN_77_L1_SEL 0
* Level 2 Mux Select 0= Level 3 Mux Output 1= Not Used 2= sd1, Input, sdio
* 1_cd_n- (SD card detect from connector) 3= Not Used
* PSU_IOU_SLCR_MIO_PIN_77_L2_SEL 0
* Level 3 Mux Select 0= gpio2, Input, gpio_2_pin_in[25]- (GPIO bank 2) 0=
* gpio2, Output, gpio_2_pin_out[25]- (GPIO bank 2) 1= can1, Input, can1_ph
* y_rx- (Can RX signal) 2= i2c1, Input, i2c1_sda_input- (SDA signal) 2= i2
* c1, Output, i2c1_sda_out- (SDA signal) 3= mdio0, Input, gem0_mdio_in- (M
* DIO Data) 3= mdio0, Output, gem0_mdio_out- (MDIO Data) 4= mdio1, Input,
* gem1_mdio_in- (MDIO Data) 4= mdio1, Output, gem1_mdio_out- (MDIO Data) 5
* = mdio2, Input, gem2_mdio_in- (MDIO Data) 5= mdio2, Output, gem2_mdio_ou
* t- (MDIO Data) 6= mdio3, Input, gem3_mdio_in- (MDIO Data) 6= mdio3, Outp
* ut, gem3_mdio_out- (MDIO Data) 7= Not Used
* PSU_IOU_SLCR_MIO_PIN_77_L3_SEL 6
* Configures MIO Pin 77 peripheral interface mapping
* (OFFSET, MASK, VALUE) (0XFF180134, 0x000000FEU ,0x000000C0U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_PIN_77_OFFSET, 0x000000FEU, 0x000000C0U);
/*##################################################################### */
/*
* Register : MIO_MST_TRI0 @ 0XFF180204
* Master Tri-state Enable for pin 0, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_00_TRI 0
* Master Tri-state Enable for pin 1, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_01_TRI 0
* Master Tri-state Enable for pin 2, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_02_TRI 0
* Master Tri-state Enable for pin 3, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_03_TRI 0
* Master Tri-state Enable for pin 4, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_04_TRI 0
* Master Tri-state Enable for pin 5, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_05_TRI 0
* Master Tri-state Enable for pin 6, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_06_TRI 0
* Master Tri-state Enable for pin 7, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_07_TRI 0
* Master Tri-state Enable for pin 8, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_08_TRI 0
* Master Tri-state Enable for pin 9, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_09_TRI 0
* Master Tri-state Enable for pin 10, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_10_TRI 0
* Master Tri-state Enable for pin 11, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_11_TRI 0
* Master Tri-state Enable for pin 12, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_12_TRI 0
* Master Tri-state Enable for pin 13, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_13_TRI 0
* Master Tri-state Enable for pin 14, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_14_TRI 0
* Master Tri-state Enable for pin 15, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_15_TRI 0
* Master Tri-state Enable for pin 16, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_16_TRI 0
* Master Tri-state Enable for pin 17, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_17_TRI 0
* Master Tri-state Enable for pin 18, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_18_TRI 1
* Master Tri-state Enable for pin 19, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_19_TRI 0
* Master Tri-state Enable for pin 20, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_20_TRI 0
* Master Tri-state Enable for pin 21, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_21_TRI 1
* Master Tri-state Enable for pin 22, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_22_TRI 0
* Master Tri-state Enable for pin 23, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_23_TRI 0
* Master Tri-state Enable for pin 24, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_24_TRI 0
* Master Tri-state Enable for pin 25, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_25_TRI 1
* Master Tri-state Enable for pin 26, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_26_TRI 0
* Master Tri-state Enable for pin 27, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_27_TRI 0
* Master Tri-state Enable for pin 28, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_28_TRI 1
* Master Tri-state Enable for pin 29, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_29_TRI 0
* Master Tri-state Enable for pin 30, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_30_TRI 1
* Master Tri-state Enable for pin 31, active high
* PSU_IOU_SLCR_MIO_MST_TRI0_PIN_31_TRI 0
* MIO pin Tri-state Enables, 31:0
* (OFFSET, MASK, VALUE) (0XFF180204, 0xFFFFFFFFU ,0x52240000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_MST_TRI0_OFFSET,
0xFFFFFFFFU, 0x52240000U);
/*##################################################################### */
/*
* Register : MIO_MST_TRI1 @ 0XFF180208
* Master Tri-state Enable for pin 32, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_32_TRI 0
* Master Tri-state Enable for pin 33, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_33_TRI 0
* Master Tri-state Enable for pin 34, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_34_TRI 0
* Master Tri-state Enable for pin 35, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_35_TRI 0
* Master Tri-state Enable for pin 36, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_36_TRI 0
* Master Tri-state Enable for pin 37, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_37_TRI 0
* Master Tri-state Enable for pin 38, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_38_TRI 0
* Master Tri-state Enable for pin 39, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_39_TRI 0
* Master Tri-state Enable for pin 40, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_40_TRI 0
* Master Tri-state Enable for pin 41, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_41_TRI 0
* Master Tri-state Enable for pin 42, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_42_TRI 0
* Master Tri-state Enable for pin 43, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_43_TRI 0
* Master Tri-state Enable for pin 44, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_44_TRI 1
* Master Tri-state Enable for pin 45, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_45_TRI 1
* Master Tri-state Enable for pin 46, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_46_TRI 0
* Master Tri-state Enable for pin 47, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_47_TRI 0
* Master Tri-state Enable for pin 48, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_48_TRI 0
* Master Tri-state Enable for pin 49, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_49_TRI 0
* Master Tri-state Enable for pin 50, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_50_TRI 0
* Master Tri-state Enable for pin 51, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_51_TRI 0
* Master Tri-state Enable for pin 52, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_52_TRI 1
* Master Tri-state Enable for pin 53, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_53_TRI 1
* Master Tri-state Enable for pin 54, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_54_TRI 0
* Master Tri-state Enable for pin 55, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_55_TRI 1
* Master Tri-state Enable for pin 56, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_56_TRI 0
* Master Tri-state Enable for pin 57, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_57_TRI 0
* Master Tri-state Enable for pin 58, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_58_TRI 0
* Master Tri-state Enable for pin 59, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_59_TRI 0
* Master Tri-state Enable for pin 60, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_60_TRI 0
* Master Tri-state Enable for pin 61, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_61_TRI 0
* Master Tri-state Enable for pin 62, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_62_TRI 0
* Master Tri-state Enable for pin 63, active high
* PSU_IOU_SLCR_MIO_MST_TRI1_PIN_63_TRI 0
* MIO pin Tri-state Enables, 63:32
* (OFFSET, MASK, VALUE) (0XFF180208, 0xFFFFFFFFU ,0x00B03000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_MST_TRI1_OFFSET,
0xFFFFFFFFU, 0x00B03000U);
/*##################################################################### */
/*
* Register : MIO_MST_TRI2 @ 0XFF18020C
* Master Tri-state Enable for pin 64, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_64_TRI 0
* Master Tri-state Enable for pin 65, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_65_TRI 0
* Master Tri-state Enable for pin 66, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_66_TRI 0
* Master Tri-state Enable for pin 67, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_67_TRI 0
* Master Tri-state Enable for pin 68, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_68_TRI 0
* Master Tri-state Enable for pin 69, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_69_TRI 0
* Master Tri-state Enable for pin 70, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_70_TRI 1
* Master Tri-state Enable for pin 71, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_71_TRI 1
* Master Tri-state Enable for pin 72, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_72_TRI 1
* Master Tri-state Enable for pin 73, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_73_TRI 1
* Master Tri-state Enable for pin 74, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_74_TRI 1
* Master Tri-state Enable for pin 75, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_75_TRI 1
* Master Tri-state Enable for pin 76, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_76_TRI 0
* Master Tri-state Enable for pin 77, active high
* PSU_IOU_SLCR_MIO_MST_TRI2_PIN_77_TRI 0
* MIO pin Tri-state Enables, 77:64
* (OFFSET, MASK, VALUE) (0XFF18020C, 0x00003FFFU ,0x00000FC0U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_MST_TRI2_OFFSET,
0x00003FFFU, 0x00000FC0U);
/*##################################################################### */
/*
* Register : bank0_ctrl0 @ 0XFF180138
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL0_DRIVE0_BIT_25 1
* Drive0 control to MIO Bank 0 - control MIO[25:0]
* (OFFSET, MASK, VALUE) (0XFF180138, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK0_CTRL0_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank0_ctrl1 @ 0XFF18013C
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL1_DRIVE1_BIT_25 1
* Drive1 control to MIO Bank 0 - control MIO[25:0]
* (OFFSET, MASK, VALUE) (0XFF18013C, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK0_CTRL1_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank0_ctrl3 @ 0XFF180140
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_0 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_1 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_2 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_3 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_4 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_5 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_6 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_7 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_8 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_9 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_10 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_11 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_12 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_13 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_14 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_15 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_16 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_17 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_18 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_19 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_20 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_21 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_22 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_23 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_24 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL3_SCHMITT_CMOS_N_BIT_25 0
* Selects either Schmitt or CMOS input for MIO Bank 0 - control MIO[25:0]
* (OFFSET, MASK, VALUE) (0XFF180140, 0x03FFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_BANK0_CTRL3_OFFSET,
0x03FFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : bank0_ctrl4 @ 0XFF180144
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL4_PULL_HIGH_LOW_N_BIT_25 1
* When mio_bank0_pull_enable is set, this selects pull up or pull down for
* MIO Bank 0 - control MIO[25:0]
* (OFFSET, MASK, VALUE) (0XFF180144, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK0_CTRL4_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank0_ctrl5 @ 0XFF180148
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL5_PULL_ENABLE_BIT_25 1
* When set, this enables mio_bank0_pullupdown to selects pull up or pull d
* own for MIO Bank 0 - control MIO[25:0]
* (OFFSET, MASK, VALUE) (0XFF180148, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK0_CTRL5_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank0_ctrl6 @ 0XFF18014C
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_0 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_1 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_2 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_3 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_4 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_5 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_6 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_7 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_8 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_9 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_10 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_11 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_12 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_13 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_14 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_15 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_16 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_17 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_18 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_19 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_20 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_21 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_22 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_23 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_24 0
* Each bit applies to a single IO. Bit 0 for MIO[0].
* PSU_IOU_SLCR_BANK0_CTRL6_SLOW_FAST_SLEW_N_BIT_25 0
* Slew rate control to MIO Bank 0 - control MIO[25:0]
* (OFFSET, MASK, VALUE) (0XFF18014C, 0x03FFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_BANK0_CTRL6_OFFSET,
0x03FFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : bank1_ctrl0 @ 0XFF180154
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL0_DRIVE0_BIT_25 1
* Drive0 control to MIO Bank 1 - control MIO[51:26]
* (OFFSET, MASK, VALUE) (0XFF180154, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK1_CTRL0_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank1_ctrl1 @ 0XFF180158
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL1_DRIVE1_BIT_25 1
* Drive1 control to MIO Bank 1 - control MIO[51:26]
* (OFFSET, MASK, VALUE) (0XFF180158, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK1_CTRL1_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank1_ctrl3 @ 0XFF18015C
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_0 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_1 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_2 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_3 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_4 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_5 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_6 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_7 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_8 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_9 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_10 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_11 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_12 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_13 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_14 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_15 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_16 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_17 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_18 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_19 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_20 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_21 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_22 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_23 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_24 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL3_SCHMITT_CMOS_N_BIT_25 0
* Selects either Schmitt or CMOS input for MIO Bank 1 - control MIO[51:26]
* (OFFSET, MASK, VALUE) (0XFF18015C, 0x03FFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_BANK1_CTRL3_OFFSET,
0x03FFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : bank1_ctrl4 @ 0XFF180160
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL4_PULL_HIGH_LOW_N_BIT_25 1
* When mio_bank1_pull_enable is set, this selects pull up or pull down for
* MIO Bank 1 - control MIO[51:26]
* (OFFSET, MASK, VALUE) (0XFF180160, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK1_CTRL4_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank1_ctrl5 @ 0XFF180164
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL5_PULL_ENABLE_BIT_25 1
* When set, this enables mio_bank1_pullupdown to selects pull up or pull d
* own for MIO Bank 1 - control MIO[51:26]
* (OFFSET, MASK, VALUE) (0XFF180164, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK1_CTRL5_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank1_ctrl6 @ 0XFF180168
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_0 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_1 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_2 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_3 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_4 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_5 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_6 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_7 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_8 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_9 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_10 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_11 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_12 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_13 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_14 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_15 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_16 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_17 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_18 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_19 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_20 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_21 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_22 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_23 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_24 0
* Each bit applies to a single IO. Bit 0 for MIO[26].
* PSU_IOU_SLCR_BANK1_CTRL6_SLOW_FAST_SLEW_N_BIT_25 0
* Slew rate control to MIO Bank 1 - control MIO[51:26]
* (OFFSET, MASK, VALUE) (0XFF180168, 0x03FFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_BANK1_CTRL6_OFFSET,
0x03FFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : bank2_ctrl0 @ 0XFF180170
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL0_DRIVE0_BIT_25 1
* Drive0 control to MIO Bank 2 - control MIO[77:52]
* (OFFSET, MASK, VALUE) (0XFF180170, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK2_CTRL0_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank2_ctrl1 @ 0XFF180174
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL1_DRIVE1_BIT_25 1
* Drive1 control to MIO Bank 2 - control MIO[77:52]
* (OFFSET, MASK, VALUE) (0XFF180174, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK2_CTRL1_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank2_ctrl3 @ 0XFF180178
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_0 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_1 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_2 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_3 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_4 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_5 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_6 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_7 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_8 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_9 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_10 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_11 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_12 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_13 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_14 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_15 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_16 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_17 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_18 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_19 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_20 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_21 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_22 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_23 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_24 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL3_SCHMITT_CMOS_N_BIT_25 0
* Selects either Schmitt or CMOS input for MIO Bank 2 - control MIO[77:52]
* (OFFSET, MASK, VALUE) (0XFF180178, 0x03FFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_BANK2_CTRL3_OFFSET,
0x03FFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : bank2_ctrl4 @ 0XFF18017C
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL4_PULL_HIGH_LOW_N_BIT_25 1
* When mio_bank2_pull_enable is set, this selects pull up or pull down for
* MIO Bank 2 - control MIO[77:52]
* (OFFSET, MASK, VALUE) (0XFF18017C, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK2_CTRL4_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank2_ctrl5 @ 0XFF180180
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_0 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_1 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_2 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_3 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_4 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_5 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_6 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_7 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_8 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_9 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_10 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_11 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_12 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_13 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_14 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_15 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_16 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_17 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_18 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_19 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_20 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_21 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_22 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_23 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_24 1
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL5_PULL_ENABLE_BIT_25 1
* When set, this enables mio_bank2_pullupdown to selects pull up or pull d
* own for MIO Bank 2 - control MIO[77:52]
* (OFFSET, MASK, VALUE) (0XFF180180, 0x03FFFFFFU ,0x03FFFFFFU)
*/
PSU_Mask_Write(IOU_SLCR_BANK2_CTRL5_OFFSET,
0x03FFFFFFU, 0x03FFFFFFU);
/*##################################################################### */
/*
* Register : bank2_ctrl6 @ 0XFF180184
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_0 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_1 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_2 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_3 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_4 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_5 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_6 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_7 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_8 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_9 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_10 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_11 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_12 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_13 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_14 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_15 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_16 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_17 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_18 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_19 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_20 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_21 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_22 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_23 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_24 0
* Each bit applies to a single IO. Bit 0 for MIO[52].
* PSU_IOU_SLCR_BANK2_CTRL6_SLOW_FAST_SLEW_N_BIT_25 0
* Slew rate control to MIO Bank 2 - control MIO[77:52]
* (OFFSET, MASK, VALUE) (0XFF180184, 0x03FFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_BANK2_CTRL6_OFFSET,
0x03FFFFFFU, 0x00000000U);
/*##################################################################### */
/*
* LOOPBACK
*/
/*
* Register : MIO_LOOPBACK @ 0XFF180200
* I2C Loopback Control. 0 = Connect I2C inputs according to MIO mapping. 1
* = Loop I2C 0 outputs to I2C 1 inputs, and I2C 1 outputs to I2C 0 inputs
* .
* PSU_IOU_SLCR_MIO_LOOPBACK_I2C0_LOOP_I2C1 0
* CAN Loopback Control. 0 = Connect CAN inputs according to MIO mapping. 1
* = Loop CAN 0 Tx to CAN 1 Rx, and CAN 1 Tx to CAN 0 Rx.
* PSU_IOU_SLCR_MIO_LOOPBACK_CAN0_LOOP_CAN1 0
* UART Loopback Control. 0 = Connect UART inputs according to MIO mapping.
* 1 = Loop UART 0 outputs to UART 1 inputs, and UART 1 outputs to UART 0
* inputs. RXD/TXD cross-connected. RTS/CTS cross-connected. DSR, DTR, DCD
* and RI not used.
* PSU_IOU_SLCR_MIO_LOOPBACK_UA0_LOOP_UA1 0
* SPI Loopback Control. 0 = Connect SPI inputs according to MIO mapping. 1
* = Loop SPI 0 outputs to SPI 1 inputs, and SPI 1 outputs to SPI 0 inputs
* . The other SPI core will appear on the LS Slave Select.
* PSU_IOU_SLCR_MIO_LOOPBACK_SPI0_LOOP_SPI1 0
* Loopback function within MIO
* (OFFSET, MASK, VALUE) (0XFF180200, 0x0000000FU ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_MIO_LOOPBACK_OFFSET,
0x0000000FU, 0x00000000U);
/*##################################################################### */
return 1;
}
unsigned long psu_peripherals_init_data(void)
{
/*
* COHERENCY
*/
/*
* FPD RESET
*/
/*
* Register : RST_FPD_TOP @ 0XFD1A0100
* PCIE config reset
* PSU_CRF_APB_RST_FPD_TOP_PCIE_CFG_RESET 0
* PCIE control block level reset
* PSU_CRF_APB_RST_FPD_TOP_PCIE_CTRL_RESET 0
* PCIE bridge block level reset (AXI interface)
* PSU_CRF_APB_RST_FPD_TOP_PCIE_BRIDGE_RESET 0
* Display Port block level reset (includes DPDMA)
* PSU_CRF_APB_RST_FPD_TOP_DP_RESET 0
* FPD WDT reset
* PSU_CRF_APB_RST_FPD_TOP_SWDT_RESET 0
* GDMA block level reset
* PSU_CRF_APB_RST_FPD_TOP_GDMA_RESET 0
* Pixel Processor (submodule of GPU) block level reset
* PSU_CRF_APB_RST_FPD_TOP_GPU_PP0_RESET 0
* Pixel Processor (submodule of GPU) block level reset
* PSU_CRF_APB_RST_FPD_TOP_GPU_PP1_RESET 0
* GPU block level reset
* PSU_CRF_APB_RST_FPD_TOP_GPU_RESET 0
* GT block level reset
* PSU_CRF_APB_RST_FPD_TOP_GT_RESET 0
* Sata block level reset
* PSU_CRF_APB_RST_FPD_TOP_SATA_RESET 0
* FPD Block level software controlled reset
* (OFFSET, MASK, VALUE) (0XFD1A0100, 0x000F807EU ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_RST_FPD_TOP_OFFSET, 0x000F807EU, 0x00000000U);
/*##################################################################### */
/*
* RESET BLOCKS
*/
/*
* TIMESTAMP
*/
/*
* Register : RST_LPD_IOU2 @ 0XFF5E0238
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_TIMESTAMP_RESET 0
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_IOU_CC_RESET 0
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_ADMA_RESET 0
* Software control register for the IOU block. Each bit will cause a singl
* erperipheral or part of the peripheral to be reset.
* (OFFSET, MASK, VALUE) (0XFF5E0238, 0x001A0000U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU2_OFFSET,
0x001A0000U, 0x00000000U);
/*##################################################################### */
/*
* Register : RST_LPD_TOP @ 0XFF5E023C
* Reset entire full power domain.
* PSU_CRL_APB_RST_LPD_TOP_FPD_RESET 0
* LPD SWDT
* PSU_CRL_APB_RST_LPD_TOP_LPD_SWDT_RESET 0
* Sysmonitor reset
* PSU_CRL_APB_RST_LPD_TOP_SYSMON_RESET 0
* Real Time Clock reset
* PSU_CRL_APB_RST_LPD_TOP_RTC_RESET 0
* APM reset
* PSU_CRL_APB_RST_LPD_TOP_APM_RESET 0
* IPI reset
* PSU_CRL_APB_RST_LPD_TOP_IPI_RESET 0
* reset entire RPU power island
* PSU_CRL_APB_RST_LPD_TOP_RPU_PGE_RESET 0
* reset ocm
* PSU_CRL_APB_RST_LPD_TOP_OCM_RESET 0
* Software control register for the LPD block.
* (OFFSET, MASK, VALUE) (0XFF5E023C, 0x0093C018U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_TOP_OFFSET, 0x0093C018U, 0x00000000U);
/*##################################################################### */
/*
* ENET
*/
/*
* Register : RST_LPD_IOU0 @ 0XFF5E0230
* GEM 3 reset
* PSU_CRL_APB_RST_LPD_IOU0_GEM3_RESET 0
* Software controlled reset for the GEMs
* (OFFSET, MASK, VALUE) (0XFF5E0230, 0x00000008U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU0_OFFSET,
0x00000008U, 0x00000000U);
/*##################################################################### */
/*
* QSPI
*/
/*
* Register : RST_LPD_IOU2 @ 0XFF5E0238
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_QSPI_RESET 0
* Software control register for the IOU block. Each bit will cause a singl
* erperipheral or part of the peripheral to be reset.
* (OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU2_OFFSET,
0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* QSPI TAP DELAY
*/
/*
* Register : IOU_TAPDLY_BYPASS @ 0XFF180390
* 0: Do not by pass the tap delays on the Rx clock signal of LQSPI 1: Bypa
* ss the Tap delay on the Rx clock signal of LQSPI
* PSU_IOU_SLCR_IOU_TAPDLY_BYPASS_LQSPI_RX 1
* IOU tap delay bypass for the LQSPI and NAND controllers
* (OFFSET, MASK, VALUE) (0XFF180390, 0x00000004U ,0x00000004U)
*/
PSU_Mask_Write(IOU_SLCR_IOU_TAPDLY_BYPASS_OFFSET,
0x00000004U, 0x00000004U);
/*##################################################################### */
/*
* NAND
*/
/*
* USB
*/
/*
* Register : RST_LPD_TOP @ 0XFF5E023C
* USB 0 reset for control registers
* PSU_CRL_APB_RST_LPD_TOP_USB0_APB_RESET 0
* USB 0 sleep circuit reset
* PSU_CRL_APB_RST_LPD_TOP_USB0_HIBERRESET 0
* USB 0 reset
* PSU_CRL_APB_RST_LPD_TOP_USB0_CORERESET 0
* Software control register for the LPD block.
* (OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000540U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_TOP_OFFSET, 0x00000540U, 0x00000000U);
/*##################################################################### */
/*
* USB0 PIPE POWER PRESENT
*/
/*
* Register : fpd_power_prsnt @ 0XFF9D0080
* This bit is used to choose between PIPE power present and 1'b1
* PSU_USB3_0_FPD_POWER_PRSNT_OPTION 0X1
* fpd_power_prsnt
* (OFFSET, MASK, VALUE) (0XFF9D0080, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(USB3_0_FPD_POWER_PRSNT_OFFSET,
0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : fpd_pipe_clk @ 0XFF9D007C
* This bit is used to choose between PIPE clock coming from SerDes and the
* suspend clk
* PSU_USB3_0_FPD_PIPE_CLK_OPTION 0x0
* fpd_pipe_clk
* (OFFSET, MASK, VALUE) (0XFF9D007C, 0x00000001U ,0x00000000U)
*/
PSU_Mask_Write(USB3_0_FPD_PIPE_CLK_OFFSET, 0x00000001U, 0x00000000U);
/*##################################################################### */
/*
* SD
*/
/*
* Register : RST_LPD_IOU2 @ 0XFF5E0238
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_SDIO1_RESET 0
* Software control register for the IOU block. Each bit will cause a singl
* erperipheral or part of the peripheral to be reset.
* (OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000040U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU2_OFFSET,
0x00000040U, 0x00000000U);
/*##################################################################### */
/*
* Register : CTRL_REG_SD @ 0XFF180310
* SD or eMMC selection on SDIO1 0: SD enabled 1: eMMC enabled
* PSU_IOU_SLCR_CTRL_REG_SD_SD1_EMMC_SEL 0
* SD eMMC selection
* (OFFSET, MASK, VALUE) (0XFF180310, 0x00008000U ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_CTRL_REG_SD_OFFSET,
0x00008000U, 0x00000000U);
/*##################################################################### */
/*
* Register : SD_CONFIG_REG2 @ 0XFF180320
* Should be set based on the final product usage 00 - Removable SCard Slot
* 01 - Embedded Slot for One Device 10 - Shared Bus Slot 11 - Reserved
* PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_SLOTTYPE 0
* 1.8V Support 1: 1.8V supported 0: 1.8V not supported support
* PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_1P8V 1
* 3.0V Support 1: 3.0V supported 0: 3.0V not supported support
* PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_3P0V 0
* 3.3V Support 1: 3.3V supported 0: 3.3V not supported support
* PSU_IOU_SLCR_SD_CONFIG_REG2_SD1_3P3V 1
* SD Config Register 2
* (OFFSET, MASK, VALUE) (0XFF180320, 0x33800000U ,0x02800000U)
*/
PSU_Mask_Write(IOU_SLCR_SD_CONFIG_REG2_OFFSET,
0x33800000U, 0x02800000U);
/*##################################################################### */
/*
* SD1 BASE CLOCK
*/
/*
* Register : SD_CONFIG_REG1 @ 0XFF18031C
* Base Clock Frequency for SD Clock. This is the frequency of the xin_clk.
* PSU_IOU_SLCR_SD_CONFIG_REG1_SD1_BASECLK 0xc8
* Configures the Number of Taps (Phases) of the rxclk_in that is supported
* .
* PSU_IOU_SLCR_SD_CONFIG_REG1_SD1_TUNIGCOUNT 0x28
* SD Config Register 1
* (OFFSET, MASK, VALUE) (0XFF18031C, 0x7FFE0000U ,0x64500000U)
*/
PSU_Mask_Write(IOU_SLCR_SD_CONFIG_REG1_OFFSET,
0x7FFE0000U, 0x64500000U);
/*##################################################################### */
/*
* Register : SD_DLL_CTRL @ 0XFF180358
* Reserved.
* PSU_IOU_SLCR_SD_DLL_CTRL_RESERVED 1
* SDIO status register
* (OFFSET, MASK, VALUE) (0XFF180358, 0x00000008U ,0x00000008U)
*/
PSU_Mask_Write(IOU_SLCR_SD_DLL_CTRL_OFFSET,
0x00000008U, 0x00000008U);
/*##################################################################### */
/*
* SD1 RETUNER
*/
/*
* Register : SD_CONFIG_REG3 @ 0XFF180324
* This is the Timer Count for Re-Tuning Timer for Re-Tuning Mode 1 to 3. S
* etting to 4'b0 disables Re-Tuning Timer. 0h - Get information via other
* source 1h = 1 seconds 2h = 2 seconds 3h = 4 seconds 4h = 8 seconds -- n
* = 2(n-1) seconds -- Bh = 1024 seconds Fh - Ch = Reserved
* PSU_IOU_SLCR_SD_CONFIG_REG3_SD1_RETUNETMR 0X0
* SD Config Register 3
* (OFFSET, MASK, VALUE) (0XFF180324, 0x03C00000U ,0x00000000U)
*/
PSU_Mask_Write(IOU_SLCR_SD_CONFIG_REG3_OFFSET,
0x03C00000U, 0x00000000U);
/*##################################################################### */
/*
* CAN
*/
/*
* Register : RST_LPD_IOU2 @ 0XFF5E0238
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_CAN1_RESET 0
* Software control register for the IOU block. Each bit will cause a singl
* erperipheral or part of the peripheral to be reset.
* (OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000100U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU2_OFFSET,
0x00000100U, 0x00000000U);
/*##################################################################### */
/*
* I2C
*/
/*
* Register : RST_LPD_IOU2 @ 0XFF5E0238
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_I2C0_RESET 0
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_I2C1_RESET 0
* Software control register for the IOU block. Each bit will cause a singl
* erperipheral or part of the peripheral to be reset.
* (OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000600U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU2_OFFSET,
0x00000600U, 0x00000000U);
/*##################################################################### */
/*
* SWDT
*/
/*
* Register : RST_LPD_IOU2 @ 0XFF5E0238
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_SWDT_RESET 0
* Software control register for the IOU block. Each bit will cause a singl
* erperipheral or part of the peripheral to be reset.
* (OFFSET, MASK, VALUE) (0XFF5E0238, 0x00008000U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU2_OFFSET,
0x00008000U, 0x00000000U);
/*##################################################################### */
/*
* SPI
*/
/*
* TTC
*/
/*
* Register : RST_LPD_IOU2 @ 0XFF5E0238
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_TTC0_RESET 0
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_TTC1_RESET 0
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_TTC2_RESET 0
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_TTC3_RESET 0
* Software control register for the IOU block. Each bit will cause a singl
* erperipheral or part of the peripheral to be reset.
* (OFFSET, MASK, VALUE) (0XFF5E0238, 0x00007800U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU2_OFFSET,
0x00007800U, 0x00000000U);
/*##################################################################### */
/*
* UART
*/
/*
* Register : RST_LPD_IOU2 @ 0XFF5E0238
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_UART0_RESET 0
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_UART1_RESET 0
* Software control register for the IOU block. Each bit will cause a singl
* erperipheral or part of the peripheral to be reset.
* (OFFSET, MASK, VALUE) (0XFF5E0238, 0x00000006U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU2_OFFSET,
0x00000006U, 0x00000000U);
/*##################################################################### */
/*
* UART BAUD RATE
*/
/*
* Register : Baud_rate_divider_reg0 @ 0XFF000034
* Baud rate divider value: 0 - 3: ignored 4 - 255: Baud rate
* PSU_UART0_BAUD_RATE_DIVIDER_REG0_BDIV 0x5
* Baud Rate Divider Register
* (OFFSET, MASK, VALUE) (0XFF000034, 0x000000FFU ,0x00000005U)
*/
PSU_Mask_Write(UART0_BAUD_RATE_DIVIDER_REG0_OFFSET,
0x000000FFU, 0x00000005U);
/*##################################################################### */
/*
* Register : Baud_rate_gen_reg0 @ 0XFF000018
* Baud Rate Clock Divisor Value: 0: Disables baud_sample 1: Clock divisor
* bypass (baud_sample = sel_clk) 2 - 65535: baud_sample
* PSU_UART0_BAUD_RATE_GEN_REG0_CD 0x8f
* Baud Rate Generator Register.
* (OFFSET, MASK, VALUE) (0XFF000018, 0x0000FFFFU ,0x0000008FU)
*/
PSU_Mask_Write(UART0_BAUD_RATE_GEN_REG0_OFFSET,
0x0000FFFFU, 0x0000008FU);
/*##################################################################### */
/*
* Register : Control_reg0 @ 0XFF000000
* Stop transmitter break: 0: no affect 1: stop transmission of the break a
* fter a minimum of one character length and transmit a high level during
* 12 bit periods. It can be set regardless of the value of STTBRK.
* PSU_UART0_CONTROL_REG0_STPBRK 0x0
* Start transmitter break: 0: no affect 1: start to transmit a break after
* the characters currently present in the FIFO and the transmit shift reg
* ister have been transmitted. It can only be set if STPBRK (Stop transmit
* ter break) is not high.
* PSU_UART0_CONTROL_REG0_STTBRK 0x0
* Restart receiver timeout counter: 1: receiver timeout counter is restart
* ed. This bit is self clearing once the restart has completed.
* PSU_UART0_CONTROL_REG0_RSTTO 0x0
* Transmit disable: 0: enable transmitter 1: disable transmitter
* PSU_UART0_CONTROL_REG0_TXDIS 0x0
* Transmit enable: 0: disable transmitter 1: enable transmitter, provided
* the TXDIS field is set to 0.
* PSU_UART0_CONTROL_REG0_TXEN 0x1
* Receive disable: 0: enable 1: disable, regardless of the value of RXEN
* PSU_UART0_CONTROL_REG0_RXDIS 0x0
* Receive enable: 0: disable 1: enable When set to one, the receiver logic
* is enabled, provided the RXDIS field is set to zero.
* PSU_UART0_CONTROL_REG0_RXEN 0x1
* Software reset for Tx data path: 0: no affect 1: transmitter logic is re
* set and all pending transmitter data is discarded This bit is self clear
* ing once the reset has completed.
* PSU_UART0_CONTROL_REG0_TXRES 0x1
* Software reset for Rx data path: 0: no affect 1: receiver logic is reset
* and all pending receiver data is discarded. This bit is self clearing o
* nce the reset has completed.
* PSU_UART0_CONTROL_REG0_RXRES 0x1
* UART Control Register
* (OFFSET, MASK, VALUE) (0XFF000000, 0x000001FFU ,0x00000017U)
*/
PSU_Mask_Write(UART0_CONTROL_REG0_OFFSET, 0x000001FFU, 0x00000017U);
/*##################################################################### */
/*
* Register : mode_reg0 @ 0XFF000004
* Channel mode: Defines the mode of operation of the UART. 00: normal 01:
* automatic echo 10: local loopback 11: remote loopback
* PSU_UART0_MODE_REG0_CHMODE 0x0
* Number of stop bits: Defines the number of stop bits to detect on receiv
* e and to generate on transmit. 00: 1 stop bit 01: 1.5 stop bits 10: 2 st
* op bits 11: reserved
* PSU_UART0_MODE_REG0_NBSTOP 0x0
* Parity type select: Defines the expected parity to check on receive and
* the parity to generate on transmit. 000: even parity 001: odd parity 010
* : forced to 0 parity (space) 011: forced to 1 parity (mark) 1xx: no pari
* ty
* PSU_UART0_MODE_REG0_PAR 0x4
* Character length select: Defines the number of bits in each character. 1
* 1: 6 bits 10: 7 bits 0x: 8 bits
* PSU_UART0_MODE_REG0_CHRL 0x0
* Clock source select: This field defines whether a pre-scalar of 8 is app
* lied to the baud rate generator input clock. 0: clock source is uart_ref
* _clk 1: clock source is uart_ref_clk/8
* PSU_UART0_MODE_REG0_CLKS 0x0
* UART Mode Register
* (OFFSET, MASK, VALUE) (0XFF000004, 0x000003FFU ,0x00000020U)
*/
PSU_Mask_Write(UART0_MODE_REG0_OFFSET, 0x000003FFU, 0x00000020U);
/*##################################################################### */
/*
* Register : Baud_rate_divider_reg0 @ 0XFF010034
* Baud rate divider value: 0 - 3: ignored 4 - 255: Baud rate
* PSU_UART1_BAUD_RATE_DIVIDER_REG0_BDIV 0x5
* Baud Rate Divider Register
* (OFFSET, MASK, VALUE) (0XFF010034, 0x000000FFU ,0x00000005U)
*/
PSU_Mask_Write(UART1_BAUD_RATE_DIVIDER_REG0_OFFSET,
0x000000FFU, 0x00000005U);
/*##################################################################### */
/*
* Register : Baud_rate_gen_reg0 @ 0XFF010018
* Baud Rate Clock Divisor Value: 0: Disables baud_sample 1: Clock divisor
* bypass (baud_sample = sel_clk) 2 - 65535: baud_sample
* PSU_UART1_BAUD_RATE_GEN_REG0_CD 0x8f
* Baud Rate Generator Register.
* (OFFSET, MASK, VALUE) (0XFF010018, 0x0000FFFFU ,0x0000008FU)
*/
PSU_Mask_Write(UART1_BAUD_RATE_GEN_REG0_OFFSET,
0x0000FFFFU, 0x0000008FU);
/*##################################################################### */
/*
* Register : Control_reg0 @ 0XFF010000
* Stop transmitter break: 0: no affect 1: stop transmission of the break a
* fter a minimum of one character length and transmit a high level during
* 12 bit periods. It can be set regardless of the value of STTBRK.
* PSU_UART1_CONTROL_REG0_STPBRK 0x0
* Start transmitter break: 0: no affect 1: start to transmit a break after
* the characters currently present in the FIFO and the transmit shift reg
* ister have been transmitted. It can only be set if STPBRK (Stop transmit
* ter break) is not high.
* PSU_UART1_CONTROL_REG0_STTBRK 0x0
* Restart receiver timeout counter: 1: receiver timeout counter is restart
* ed. This bit is self clearing once the restart has completed.
* PSU_UART1_CONTROL_REG0_RSTTO 0x0
* Transmit disable: 0: enable transmitter 1: disable transmitter
* PSU_UART1_CONTROL_REG0_TXDIS 0x0
* Transmit enable: 0: disable transmitter 1: enable transmitter, provided
* the TXDIS field is set to 0.
* PSU_UART1_CONTROL_REG0_TXEN 0x1
* Receive disable: 0: enable 1: disable, regardless of the value of RXEN
* PSU_UART1_CONTROL_REG0_RXDIS 0x0
* Receive enable: 0: disable 1: enable When set to one, the receiver logic
* is enabled, provided the RXDIS field is set to zero.
* PSU_UART1_CONTROL_REG0_RXEN 0x1
* Software reset for Tx data path: 0: no affect 1: transmitter logic is re
* set and all pending transmitter data is discarded This bit is self clear
* ing once the reset has completed.
* PSU_UART1_CONTROL_REG0_TXRES 0x1
* Software reset for Rx data path: 0: no affect 1: receiver logic is reset
* and all pending receiver data is discarded. This bit is self clearing o
* nce the reset has completed.
* PSU_UART1_CONTROL_REG0_RXRES 0x1
* UART Control Register
* (OFFSET, MASK, VALUE) (0XFF010000, 0x000001FFU ,0x00000017U)
*/
PSU_Mask_Write(UART1_CONTROL_REG0_OFFSET, 0x000001FFU, 0x00000017U);
/*##################################################################### */
/*
* Register : mode_reg0 @ 0XFF010004
* Channel mode: Defines the mode of operation of the UART. 00: normal 01:
* automatic echo 10: local loopback 11: remote loopback
* PSU_UART1_MODE_REG0_CHMODE 0x0
* Number of stop bits: Defines the number of stop bits to detect on receiv
* e and to generate on transmit. 00: 1 stop bit 01: 1.5 stop bits 10: 2 st
* op bits 11: reserved
* PSU_UART1_MODE_REG0_NBSTOP 0x0
* Parity type select: Defines the expected parity to check on receive and
* the parity to generate on transmit. 000: even parity 001: odd parity 010
* : forced to 0 parity (space) 011: forced to 1 parity (mark) 1xx: no pari
* ty
* PSU_UART1_MODE_REG0_PAR 0x4
* Character length select: Defines the number of bits in each character. 1
* 1: 6 bits 10: 7 bits 0x: 8 bits
* PSU_UART1_MODE_REG0_CHRL 0x0
* Clock source select: This field defines whether a pre-scalar of 8 is app
* lied to the baud rate generator input clock. 0: clock source is uart_ref
* _clk 1: clock source is uart_ref_clk/8
* PSU_UART1_MODE_REG0_CLKS 0x0
* UART Mode Register
* (OFFSET, MASK, VALUE) (0XFF010004, 0x000003FFU ,0x00000020U)
*/
PSU_Mask_Write(UART1_MODE_REG0_OFFSET, 0x000003FFU, 0x00000020U);
/*##################################################################### */
/*
* GPIO
*/
/*
* Register : RST_LPD_IOU2 @ 0XFF5E0238
* Block level reset
* PSU_CRL_APB_RST_LPD_IOU2_GPIO_RESET 0
* Software control register for the IOU block. Each bit will cause a singl
* erperipheral or part of the peripheral to be reset.
* (OFFSET, MASK, VALUE) (0XFF5E0238, 0x00040000U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU2_OFFSET,
0x00040000U, 0x00000000U);
/*##################################################################### */
/*
* ADMA TZ
*/
/*
* Register : slcr_adma @ 0XFF4B0024
* TrustZone Classification for ADMA
* PSU_LPD_SLCR_SECURE_SLCR_ADMA_TZ 0XFF
* RPU TrustZone settings
* (OFFSET, MASK, VALUE) (0XFF4B0024, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(LPD_SLCR_SECURE_SLCR_ADMA_OFFSET,
0x000000FFU, 0x000000FFU);
/*##################################################################### */
/*
* CSU TAMPERING
*/
/*
* CSU TAMPER STATUS
*/
/*
* Register : tamper_status @ 0XFFCA5000
* CSU regsiter
* PSU_CSU_TAMPER_STATUS_TAMPER_0 0
* External MIO
* PSU_CSU_TAMPER_STATUS_TAMPER_1 0
* JTAG toggle detect
* PSU_CSU_TAMPER_STATUS_TAMPER_2 0
* PL SEU error
* PSU_CSU_TAMPER_STATUS_TAMPER_3 0
* AMS over temperature alarm for LPD
* PSU_CSU_TAMPER_STATUS_TAMPER_4 0
* AMS over temperature alarm for APU
* PSU_CSU_TAMPER_STATUS_TAMPER_5 0
* AMS voltage alarm for VCCPINT_FPD
* PSU_CSU_TAMPER_STATUS_TAMPER_6 0
* AMS voltage alarm for VCCPINT_LPD
* PSU_CSU_TAMPER_STATUS_TAMPER_7 0
* AMS voltage alarm for VCCPAUX
* PSU_CSU_TAMPER_STATUS_TAMPER_8 0
* AMS voltage alarm for DDRPHY
* PSU_CSU_TAMPER_STATUS_TAMPER_9 0
* AMS voltage alarm for PSIO bank 0/1/2
* PSU_CSU_TAMPER_STATUS_TAMPER_10 0
* AMS voltage alarm for PSIO bank 3 (dedicated pins)
* PSU_CSU_TAMPER_STATUS_TAMPER_11 0
* AMS voltaage alarm for GT
* PSU_CSU_TAMPER_STATUS_TAMPER_12 0
* Tamper Response Status
* (OFFSET, MASK, VALUE) (0XFFCA5000, 0x00001FFFU ,0x00000000U)
*/
PSU_Mask_Write(CSU_TAMPER_STATUS_OFFSET, 0x00001FFFU, 0x00000000U);
/*##################################################################### */
/*
* CSU TAMPER RESPONSE
*/
/*
* CPU QOS DEFAULT
*/
/*
* Register : ACE_CTRL @ 0XFD5C0060
* Set ACE outgoing AWQOS value
* PSU_APU_ACE_CTRL_AWQOS 0X0
* Set ACE outgoing ARQOS value
* PSU_APU_ACE_CTRL_ARQOS 0X0
* ACE Control Register
* (OFFSET, MASK, VALUE) (0XFD5C0060, 0x000F000FU ,0x00000000U)
*/
PSU_Mask_Write(APU_ACE_CTRL_OFFSET, 0x000F000FU, 0x00000000U);
/*##################################################################### */
/*
* ENABLES RTC SWITCH TO BATTERY WHEN VCC_PSAUX IS NOT AVAILABLE
*/
/*
* Register : CONTROL @ 0XFFA60040
* Enables the RTC. By writing a 0 to this bit, RTC will be powered off and
* the only module that potentially draws current from the battery will be
* BBRAM. The value read through this bit does not necessarily reflect whe
* ther RTC is enabled or not. It is expected that RTC is enabled every tim
* e it is being configured. If RTC is not used in the design, FSBL will di
* sable it by writing a 0 to this bit.
* PSU_RTC_CONTROL_BATTERY_DISABLE 0X1
* This register controls various functionalities within the RTC
* (OFFSET, MASK, VALUE) (0XFFA60040, 0x80000000U ,0x80000000U)
*/
PSU_Mask_Write(RTC_CONTROL_OFFSET, 0x80000000U, 0x80000000U);
/*##################################################################### */
/*
* TIMESTAMP COUNTER
*/
/*
* Register : base_frequency_ID_register @ 0XFF260020
* Frequency in number of ticks per second. Valid range from 10 MHz to 100
* MHz.
* PSU_IOU_SCNTRS_BASE_FREQUENCY_ID_REGISTER_FREQ 0x5f5b9f0
* Program this register to match the clock frequency of the timestamp gene
* rator, in ticks per second. For example, for a 50 MHz clock, program 0x0
* 2FAF080. This register is not accessible to the read-only programming in
* terface.
* (OFFSET, MASK, VALUE) (0XFF260020, 0xFFFFFFFFU ,0x05F5B9F0U)
*/
PSU_Mask_Write(IOU_SCNTRS_BASE_FREQUENCY_ID_REGISTER_OFFSET,
0xFFFFFFFFU, 0x05F5B9F0U);
/*##################################################################### */
/*
* Register : counter_control_register @ 0XFF260000
* Enable 0: The counter is disabled and not incrementing. 1: The counter i
* s enabled and is incrementing.
* PSU_IOU_SCNTRS_COUNTER_CONTROL_REGISTER_EN 0x1
* Controls the counter increments. This register is not accessible to the
* read-only programming interface.
* (OFFSET, MASK, VALUE) (0XFF260000, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(IOU_SCNTRS_COUNTER_CONTROL_REGISTER_OFFSET,
0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* TTC SRC SELECT
*/
/*
* PCIE GPIO RESET
*/
/*
* PCIE RESET
*/
/*
* DIR MODE BANK 0
*/
/*
* DIR MODE BANK 1
*/
/*
* Register : DIRM_1 @ 0XFF0A0244
* Operation is the same as DIRM_0[DIRECTION_0]
* PSU_GPIO_DIRM_1_DIRECTION_1 0x20
* Direction mode (GPIO Bank1, MIO)
* (OFFSET, MASK, VALUE) (0XFF0A0244, 0x03FFFFFFU ,0x00000020U)
*/
PSU_Mask_Write(GPIO_DIRM_1_OFFSET, 0x03FFFFFFU, 0x00000020U);
/*##################################################################### */
/*
* DIR MODE BANK 2
*/
/*
* OUTPUT ENABLE BANK 0
*/
/*
* OUTPUT ENABLE BANK 1
*/
/*
* Register : OEN_1 @ 0XFF0A0248
* Operation is the same as OEN_0[OP_ENABLE_0]
* PSU_GPIO_OEN_1_OP_ENABLE_1 0x20
* Output enable (GPIO Bank1, MIO)
* (OFFSET, MASK, VALUE) (0XFF0A0248, 0x03FFFFFFU ,0x00000020U)
*/
PSU_Mask_Write(GPIO_OEN_1_OFFSET, 0x03FFFFFFU, 0x00000020U);
/*##################################################################### */
/*
* OUTPUT ENABLE BANK 2
*/
/*
* MASK_DATA_0_LSW LOW BANK [15:0]
*/
/*
* MASK_DATA_0_MSW LOW BANK [25:16]
*/
/*
* MASK_DATA_1_LSW LOW BANK [41:26]
*/
/*
* Register : MASK_DATA_1_LSW @ 0XFF0A0008
* Operation is the same as MASK_DATA_0_LSW[MASK_0_LSW]
* PSU_GPIO_MASK_DATA_1_LSW_MASK_1_LSW 0xffdf
* Operation is the same as MASK_DATA_0_LSW[DATA_0_LSW]
* PSU_GPIO_MASK_DATA_1_LSW_DATA_1_LSW 0x20
* Maskable Output Data (GPIO Bank1, MIO, Lower 16bits)
* (OFFSET, MASK, VALUE) (0XFF0A0008, 0xFFFFFFFFU ,0xFFDF0020U)
*/
PSU_Mask_Write(GPIO_MASK_DATA_1_LSW_OFFSET,
0xFFFFFFFFU, 0xFFDF0020U);
/*##################################################################### */
/*
* MASK_DATA_1_MSW HIGH BANK [51:42]
*/
/*
* MASK_DATA_1_LSW HIGH BANK [67:52]
*/
/*
* MASK_DATA_1_LSW HIGH BANK [77:68]
*/
/*
* ADD 1 MS DELAY
*/
mask_delay(1);
/*##################################################################### */
/*
* MASK_DATA_0_LSW LOW BANK [15:0]
*/
/*
* MASK_DATA_0_MSW LOW BANK [25:16]
*/
/*
* MASK_DATA_1_LSW LOW BANK [41:26]
*/
/*
* Register : MASK_DATA_1_LSW @ 0XFF0A0008
* Operation is the same as MASK_DATA_0_LSW[MASK_0_LSW]
* PSU_GPIO_MASK_DATA_1_LSW_MASK_1_LSW 0xffdf
* Operation is the same as MASK_DATA_0_LSW[DATA_0_LSW]
* PSU_GPIO_MASK_DATA_1_LSW_DATA_1_LSW 0x0
* Maskable Output Data (GPIO Bank1, MIO, Lower 16bits)
* (OFFSET, MASK, VALUE) (0XFF0A0008, 0xFFFFFFFFU ,0xFFDF0000U)
*/
PSU_Mask_Write(GPIO_MASK_DATA_1_LSW_OFFSET,
0xFFFFFFFFU, 0xFFDF0000U);
/*##################################################################### */
/*
* MASK_DATA_1_MSW HIGH BANK [51:42]
*/
/*
* MASK_DATA_1_LSW HIGH BANK [67:52]
*/
/*
* MASK_DATA_1_LSW HIGH BANK [77:68]
*/
/*
* ADD 5 MS DELAY
*/
mask_delay(5);
/*##################################################################### */
return 1;
}
unsigned long psu_post_config_data(void)
{
/*
* POST_CONFIG
*/
return 1;
}
unsigned long psu_peripherals_powerdwn_data(void)
{
/*
* POWER DOWN REQUEST INTERRUPT ENABLE
*/
/*
* POWER DOWN TRIGGER
*/
return 1;
}
unsigned long psu_lpd_xppu_data(void)
{
/*
* MASTER ID LIST
*/
/*
* APERTURE PERMISIION LIST
*/
/*
* APERTURE NAME: UART0, START ADDRESS: FF000000, END ADDRESS: FF00FFFF
*/
/*
* APERTURE NAME: UART1, START ADDRESS: FF010000, END ADDRESS: FF01FFFF
*/
/*
* APERTURE NAME: I2C0, START ADDRESS: FF020000, END ADDRESS: FF02FFFF
*/
/*
* APERTURE NAME: I2C1, START ADDRESS: FF030000, END ADDRESS: FF03FFFF
*/
/*
* APERTURE NAME: SPI0, START ADDRESS: FF040000, END ADDRESS: FF04FFFF
*/
/*
* APERTURE NAME: SPI1, START ADDRESS: FF050000, END ADDRESS: FF05FFFF
*/
/*
* APERTURE NAME: CAN0, START ADDRESS: FF060000, END ADDRESS: FF06FFFF
*/
/*
* APERTURE NAME: CAN1, START ADDRESS: FF070000, END ADDRESS: FF07FFFF
*/
/*
* APERTURE NAME: RPU_UNUSED_12, START ADDRESS: FF080000, END ADDRESS: FF09
* FFFF
*/
/*
* APERTURE NAME: RPU_UNUSED_12, START ADDRESS: FF080000, END ADDRESS: FF09
* FFFF
*/
/*
* APERTURE NAME: GPIO, START ADDRESS: FF0A0000, END ADDRESS: FF0AFFFF
*/
/*
* APERTURE NAME: GEM0, START ADDRESS: FF0B0000, END ADDRESS: FF0BFFFF
*/
/*
* APERTURE NAME: GEM1, START ADDRESS: FF0C0000, END ADDRESS: FF0CFFFF
*/
/*
* APERTURE NAME: GEM2, START ADDRESS: FF0D0000, END ADDRESS: FF0DFFFF
*/
/*
* APERTURE NAME: GEM3, START ADDRESS: FF0E0000, END ADDRESS: FF0EFFFF
*/
/*
* APERTURE NAME: QSPI, START ADDRESS: FF0F0000, END ADDRESS: FF0FFFFF
*/
/*
* APERTURE NAME: NAND, START ADDRESS: FF100000, END ADDRESS: FF10FFFF
*/
/*
* APERTURE NAME: TTC0, START ADDRESS: FF110000, END ADDRESS: FF11FFFF
*/
/*
* APERTURE NAME: TTC1, START ADDRESS: FF120000, END ADDRESS: FF12FFFF
*/
/*
* APERTURE NAME: TTC2, START ADDRESS: FF130000, END ADDRESS: FF13FFFF
*/
/*
* APERTURE NAME: TTC3, START ADDRESS: FF140000, END ADDRESS: FF14FFFF
*/
/*
* APERTURE NAME: SWDT, START ADDRESS: FF150000, END ADDRESS: FF15FFFF
*/
/*
* APERTURE NAME: SD0, START ADDRESS: FF160000, END ADDRESS: FF16FFFF
*/
/*
* APERTURE NAME: SD1, START ADDRESS: FF170000, END ADDRESS: FF17FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SLCR, START ADDRESS: FF180000, END ADDRESS: FF23FFFF
*/
/*
* APERTURE NAME: IOU_SECURE_SLCR, START ADDRESS: FF240000, END ADDRESS: FF
* 24FFFF
*/
/*
* APERTURE NAME: IOU_SCNTR, START ADDRESS: FF250000, END ADDRESS: FF25FFFF
*/
/*
* APERTURE NAME: IOU_SCNTRS, START ADDRESS: FF260000, END ADDRESS: FF26FFF
* F
*/
/*
* APERTURE NAME: RPU_UNUSED_11, START ADDRESS: FF270000, END ADDRESS: FF2A
* FFFF
*/
/*
* APERTURE NAME: RPU_UNUSED_11, START ADDRESS: FF270000, END ADDRESS: FF2A
* FFFF
*/
/*
* APERTURE NAME: RPU_UNUSED_11, START ADDRESS: FF270000, END ADDRESS: FF2A
* FFFF
*/
/*
* APERTURE NAME: RPU_UNUSED_11, START ADDRESS: FF270000, END ADDRESS: FF2A
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2F
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2F
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2F
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2F
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_14, START ADDRESS: FF2B0000, END ADDRESS: FF2F
* FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
*/
/*
* APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
*/
/*
* APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
*/
/*
* APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
*/
/*
* APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
*/
/*
* APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
*/
/*
* APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
*/
/*
* APERTURE NAME: IPI_CTRL, START ADDRESS: FF380000, END ADDRESS: FF3FFFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_1, START ADDRESS: FF400000, END ADDRESS: FF40F
* FFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR, START ADDRESS: FF410000, END ADDRESS: FF4AFFFF
*/
/*
* APERTURE NAME: LPD_SLCR_SECURE, START ADDRESS: FF4B0000, END ADDRESS: FF
* 4DFFFF
*/
/*
* APERTURE NAME: LPD_SLCR_SECURE, START ADDRESS: FF4B0000, END ADDRESS: FF
* 4DFFFF
*/
/*
* APERTURE NAME: LPD_SLCR_SECURE, START ADDRESS: FF4B0000, END ADDRESS: FF
* 4DFFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_2, START ADDRESS: FF4E0000, END ADDRESS: FF5DF
* FFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: CRL_APB, START ADDRESS: FF5E0000, END ADDRESS: FF85FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_3, START ADDRESS: FF860000, END ADDRESS: FF95F
* FFF
*/
/*
* APERTURE NAME: OCM_SLCR, START ADDRESS: FF960000, END ADDRESS: FF96FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_4, START ADDRESS: FF970000, END ADDRESS: FF97F
* FFF
*/
/*
* APERTURE NAME: LPD_XPPU, START ADDRESS: FF980000, END ADDRESS: FF99FFFF
*/
/*
* APERTURE NAME: RPU, START ADDRESS: FF9A0000, END ADDRESS: FF9AFFFF
*/
/*
* APERTURE NAME: AFIFM6, START ADDRESS: FF9B0000, END ADDRESS: FF9BFFFF
*/
/*
* APERTURE NAME: LPD_XPPU_SINK, START ADDRESS: FF9C0000, END ADDRESS: FF9C
* FFFF
*/
/*
* APERTURE NAME: USB3_0, START ADDRESS: FF9D0000, END ADDRESS: FF9DFFFF
*/
/*
* APERTURE NAME: USB3_1, START ADDRESS: FF9E0000, END ADDRESS: FF9EFFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_5, START ADDRESS: FF9F0000, END ADDRESS: FF9FF
* FFF
*/
/*
* APERTURE NAME: APM0, START ADDRESS: FFA00000, END ADDRESS: FFA0FFFF
*/
/*
* APERTURE NAME: APM1, START ADDRESS: FFA10000, END ADDRESS: FFA1FFFF
*/
/*
* APERTURE NAME: APM_INTC_IOU, START ADDRESS: FFA20000, END ADDRESS: FFA2F
* FFF
*/
/*
* APERTURE NAME: APM_FPD_LPD, START ADDRESS: FFA30000, END ADDRESS: FFA3FF
* FF
*/
/*
* APERTURE NAME: LPD_UNUSED_6, START ADDRESS: FFA40000, END ADDRESS: FFA4F
* FFF
*/
/*
* APERTURE NAME: AMS, START ADDRESS: FFA50000, END ADDRESS: FFA5FFFF
*/
/*
* APERTURE NAME: RTC, START ADDRESS: FFA60000, END ADDRESS: FFA6FFFF
*/
/*
* APERTURE NAME: OCM_XMPU_CFG, START ADDRESS: FFA70000, END ADDRESS: FFA7F
* FFF
*/
/*
* APERTURE NAME: ADMA_0, START ADDRESS: FFA80000, END ADDRESS: FFA8FFFF
*/
/*
* APERTURE NAME: ADMA_1, START ADDRESS: FFA90000, END ADDRESS: FFA9FFFF
*/
/*
* APERTURE NAME: ADMA_2, START ADDRESS: FFAA0000, END ADDRESS: FFAAFFFF
*/
/*
* APERTURE NAME: ADMA_3, START ADDRESS: FFAB0000, END ADDRESS: FFABFFFF
*/
/*
* APERTURE NAME: ADMA_4, START ADDRESS: FFAC0000, END ADDRESS: FFACFFFF
*/
/*
* APERTURE NAME: ADMA_5, START ADDRESS: FFAD0000, END ADDRESS: FFADFFFF
*/
/*
* APERTURE NAME: ADMA_6, START ADDRESS: FFAE0000, END ADDRESS: FFAEFFFF
*/
/*
* APERTURE NAME: ADMA_7, START ADDRESS: FFAF0000, END ADDRESS: FFAFFFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_7, START ADDRESS: FFB00000, END ADDRESS: FFBFF
* FFF
*/
/*
* APERTURE NAME: CSU_ROM, START ADDRESS: FFC00000, END ADDRESS: FFC1FFFF
*/
/*
* APERTURE NAME: CSU_ROM, START ADDRESS: FFC00000, END ADDRESS: FFC1FFFF
*/
/*
* APERTURE NAME: CSU_LOCAL, START ADDRESS: FFC20000, END ADDRESS: FFC2FFFF
*/
/*
* APERTURE NAME: PUF, START ADDRESS: FFC30000, END ADDRESS: FFC3FFFF
*/
/*
* APERTURE NAME: CSU_RAM, START ADDRESS: FFC40000, END ADDRESS: FFC5FFFF
*/
/*
* APERTURE NAME: CSU_RAM, START ADDRESS: FFC40000, END ADDRESS: FFC5FFFF
*/
/*
* APERTURE NAME: CSU_IOMODULE, START ADDRESS: FFC60000, END ADDRESS: FFC7F
* FFF
*/
/*
* APERTURE NAME: CSU_IOMODULE, START ADDRESS: FFC60000, END ADDRESS: FFC7F
* FFF
*/
/*
* APERTURE NAME: CSUDMA, START ADDRESS: FFC80000, END ADDRESS: FFC9FFFF
*/
/*
* APERTURE NAME: CSUDMA, START ADDRESS: FFC80000, END ADDRESS: FFC9FFFF
*/
/*
* APERTURE NAME: CSU, START ADDRESS: FFCA0000, END ADDRESS: FFCAFFFF
*/
/*
* APERTURE NAME: CSU_WDT, START ADDRESS: FFCB0000, END ADDRESS: FFCBFFFF
*/
/*
* APERTURE NAME: EFUSE, START ADDRESS: FFCC0000, END ADDRESS: FFCCFFFF
*/
/*
* APERTURE NAME: BBRAM, START ADDRESS: FFCD0000, END ADDRESS: FFCDFFFF
*/
/*
* APERTURE NAME: RSA_CORE, START ADDRESS: FFCE0000, END ADDRESS: FFCEFFFF
*/
/*
* APERTURE NAME: MBISTJTAG, START ADDRESS: FFCF0000, END ADDRESS: FFCFFFFF
*/
/*
* APERTURE NAME: PMU_ROM, START ADDRESS: FFD00000, END ADDRESS: FFD3FFFF
*/
/*
* APERTURE NAME: PMU_ROM, START ADDRESS: FFD00000, END ADDRESS: FFD3FFFF
*/
/*
* APERTURE NAME: PMU_ROM, START ADDRESS: FFD00000, END ADDRESS: FFD3FFFF
*/
/*
* APERTURE NAME: PMU_ROM, START ADDRESS: FFD00000, END ADDRESS: FFD3FFFF
*/
/*
* APERTURE NAME: PMU_IOMODULE, START ADDRESS: FFD40000, END ADDRESS: FFD5F
* FFF
*/
/*
* APERTURE NAME: PMU_IOMODULE, START ADDRESS: FFD40000, END ADDRESS: FFD5F
* FFF
*/
/*
* APERTURE NAME: PMU_LOCAL, START ADDRESS: FFD60000, END ADDRESS: FFD7FFFF
*/
/*
* APERTURE NAME: PMU_LOCAL, START ADDRESS: FFD60000, END ADDRESS: FFD7FFFF
*/
/*
* APERTURE NAME: PMU_GLOBAL, START ADDRESS: FFD80000, END ADDRESS: FFDBFFF
* F
*/
/*
* APERTURE NAME: PMU_GLOBAL, START ADDRESS: FFD80000, END ADDRESS: FFDBFFF
* F
*/
/*
* APERTURE NAME: PMU_GLOBAL, START ADDRESS: FFD80000, END ADDRESS: FFDBFFF
* F
*/
/*
* APERTURE NAME: PMU_GLOBAL, START ADDRESS: FFD80000, END ADDRESS: FFDBFFF
* F
*/
/*
* APERTURE NAME: PMU_RAM, START ADDRESS: FFDC0000, END ADDRESS: FFDFFFFF
*/
/*
* APERTURE NAME: PMU_RAM, START ADDRESS: FFDC0000, END ADDRESS: FFDFFFFF
*/
/*
* APERTURE NAME: PMU_RAM, START ADDRESS: FFDC0000, END ADDRESS: FFDFFFFF
*/
/*
* APERTURE NAME: PMU_RAM, START ADDRESS: FFDC0000, END ADDRESS: FFDFFFFF
*/
/*
* APERTURE NAME: R5_0_ATCM, START ADDRESS: FFE00000, END ADDRESS: FFE0FFFF
*/
/*
* APERTURE NAME: R5_0_ATCM_LOCKSTEP, START ADDRESS: FFE10000, END ADDRESS:
* FFE1FFFF
*/
/*
* APERTURE NAME: R5_0_BTCM, START ADDRESS: FFE20000, END ADDRESS: FFE2FFFF
*/
/*
* APERTURE NAME: R5_0_BTCM_LOCKSTEP, START ADDRESS: FFE30000, END ADDRESS:
* FFE3FFFF
*/
/*
* APERTURE NAME: R5_0_INSTRUCTION_CACHE, START ADDRESS: FFE40000, END ADDR
* ESS: FFE4FFFF
*/
/*
* APERTURE NAME: R5_0_DATA_CACHE, START ADDRESS: FFE50000, END ADDRESS: FF
* E5FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_8, START ADDRESS: FFE60000, END ADDRESS: FFE8F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_8, START ADDRESS: FFE60000, END ADDRESS: FFE8F
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_8, START ADDRESS: FFE60000, END ADDRESS: FFE8F
* FFF
*/
/*
* APERTURE NAME: R5_1_ATCM_, START ADDRESS: FFE90000, END ADDRESS: FFE9FFF
* F
*/
/*
* APERTURE NAME: RPU_UNUSED_10, START ADDRESS: FFEA0000, END ADDRESS: FFEA
* FFFF
*/
/*
* APERTURE NAME: R5_1_BTCM_, START ADDRESS: FFEB0000, END ADDRESS: FFEBFFF
* F
*/
/*
* APERTURE NAME: R5_1_INSTRUCTION_CACHE, START ADDRESS: FFEC0000, END ADDR
* ESS: FFECFFFF
*/
/*
* APERTURE NAME: R5_1_DATA_CACHE, START ADDRESS: FFED0000, END ADDRESS: FF
* EDFFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_9, START ADDRESS: FFEE0000, END ADDRESS: FFFBF
* FFF
*/
/*
* APERTURE NAME: LPD_UNUSED_15, START ADDRESS: FFFD0000, END ADDRESS: FFFF
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_15, START ADDRESS: FFFD0000, END ADDRESS: FFFF
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_15, START ADDRESS: FFFD0000, END ADDRESS: FFFF
* FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_1, START ADDRESS: FF310000, END ADDRESS: FF31FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_2, START ADDRESS: FF320000, END ADDRESS: FF32FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_0, START ADDRESS: FF300000, END ADDRESS: FF30FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_7, START ADDRESS: FF340000, END ADDRESS: FF34FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_8, START ADDRESS: FF350000, END ADDRESS: FF35FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_9, START ADDRESS: FF360000, END ADDRESS: FF36FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_10, START ADDRESS: FF370000, END ADDRESS: FF37FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IPI_PMU, START ADDRESS: FF330000, END ADDRESS: FF33FFFF
*/
/*
* APERTURE NAME: IOU_GPV, START ADDRESS: FE000000, END ADDRESS: FE0FFFFF
*/
/*
* APERTURE NAME: LPD_GPV, START ADDRESS: FE100000, END ADDRESS: FE1FFFFF
*/
/*
* APERTURE NAME: USB3_0_XHCI, START ADDRESS: FE200000, END ADDRESS: FE2FFF
* FF
*/
/*
* APERTURE NAME: USB3_1_XHCI, START ADDRESS: FE300000, END ADDRESS: FE3FFF
* FF
*/
/*
* APERTURE NAME: LPD_UNUSED_13, START ADDRESS: FE400000, END ADDRESS: FE7F
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_13, START ADDRESS: FE400000, END ADDRESS: FE7F
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_13, START ADDRESS: FE400000, END ADDRESS: FE7F
* FFFF
*/
/*
* APERTURE NAME: LPD_UNUSED_13, START ADDRESS: FE400000, END ADDRESS: FE7F
* FFFF
*/
/*
* APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
*/
/*
* APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
*/
/*
* APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
*/
/*
* APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
*/
/*
* APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
*/
/*
* APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
*/
/*
* APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
*/
/*
* APERTURE NAME: CORESIGHT, START ADDRESS: FE800000, END ADDRESS: FEFFFFFF
*/
/*
* APERTURE NAME: QSPI_LINEAR_ADDRESS, START ADDRESS: C0000000, END ADDRESS
* : DFFFFFFF
*/
/*
* XPPU CONTROL
*/
return 1;
}
unsigned long psu_ddr_xmpu0_data(void)
{
/*
* DDR XMPU0
*/
return 1;
}
unsigned long psu_ddr_xmpu1_data(void)
{
/*
* DDR XMPU1
*/
return 1;
}
unsigned long psu_ddr_xmpu2_data(void)
{
/*
* DDR XMPU2
*/
return 1;
}
unsigned long psu_ddr_xmpu3_data(void)
{
/*
* DDR XMPU3
*/
return 1;
}
unsigned long psu_ddr_xmpu4_data(void)
{
/*
* DDR XMPU4
*/
return 1;
}
unsigned long psu_ddr_xmpu5_data(void)
{
/*
* DDR XMPU5
*/
return 1;
}
unsigned long psu_ocm_xmpu_data(void)
{
/*
* OCM XMPU
*/
return 1;
}
unsigned long psu_fpd_xmpu_data(void)
{
/*
* FPD XMPU
*/
return 1;
}
unsigned long psu_protection_lock_data(void)
{
/*
* LOCKING PROTECTION MODULE
*/
/*
* XPPU LOCK
*/
/*
* APERTURE NAME: LPD_XPPU, START ADDRESS: FF980000, END ADDRESS: FF99FFFF
*/
/*
* XMPU LOCK
*/
/*
* LOCK OCM XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
*/
/*
* LOCK FPD XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
*/
/*
* LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
*/
/*
* LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
*/
/*
* LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
*/
/*
* LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
*/
/*
* LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
*/
/*
* LOCK DDR XMPU ONLY IF IT IS NOT PROTECTED BY ANY MASTER
*/
return 1;
}
unsigned long psu_apply_master_tz(void)
{
/*
* RPU
*/
/*
* DP TZ
*/
/*
* Register : slcr_dpdma @ 0XFD690040
* TrustZone classification for DisplayPort DMA
* PSU_FPD_SLCR_SECURE_SLCR_DPDMA_TZ 1
* DPDMA TrustZone Settings
* (OFFSET, MASK, VALUE) (0XFD690040, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(FPD_SLCR_SECURE_SLCR_DPDMA_OFFSET,
0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* SATA TZ
*/
/*
* PCIE TZ
*/
/*
* Register : slcr_pcie @ 0XFD690030
* TrustZone classification for DMA Channel 0
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_0 1
* TrustZone classification for DMA Channel 1
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_1 1
* TrustZone classification for DMA Channel 2
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_2 1
* TrustZone classification for DMA Channel 3
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_3 1
* TrustZone classification for Ingress Address Translation 0
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_0 1
* TrustZone classification for Ingress Address Translation 1
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_1 1
* TrustZone classification for Ingress Address Translation 2
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_2 1
* TrustZone classification for Ingress Address Translation 3
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_3 1
* TrustZone classification for Ingress Address Translation 4
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_4 1
* TrustZone classification for Ingress Address Translation 5
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_5 1
* TrustZone classification for Ingress Address Translation 6
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_6 1
* TrustZone classification for Ingress Address Translation 7
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_INGR_7 1
* TrustZone classification for Egress Address Translation 0
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_0 1
* TrustZone classification for Egress Address Translation 1
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_1 1
* TrustZone classification for Egress Address Translation 2
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_2 1
* TrustZone classification for Egress Address Translation 3
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_3 1
* TrustZone classification for Egress Address Translation 4
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_4 1
* TrustZone classification for Egress Address Translation 5
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_5 1
* TrustZone classification for Egress Address Translation 6
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_6 1
* TrustZone classification for Egress Address Translation 7
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_AT_EGR_7 1
* TrustZone classification for DMA Registers
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_DMA_REGS 1
* TrustZone classification for MSIx Table
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_MSIX_TABLE 1
* TrustZone classification for MSIx PBA
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_MSIX_PBA 1
* TrustZone classification for ECAM
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_ECAM 1
* TrustZone classification for Bridge Common Registers
* PSU_FPD_SLCR_SECURE_SLCR_PCIE_TZ_BRIDGE_REGS 1
* PCIe TrustZone settings. This register may only be modified during bootu
* p (while PCIe block is disabled)
* (OFFSET, MASK, VALUE) (0XFD690030, 0x01FFFFFFU ,0x01FFFFFFU)
*/
PSU_Mask_Write(FPD_SLCR_SECURE_SLCR_PCIE_OFFSET,
0x01FFFFFFU, 0x01FFFFFFU);
/*##################################################################### */
/*
* USB TZ
*/
/*
* Register : slcr_usb @ 0XFF4B0034
* TrustZone Classification for USB3_0
* PSU_LPD_SLCR_SECURE_SLCR_USB_TZ_USB3_0 1
* TrustZone Classification for USB3_1
* PSU_LPD_SLCR_SECURE_SLCR_USB_TZ_USB3_1 1
* USB3 TrustZone settings
* (OFFSET, MASK, VALUE) (0XFF4B0034, 0x00000003U ,0x00000003U)
*/
PSU_Mask_Write(LPD_SLCR_SECURE_SLCR_USB_OFFSET,
0x00000003U, 0x00000003U);
/*##################################################################### */
/*
* SD TZ
*/
/*
* Register : IOU_AXI_RPRTCN @ 0XFF240004
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_SD0_AXI_ARPROT 2
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_SD1_AXI_ARPROT 2
* AXI read protection type selection
* (OFFSET, MASK, VALUE) (0XFF240004, 0x003F0000U ,0x00120000U)
*/
PSU_Mask_Write(IOU_SECURE_SLCR_IOU_AXI_RPRTCN_OFFSET,
0x003F0000U, 0x00120000U);
/*##################################################################### */
/*
* Register : IOU_AXI_WPRTCN @ 0XFF240000
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_SD0_AXI_AWPROT 2
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_SD1_AXI_AWPROT 2
* AXI write protection type selection
* (OFFSET, MASK, VALUE) (0XFF240000, 0x003F0000U ,0x00120000U)
*/
PSU_Mask_Write(IOU_SECURE_SLCR_IOU_AXI_WPRTCN_OFFSET,
0x003F0000U, 0x00120000U);
/*##################################################################### */
/*
* GEM TZ
*/
/*
* Register : IOU_AXI_RPRTCN @ 0XFF240004
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_GEM0_AXI_ARPROT 2
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_GEM1_AXI_ARPROT 2
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_GEM2_AXI_ARPROT 2
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_GEM3_AXI_ARPROT 2
* AXI read protection type selection
* (OFFSET, MASK, VALUE) (0XFF240004, 0x00000FFFU ,0x00000492U)
*/
PSU_Mask_Write(IOU_SECURE_SLCR_IOU_AXI_RPRTCN_OFFSET,
0x00000FFFU, 0x00000492U);
/*##################################################################### */
/*
* Register : IOU_AXI_WPRTCN @ 0XFF240000
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_GEM0_AXI_AWPROT 2
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_GEM1_AXI_AWPROT 2
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_GEM2_AXI_AWPROT 2
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_GEM3_AXI_AWPROT 2
* AXI write protection type selection
* (OFFSET, MASK, VALUE) (0XFF240000, 0x00000FFFU ,0x00000492U)
*/
PSU_Mask_Write(IOU_SECURE_SLCR_IOU_AXI_WPRTCN_OFFSET,
0x00000FFFU, 0x00000492U);
/*##################################################################### */
/*
* QSPI TZ
*/
/*
* Register : IOU_AXI_WPRTCN @ 0XFF240000
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_QSPI_AXI_AWPROT 2
* AXI write protection type selection
* (OFFSET, MASK, VALUE) (0XFF240000, 0x0E000000U ,0x04000000U)
*/
PSU_Mask_Write(IOU_SECURE_SLCR_IOU_AXI_WPRTCN_OFFSET,
0x0E000000U, 0x04000000U);
/*##################################################################### */
/*
* NAND TZ
*/
/*
* Register : IOU_AXI_RPRTCN @ 0XFF240004
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_RPRTCN_NAND_AXI_ARPROT 2
* AXI read protection type selection
* (OFFSET, MASK, VALUE) (0XFF240004, 0x01C00000U ,0x00800000U)
*/
PSU_Mask_Write(IOU_SECURE_SLCR_IOU_AXI_RPRTCN_OFFSET,
0x01C00000U, 0x00800000U);
/*##################################################################### */
/*
* Register : IOU_AXI_WPRTCN @ 0XFF240000
* AXI protection [0] = '0' : Normal access [0] = '1' : Previleged access [
* 1] = '0' : Secure access [1] = '1' : No secure access [2] = '0' : Data a
* ccess [2] = '1'' : Instruction access
* PSU_IOU_SECURE_SLCR_IOU_AXI_WPRTCN_NAND_AXI_AWPROT 2
* AXI write protection type selection
* (OFFSET, MASK, VALUE) (0XFF240000, 0x01C00000U ,0x00800000U)
*/
PSU_Mask_Write(IOU_SECURE_SLCR_IOU_AXI_WPRTCN_OFFSET,
0x01C00000U, 0x00800000U);
/*##################################################################### */
/*
* DMA TZ
*/
/*
* Register : slcr_adma @ 0XFF4B0024
* TrustZone Classification for ADMA
* PSU_LPD_SLCR_SECURE_SLCR_ADMA_TZ 0xFF
* RPU TrustZone settings
* (OFFSET, MASK, VALUE) (0XFF4B0024, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(LPD_SLCR_SECURE_SLCR_ADMA_OFFSET,
0x000000FFU, 0x000000FFU);
/*##################################################################### */
/*
* Register : slcr_gdma @ 0XFD690050
* TrustZone Classification for GDMA
* PSU_FPD_SLCR_SECURE_SLCR_GDMA_TZ 0xFF
* GDMA Trustzone Settings
* (OFFSET, MASK, VALUE) (0XFD690050, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(FPD_SLCR_SECURE_SLCR_GDMA_OFFSET,
0x000000FFU, 0x000000FFU);
/*##################################################################### */
return 1;
}
unsigned long psu_serdes_init_data(void)
{
/*
* SERDES INITIALIZATION
*/
/*
* GT REFERENCE CLOCK SOURCE SELECTION
*/
/*
* Register : PLL_REF_SEL0 @ 0XFD410000
* PLL0 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 1
* 2MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 - 24MHz, 0x8 - 26MHz,
* 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE
* - 108MHz, 0xF - 125MHz, 0x10 - 135MHz, 0x11 - 150 MHz. 0x12 to 0x1F - R
* eserved
* PSU_SERDES_PLL_REF_SEL0_PLLREFSEL0 0xD
* PLL0 Reference Selection Register
* (OFFSET, MASK, VALUE) (0XFD410000, 0x0000001FU ,0x0000000DU)
*/
PSU_Mask_Write(SERDES_PLL_REF_SEL0_OFFSET, 0x0000001FU, 0x0000000DU);
/*##################################################################### */
/*
* Register : PLL_REF_SEL1 @ 0XFD410004
* PLL1 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 1
* 2MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 - 24MHz, 0x8 - 26MHz,
* 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE
* - 108MHz, 0xF - 125MHz, 0x10 - 135MHz, 0x11 - 150 MHz. 0x12 to 0x1F - R
* eserved
* PSU_SERDES_PLL_REF_SEL1_PLLREFSEL1 0x9
* PLL1 Reference Selection Register
* (OFFSET, MASK, VALUE) (0XFD410004, 0x0000001FU ,0x00000009U)
*/
PSU_Mask_Write(SERDES_PLL_REF_SEL1_OFFSET, 0x0000001FU, 0x00000009U);
/*##################################################################### */
/*
* Register : PLL_REF_SEL2 @ 0XFD410008
* PLL2 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 1
* 2MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 - 24MHz, 0x8 - 26MHz,
* 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE
* - 108MHz, 0xF - 125MHz, 0x10 - 135MHz, 0x11 - 150 MHz. 0x12 to 0x1F - R
* eserved
* PSU_SERDES_PLL_REF_SEL2_PLLREFSEL2 0x8
* PLL2 Reference Selection Register
* (OFFSET, MASK, VALUE) (0XFD410008, 0x0000001FU ,0x00000008U)
*/
PSU_Mask_Write(SERDES_PLL_REF_SEL2_OFFSET, 0x0000001FU, 0x00000008U);
/*##################################################################### */
/*
* Register : PLL_REF_SEL3 @ 0XFD41000C
* PLL3 Reference Selection. 0x0 - 5MHz, 0x1 - 9.6MHz, 0x2 - 10MHz, 0x3 - 1
* 2MHz, 0x4 - 13MHz, 0x5 - 19.2MHz, 0x6 - 20MHz, 0x7 - 24MHz, 0x8 - 26MHz,
* 0x9 - 27MHz, 0xA - 38.4MHz, 0xB - 40MHz, 0xC - 52MHz, 0xD - 100MHz, 0xE
* - 108MHz, 0xF - 125MHz, 0x10 - 135MHz, 0x11 - 150 MHz. 0x12 to 0x1F - R
* eserved
* PSU_SERDES_PLL_REF_SEL3_PLLREFSEL3 0xF
* PLL3 Reference Selection Register
* (OFFSET, MASK, VALUE) (0XFD41000C, 0x0000001FU ,0x0000000FU)
*/
PSU_Mask_Write(SERDES_PLL_REF_SEL3_OFFSET, 0x0000001FU, 0x0000000FU);
/*##################################################################### */
/*
* GT REFERENCE CLOCK FREQUENCY SELECTION
*/
/*
* Register : L0_L0_REF_CLK_SEL @ 0XFD402860
* Sel of lane 0 ref clock local mux. Set to 1 to select lane 0 slicer outp
* ut. Set to 0 to select lane0 ref clock mux output.
* PSU_SERDES_L0_L0_REF_CLK_SEL_L0_REF_CLK_LCL_SEL 0x1
* Lane0 Ref Clock Selection Register
* (OFFSET, MASK, VALUE) (0XFD402860, 0x00000080U ,0x00000080U)
*/
PSU_Mask_Write(SERDES_L0_L0_REF_CLK_SEL_OFFSET,
0x00000080U, 0x00000080U);
/*##################################################################### */
/*
* Register : L0_L1_REF_CLK_SEL @ 0XFD402864
* Sel of lane 1 ref clock local mux. Set to 1 to select lane 1 slicer outp
* ut. Set to 0 to select lane1 ref clock mux output.
* PSU_SERDES_L0_L1_REF_CLK_SEL_L1_REF_CLK_LCL_SEL 0x0
* Bit 3 of lane 1 ref clock mux one hot sel. Set to 1 to select lane 3 sli
* cer output from ref clock network
* PSU_SERDES_L0_L1_REF_CLK_SEL_L1_REF_CLK_SEL_3 0x1
* Lane1 Ref Clock Selection Register
* (OFFSET, MASK, VALUE) (0XFD402864, 0x00000088U ,0x00000008U)
*/
PSU_Mask_Write(SERDES_L0_L1_REF_CLK_SEL_OFFSET,
0x00000088U, 0x00000008U);
/*##################################################################### */
/*
* Register : L0_L2_REF_CLK_SEL @ 0XFD402868
* Sel of lane 2 ref clock local mux. Set to 1 to select lane 1 slicer outp
* ut. Set to 0 to select lane2 ref clock mux output.
* PSU_SERDES_L0_L2_REF_CLK_SEL_L2_REF_CLK_LCL_SEL 0x1
* Lane2 Ref Clock Selection Register
* (OFFSET, MASK, VALUE) (0XFD402868, 0x00000080U ,0x00000080U)
*/
PSU_Mask_Write(SERDES_L0_L2_REF_CLK_SEL_OFFSET,
0x00000080U, 0x00000080U);
/*##################################################################### */
/*
* Register : L0_L3_REF_CLK_SEL @ 0XFD40286C
* Sel of lane 3 ref clock local mux. Set to 1 to select lane 3 slicer outp
* ut. Set to 0 to select lane3 ref clock mux output.
* PSU_SERDES_L0_L3_REF_CLK_SEL_L3_REF_CLK_LCL_SEL 0x0
* Bit 1 of lane 3 ref clock mux one hot sel. Set to 1 to select lane 1 sli
* cer output from ref clock network
* PSU_SERDES_L0_L3_REF_CLK_SEL_L3_REF_CLK_SEL_1 0x1
* Lane3 Ref Clock Selection Register
* (OFFSET, MASK, VALUE) (0XFD40286C, 0x00000082U ,0x00000002U)
*/
PSU_Mask_Write(SERDES_L0_L3_REF_CLK_SEL_OFFSET,
0x00000082U, 0x00000002U);
/*##################################################################### */
/*
* ENABLE SPREAD SPECTRUM
*/
/*
* Register : L2_TM_PLL_DIG_37 @ 0XFD40A094
* Enable/Disable coarse code satureation limiting logic
* PSU_SERDES_L2_TM_PLL_DIG_37_TM_ENABLE_COARSE_SATURATION 0x1
* Test mode register 37
* (OFFSET, MASK, VALUE) (0XFD40A094, 0x00000010U ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L2_TM_PLL_DIG_37_OFFSET,
0x00000010U, 0x00000010U);
/*##################################################################### */
/*
* Register : L2_PLL_SS_STEPS_0_LSB @ 0XFD40A368
* Spread Spectrum No of Steps [7:0]
* PSU_SERDES_L2_PLL_SS_STEPS_0_LSB_SS_NUM_OF_STEPS_0_LSB 0x38
* Spread Spectrum No of Steps bits 7:0
* (OFFSET, MASK, VALUE) (0XFD40A368, 0x000000FFU ,0x00000038U)
*/
PSU_Mask_Write(SERDES_L2_PLL_SS_STEPS_0_LSB_OFFSET,
0x000000FFU, 0x00000038U);
/*##################################################################### */
/*
* Register : L2_PLL_SS_STEPS_1_MSB @ 0XFD40A36C
* Spread Spectrum No of Steps [10:8]
* PSU_SERDES_L2_PLL_SS_STEPS_1_MSB_SS_NUM_OF_STEPS_1_MSB 0x03
* Spread Spectrum No of Steps bits 10:8
* (OFFSET, MASK, VALUE) (0XFD40A36C, 0x00000007U ,0x00000003U)
*/
PSU_Mask_Write(SERDES_L2_PLL_SS_STEPS_1_MSB_OFFSET,
0x00000007U, 0x00000003U);
/*##################################################################### */
/*
* Register : L3_PLL_SS_STEPS_0_LSB @ 0XFD40E368
* Spread Spectrum No of Steps [7:0]
* PSU_SERDES_L3_PLL_SS_STEPS_0_LSB_SS_NUM_OF_STEPS_0_LSB 0xE0
* Spread Spectrum No of Steps bits 7:0
* (OFFSET, MASK, VALUE) (0XFD40E368, 0x000000FFU ,0x000000E0U)
*/
PSU_Mask_Write(SERDES_L3_PLL_SS_STEPS_0_LSB_OFFSET,
0x000000FFU, 0x000000E0U);
/*##################################################################### */
/*
* Register : L3_PLL_SS_STEPS_1_MSB @ 0XFD40E36C
* Spread Spectrum No of Steps [10:8]
* PSU_SERDES_L3_PLL_SS_STEPS_1_MSB_SS_NUM_OF_STEPS_1_MSB 0x3
* Spread Spectrum No of Steps bits 10:8
* (OFFSET, MASK, VALUE) (0XFD40E36C, 0x00000007U ,0x00000003U)
*/
PSU_Mask_Write(SERDES_L3_PLL_SS_STEPS_1_MSB_OFFSET,
0x00000007U, 0x00000003U);
/*##################################################################### */
/*
* Register : L1_PLL_SS_STEPS_0_LSB @ 0XFD406368
* Spread Spectrum No of Steps [7:0]
* PSU_SERDES_L1_PLL_SS_STEPS_0_LSB_SS_NUM_OF_STEPS_0_LSB 0x58
* Spread Spectrum No of Steps bits 7:0
* (OFFSET, MASK, VALUE) (0XFD406368, 0x000000FFU ,0x00000058U)
*/
PSU_Mask_Write(SERDES_L1_PLL_SS_STEPS_0_LSB_OFFSET,
0x000000FFU, 0x00000058U);
/*##################################################################### */
/*
* Register : L1_PLL_SS_STEPS_1_MSB @ 0XFD40636C
* Spread Spectrum No of Steps [10:8]
* PSU_SERDES_L1_PLL_SS_STEPS_1_MSB_SS_NUM_OF_STEPS_1_MSB 0x3
* Spread Spectrum No of Steps bits 10:8
* (OFFSET, MASK, VALUE) (0XFD40636C, 0x00000007U ,0x00000003U)
*/
PSU_Mask_Write(SERDES_L1_PLL_SS_STEPS_1_MSB_OFFSET,
0x00000007U, 0x00000003U);
/*##################################################################### */
/*
* Register : L1_PLL_SS_STEP_SIZE_0_LSB @ 0XFD406370
* Step Size for Spread Spectrum [7:0]
* PSU_SERDES_L1_PLL_SS_STEP_SIZE_0_LSB_SS_STEP_SIZE_0_LSB 0x7C
* Step Size for Spread Spectrum LSB
* (OFFSET, MASK, VALUE) (0XFD406370, 0x000000FFU ,0x0000007CU)
*/
PSU_Mask_Write(SERDES_L1_PLL_SS_STEP_SIZE_0_LSB_OFFSET,
0x000000FFU, 0x0000007CU);
/*##################################################################### */
/*
* Register : L1_PLL_SS_STEP_SIZE_1 @ 0XFD406374
* Step Size for Spread Spectrum [15:8]
* PSU_SERDES_L1_PLL_SS_STEP_SIZE_1_SS_STEP_SIZE_1 0x33
* Step Size for Spread Spectrum 1
* (OFFSET, MASK, VALUE) (0XFD406374, 0x000000FFU ,0x00000033U)
*/
PSU_Mask_Write(SERDES_L1_PLL_SS_STEP_SIZE_1_OFFSET,
0x000000FFU, 0x00000033U);
/*##################################################################### */
/*
* Register : L1_PLL_SS_STEP_SIZE_2 @ 0XFD406378
* Step Size for Spread Spectrum [23:16]
* PSU_SERDES_L1_PLL_SS_STEP_SIZE_2_SS_STEP_SIZE_2 0x2
* Step Size for Spread Spectrum 2
* (OFFSET, MASK, VALUE) (0XFD406378, 0x000000FFU ,0x00000002U)
*/
PSU_Mask_Write(SERDES_L1_PLL_SS_STEP_SIZE_2_OFFSET,
0x000000FFU, 0x00000002U);
/*##################################################################### */
/*
* Register : L1_PLL_SS_STEP_SIZE_3_MSB @ 0XFD40637C
* Step Size for Spread Spectrum [25:24]
* PSU_SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_SS_STEP_SIZE_3_MSB 0x0
* Enable/Disable test mode force on SS step size
* PSU_SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_STEP_SIZE 0x1
* Enable/Disable test mode force on SS no of steps
* PSU_SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_NUM_OF_STEPS 0x1
* Enable force on enable Spread Spectrum
* (OFFSET, MASK, VALUE) (0XFD40637C, 0x00000033U ,0x00000030U)
*/
PSU_Mask_Write(SERDES_L1_PLL_SS_STEP_SIZE_3_MSB_OFFSET,
0x00000033U, 0x00000030U);
/*##################################################################### */
/*
* Register : L2_PLL_SS_STEP_SIZE_0_LSB @ 0XFD40A370
* Step Size for Spread Spectrum [7:0]
* PSU_SERDES_L2_PLL_SS_STEP_SIZE_0_LSB_SS_STEP_SIZE_0_LSB 0xF4
* Step Size for Spread Spectrum LSB
* (OFFSET, MASK, VALUE) (0XFD40A370, 0x000000FFU ,0x000000F4U)
*/
PSU_Mask_Write(SERDES_L2_PLL_SS_STEP_SIZE_0_LSB_OFFSET,
0x000000FFU, 0x000000F4U);
/*##################################################################### */
/*
* Register : L2_PLL_SS_STEP_SIZE_1 @ 0XFD40A374
* Step Size for Spread Spectrum [15:8]
* PSU_SERDES_L2_PLL_SS_STEP_SIZE_1_SS_STEP_SIZE_1 0x31
* Step Size for Spread Spectrum 1
* (OFFSET, MASK, VALUE) (0XFD40A374, 0x000000FFU ,0x00000031U)
*/
PSU_Mask_Write(SERDES_L2_PLL_SS_STEP_SIZE_1_OFFSET,
0x000000FFU, 0x00000031U);
/*##################################################################### */
/*
* Register : L2_PLL_SS_STEP_SIZE_2 @ 0XFD40A378
* Step Size for Spread Spectrum [23:16]
* PSU_SERDES_L2_PLL_SS_STEP_SIZE_2_SS_STEP_SIZE_2 0x2
* Step Size for Spread Spectrum 2
* (OFFSET, MASK, VALUE) (0XFD40A378, 0x000000FFU ,0x00000002U)
*/
PSU_Mask_Write(SERDES_L2_PLL_SS_STEP_SIZE_2_OFFSET,
0x000000FFU, 0x00000002U);
/*##################################################################### */
/*
* Register : L2_PLL_SS_STEP_SIZE_3_MSB @ 0XFD40A37C
* Step Size for Spread Spectrum [25:24]
* PSU_SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_SS_STEP_SIZE_3_MSB 0x0
* Enable/Disable test mode force on SS step size
* PSU_SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_STEP_SIZE 0x1
* Enable/Disable test mode force on SS no of steps
* PSU_SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_NUM_OF_STEPS 0x1
* Enable force on enable Spread Spectrum
* (OFFSET, MASK, VALUE) (0XFD40A37C, 0x00000033U ,0x00000030U)
*/
PSU_Mask_Write(SERDES_L2_PLL_SS_STEP_SIZE_3_MSB_OFFSET,
0x00000033U, 0x00000030U);
/*##################################################################### */
/*
* Register : L3_PLL_SS_STEP_SIZE_0_LSB @ 0XFD40E370
* Step Size for Spread Spectrum [7:0]
* PSU_SERDES_L3_PLL_SS_STEP_SIZE_0_LSB_SS_STEP_SIZE_0_LSB 0xC9
* Step Size for Spread Spectrum LSB
* (OFFSET, MASK, VALUE) (0XFD40E370, 0x000000FFU ,0x000000C9U)
*/
PSU_Mask_Write(SERDES_L3_PLL_SS_STEP_SIZE_0_LSB_OFFSET,
0x000000FFU, 0x000000C9U);
/*##################################################################### */
/*
* Register : L3_PLL_SS_STEP_SIZE_1 @ 0XFD40E374
* Step Size for Spread Spectrum [15:8]
* PSU_SERDES_L3_PLL_SS_STEP_SIZE_1_SS_STEP_SIZE_1 0xD2
* Step Size for Spread Spectrum 1
* (OFFSET, MASK, VALUE) (0XFD40E374, 0x000000FFU ,0x000000D2U)
*/
PSU_Mask_Write(SERDES_L3_PLL_SS_STEP_SIZE_1_OFFSET,
0x000000FFU, 0x000000D2U);
/*##################################################################### */
/*
* Register : L3_PLL_SS_STEP_SIZE_2 @ 0XFD40E378
* Step Size for Spread Spectrum [23:16]
* PSU_SERDES_L3_PLL_SS_STEP_SIZE_2_SS_STEP_SIZE_2 0x1
* Step Size for Spread Spectrum 2
* (OFFSET, MASK, VALUE) (0XFD40E378, 0x000000FFU ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L3_PLL_SS_STEP_SIZE_2_OFFSET,
0x000000FFU, 0x00000001U);
/*##################################################################### */
/*
* Register : L3_PLL_SS_STEP_SIZE_3_MSB @ 0XFD40E37C
* Step Size for Spread Spectrum [25:24]
* PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_SS_STEP_SIZE_3_MSB 0x0
* Enable/Disable test mode force on SS step size
* PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_STEP_SIZE 0x1
* Enable/Disable test mode force on SS no of steps
* PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_FORCE_SS_NUM_OF_STEPS 0x1
* Enable test mode forcing on enable Spread Spectrum
* PSU_SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_TM_FORCE_EN_SS 0x1
* Enable force on enable Spread Spectrum
* (OFFSET, MASK, VALUE) (0XFD40E37C, 0x000000B3U ,0x000000B0U)
*/
PSU_Mask_Write(SERDES_L3_PLL_SS_STEP_SIZE_3_MSB_OFFSET,
0x000000B3U, 0x000000B0U);
/*##################################################################### */
/*
* Register : L2_TM_DIG_6 @ 0XFD40906C
* Bypass Descrambler
* PSU_SERDES_L2_TM_DIG_6_BYPASS_DESCRAM 0x1
* Enable Bypass for <1> TM_DIG_CTRL_6
* PSU_SERDES_L2_TM_DIG_6_FORCE_BYPASS_DESCRAM 0x1
* Data path test modes in decoder and descram
* (OFFSET, MASK, VALUE) (0XFD40906C, 0x00000003U ,0x00000003U)
*/
PSU_Mask_Write(SERDES_L2_TM_DIG_6_OFFSET, 0x00000003U, 0x00000003U);
/*##################################################################### */
/*
* Register : L2_TX_DIG_TM_61 @ 0XFD4080F4
* Bypass scrambler signal
* PSU_SERDES_L2_TX_DIG_TM_61_BYPASS_SCRAM 0x1
* Enable/disable scrambler bypass signal
* PSU_SERDES_L2_TX_DIG_TM_61_FORCE_BYPASS_SCRAM 0x1
* MPHY PLL Gear and bypass scrambler
* (OFFSET, MASK, VALUE) (0XFD4080F4, 0x00000003U ,0x00000003U)
*/
PSU_Mask_Write(SERDES_L2_TX_DIG_TM_61_OFFSET,
0x00000003U, 0x00000003U);
/*##################################################################### */
/*
* Register : L3_PLL_FBDIV_FRAC_3_MSB @ 0XFD40E360
* Enable test mode force on fractional mode enable
* PSU_SERDES_L3_PLL_FBDIV_FRAC_3_MSB_TM_FORCE_EN_FRAC 0x1
* Fractional feedback division control and fractional value for feedback d
* ivision bits 26:24
* (OFFSET, MASK, VALUE) (0XFD40E360, 0x00000040U ,0x00000040U)
*/
PSU_Mask_Write(SERDES_L3_PLL_FBDIV_FRAC_3_MSB_OFFSET,
0x00000040U, 0x00000040U);
/*##################################################################### */
/*
* Register : L3_TM_DIG_6 @ 0XFD40D06C
* Bypass 8b10b decoder
* PSU_SERDES_L3_TM_DIG_6_BYPASS_DECODER 0x1
* Enable Bypass for <3> TM_DIG_CTRL_6
* PSU_SERDES_L3_TM_DIG_6_FORCE_BYPASS_DEC 0x1
* Bypass Descrambler
* PSU_SERDES_L3_TM_DIG_6_BYPASS_DESCRAM 0x1
* Enable Bypass for <1> TM_DIG_CTRL_6
* PSU_SERDES_L3_TM_DIG_6_FORCE_BYPASS_DESCRAM 0x1
* Data path test modes in decoder and descram
* (OFFSET, MASK, VALUE) (0XFD40D06C, 0x0000000FU ,0x0000000FU)
*/
PSU_Mask_Write(SERDES_L3_TM_DIG_6_OFFSET, 0x0000000FU, 0x0000000FU);
/*##################################################################### */
/*
* Register : L3_TX_DIG_TM_61 @ 0XFD40C0F4
* Enable/disable encoder bypass signal
* PSU_SERDES_L3_TX_DIG_TM_61_BYPASS_ENC 0x1
* Bypass scrambler signal
* PSU_SERDES_L3_TX_DIG_TM_61_BYPASS_SCRAM 0x1
* Enable/disable scrambler bypass signal
* PSU_SERDES_L3_TX_DIG_TM_61_FORCE_BYPASS_SCRAM 0x1
* MPHY PLL Gear and bypass scrambler
* (OFFSET, MASK, VALUE) (0XFD40C0F4, 0x0000000BU ,0x0000000BU)
*/
PSU_Mask_Write(SERDES_L3_TX_DIG_TM_61_OFFSET,
0x0000000BU, 0x0000000BU);
/*##################################################################### */
/*
* ENABLE CHICKEN BIT FOR PCIE AND USB
*/
/*
* Register : L0_TM_AUX_0 @ 0XFD4010CC
* Spare- not used
* PSU_SERDES_L0_TM_AUX_0_BIT_2 1
* Spare registers
* (OFFSET, MASK, VALUE) (0XFD4010CC, 0x00000020U ,0x00000020U)
*/
PSU_Mask_Write(SERDES_L0_TM_AUX_0_OFFSET, 0x00000020U, 0x00000020U);
/*##################################################################### */
/*
* Register : L2_TM_AUX_0 @ 0XFD4090CC
* Spare- not used
* PSU_SERDES_L2_TM_AUX_0_BIT_2 1
* Spare registers
* (OFFSET, MASK, VALUE) (0XFD4090CC, 0x00000020U ,0x00000020U)
*/
PSU_Mask_Write(SERDES_L2_TM_AUX_0_OFFSET, 0x00000020U, 0x00000020U);
/*##################################################################### */
/*
* ENABLING EYE SURF
*/
/*
* Register : L0_TM_DIG_8 @ 0XFD401074
* Enable Eye Surf
* PSU_SERDES_L0_TM_DIG_8_EYESURF_ENABLE 0x1
* Test modes for Elastic buffer and enabling Eye Surf
* (OFFSET, MASK, VALUE) (0XFD401074, 0x00000010U ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L0_TM_DIG_8_OFFSET, 0x00000010U, 0x00000010U);
/*##################################################################### */
/*
* Register : L1_TM_DIG_8 @ 0XFD405074
* Enable Eye Surf
* PSU_SERDES_L1_TM_DIG_8_EYESURF_ENABLE 0x1
* Test modes for Elastic buffer and enabling Eye Surf
* (OFFSET, MASK, VALUE) (0XFD405074, 0x00000010U ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L1_TM_DIG_8_OFFSET, 0x00000010U, 0x00000010U);
/*##################################################################### */
/*
* Register : L2_TM_DIG_8 @ 0XFD409074
* Enable Eye Surf
* PSU_SERDES_L2_TM_DIG_8_EYESURF_ENABLE 0x1
* Test modes for Elastic buffer and enabling Eye Surf
* (OFFSET, MASK, VALUE) (0XFD409074, 0x00000010U ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L2_TM_DIG_8_OFFSET, 0x00000010U, 0x00000010U);
/*##################################################################### */
/*
* Register : L3_TM_DIG_8 @ 0XFD40D074
* Enable Eye Surf
* PSU_SERDES_L3_TM_DIG_8_EYESURF_ENABLE 0x1
* Test modes for Elastic buffer and enabling Eye Surf
* (OFFSET, MASK, VALUE) (0XFD40D074, 0x00000010U ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L3_TM_DIG_8_OFFSET, 0x00000010U, 0x00000010U);
/*##################################################################### */
/*
* ILL SETTINGS FOR GAIN AND LOCK SETTINGS
*/
/*
* Register : L0_TM_MISC2 @ 0XFD40189C
* ILL calib counts BYPASSED with calcode bits
* PSU_SERDES_L0_TM_MISC2_ILL_CAL_BYPASS_COUNTS 0x1
* sampler cal
* (OFFSET, MASK, VALUE) (0XFD40189C, 0x00000080U ,0x00000080U)
*/
PSU_Mask_Write(SERDES_L0_TM_MISC2_OFFSET, 0x00000080U, 0x00000080U);
/*##################################################################### */
/*
* Register : L0_TM_IQ_ILL1 @ 0XFD4018F8
* IQ ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 ,
* USB3 : SS
* PSU_SERDES_L0_TM_IQ_ILL1_ILL_BYPASS_IQ_CALCODE_F0 0x64
* iqpi cal code
* (OFFSET, MASK, VALUE) (0XFD4018F8, 0x000000FFU ,0x00000064U)
*/
PSU_Mask_Write(SERDES_L0_TM_IQ_ILL1_OFFSET,
0x000000FFU, 0x00000064U);
/*##################################################################### */
/*
* Register : L0_TM_IQ_ILL2 @ 0XFD4018FC
* IQ ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
* PSU_SERDES_L0_TM_IQ_ILL2_ILL_BYPASS_IQ_CALCODE_F1 0x64
* iqpi cal code
* (OFFSET, MASK, VALUE) (0XFD4018FC, 0x000000FFU ,0x00000064U)
*/
PSU_Mask_Write(SERDES_L0_TM_IQ_ILL2_OFFSET,
0x000000FFU, 0x00000064U);
/*##################################################################### */
/*
* Register : L0_TM_ILL12 @ 0XFD401990
* G1A pll ctr bypass value
* PSU_SERDES_L0_TM_ILL12_G1A_PLL_CTR_BYP_VAL 0x11
* ill pll counter values
* (OFFSET, MASK, VALUE) (0XFD401990, 0x000000FFU ,0x00000011U)
*/
PSU_Mask_Write(SERDES_L0_TM_ILL12_OFFSET, 0x000000FFU, 0x00000011U);
/*##################################################################### */
/*
* Register : L0_TM_E_ILL1 @ 0XFD401924
* E ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , U
* SB3 : SS
* PSU_SERDES_L0_TM_E_ILL1_ILL_BYPASS_E_CALCODE_F0 0x4
* epi cal code
* (OFFSET, MASK, VALUE) (0XFD401924, 0x000000FFU ,0x00000004U)
*/
PSU_Mask_Write(SERDES_L0_TM_E_ILL1_OFFSET, 0x000000FFU, 0x00000004U);
/*##################################################################### */
/*
* Register : L0_TM_E_ILL2 @ 0XFD401928
* E ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
* PSU_SERDES_L0_TM_E_ILL2_ILL_BYPASS_E_CALCODE_F1 0xFE
* epi cal code
* (OFFSET, MASK, VALUE) (0XFD401928, 0x000000FFU ,0x000000FEU)
*/
PSU_Mask_Write(SERDES_L0_TM_E_ILL2_OFFSET, 0x000000FFU, 0x000000FEU);
/*##################################################################### */
/*
* Register : L0_TM_IQ_ILL3 @ 0XFD401900
* IQ ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
* PSU_SERDES_L0_TM_IQ_ILL3_ILL_BYPASS_IQ_CALCODE_F2 0x64
* iqpi cal code
* (OFFSET, MASK, VALUE) (0XFD401900, 0x000000FFU ,0x00000064U)
*/
PSU_Mask_Write(SERDES_L0_TM_IQ_ILL3_OFFSET,
0x000000FFU, 0x00000064U);
/*##################################################################### */
/*
* Register : L0_TM_E_ILL3 @ 0XFD40192C
* E ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
* PSU_SERDES_L0_TM_E_ILL3_ILL_BYPASS_E_CALCODE_F2 0x0
* epi cal code
* (OFFSET, MASK, VALUE) (0XFD40192C, 0x000000FFU ,0x00000000U)
*/
PSU_Mask_Write(SERDES_L0_TM_E_ILL3_OFFSET, 0x000000FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : L0_TM_ILL8 @ 0XFD401980
* ILL calibration code change wait time
* PSU_SERDES_L0_TM_ILL8_ILL_CAL_ITER_WAIT 0xFF
* ILL cal routine control
* (OFFSET, MASK, VALUE) (0XFD401980, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(SERDES_L0_TM_ILL8_OFFSET, 0x000000FFU, 0x000000FFU);
/*##################################################################### */
/*
* Register : L0_TM_IQ_ILL8 @ 0XFD401914
* IQ ILL polytrim bypass value
* PSU_SERDES_L0_TM_IQ_ILL8_ILL_BYPASS_IQ_POLYTRIM_VAL 0xF7
* iqpi polytrim
* (OFFSET, MASK, VALUE) (0XFD401914, 0x000000FFU ,0x000000F7U)
*/
PSU_Mask_Write(SERDES_L0_TM_IQ_ILL8_OFFSET,
0x000000FFU, 0x000000F7U);
/*##################################################################### */
/*
* Register : L0_TM_IQ_ILL9 @ 0XFD401918
* bypass IQ polytrim
* PSU_SERDES_L0_TM_IQ_ILL9_ILL_BYPASS_IQ_POLYTIM 0x1
* enables for lf,constant gm trim and polytirm
* (OFFSET, MASK, VALUE) (0XFD401918, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L0_TM_IQ_ILL9_OFFSET,
0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : L0_TM_E_ILL8 @ 0XFD401940
* E ILL polytrim bypass value
* PSU_SERDES_L0_TM_E_ILL8_ILL_BYPASS_E_POLYTRIM_VAL 0xF7
* epi polytrim
* (OFFSET, MASK, VALUE) (0XFD401940, 0x000000FFU ,0x000000F7U)
*/
PSU_Mask_Write(SERDES_L0_TM_E_ILL8_OFFSET, 0x000000FFU, 0x000000F7U);
/*##################################################################### */
/*
* Register : L0_TM_E_ILL9 @ 0XFD401944
* bypass E polytrim
* PSU_SERDES_L0_TM_E_ILL9_ILL_BYPASS_E_POLYTIM 0x1
* enables for lf,constant gm trim and polytirm
* (OFFSET, MASK, VALUE) (0XFD401944, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L0_TM_E_ILL9_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : L0_TM_ILL13 @ 0XFD401994
* ILL cal idle val refcnt
* PSU_SERDES_L0_TM_ILL13_ILL_CAL_IDLE_VAL_REFCNT 0x7
* ill cal idle value count
* (OFFSET, MASK, VALUE) (0XFD401994, 0x00000007U ,0x00000007U)
*/
PSU_Mask_Write(SERDES_L0_TM_ILL13_OFFSET, 0x00000007U, 0x00000007U);
/*##################################################################### */
/*
* Register : L1_TM_ILL13 @ 0XFD405994
* ILL cal idle val refcnt
* PSU_SERDES_L1_TM_ILL13_ILL_CAL_IDLE_VAL_REFCNT 0x7
* ill cal idle value count
* (OFFSET, MASK, VALUE) (0XFD405994, 0x00000007U ,0x00000007U)
*/
PSU_Mask_Write(SERDES_L1_TM_ILL13_OFFSET, 0x00000007U, 0x00000007U);
/*##################################################################### */
/*
* Register : L2_TM_MISC2 @ 0XFD40989C
* ILL calib counts BYPASSED with calcode bits
* PSU_SERDES_L2_TM_MISC2_ILL_CAL_BYPASS_COUNTS 0x1
* sampler cal
* (OFFSET, MASK, VALUE) (0XFD40989C, 0x00000080U ,0x00000080U)
*/
PSU_Mask_Write(SERDES_L2_TM_MISC2_OFFSET, 0x00000080U, 0x00000080U);
/*##################################################################### */
/*
* Register : L2_TM_IQ_ILL1 @ 0XFD4098F8
* IQ ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 ,
* USB3 : SS
* PSU_SERDES_L2_TM_IQ_ILL1_ILL_BYPASS_IQ_CALCODE_F0 0x1A
* iqpi cal code
* (OFFSET, MASK, VALUE) (0XFD4098F8, 0x000000FFU ,0x0000001AU)
*/
PSU_Mask_Write(SERDES_L2_TM_IQ_ILL1_OFFSET,
0x000000FFU, 0x0000001AU);
/*##################################################################### */
/*
* Register : L2_TM_IQ_ILL2 @ 0XFD4098FC
* IQ ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
* PSU_SERDES_L2_TM_IQ_ILL2_ILL_BYPASS_IQ_CALCODE_F1 0x1A
* iqpi cal code
* (OFFSET, MASK, VALUE) (0XFD4098FC, 0x000000FFU ,0x0000001AU)
*/
PSU_Mask_Write(SERDES_L2_TM_IQ_ILL2_OFFSET,
0x000000FFU, 0x0000001AU);
/*##################################################################### */
/*
* Register : L2_TM_ILL12 @ 0XFD409990
* G1A pll ctr bypass value
* PSU_SERDES_L2_TM_ILL12_G1A_PLL_CTR_BYP_VAL 0x10
* ill pll counter values
* (OFFSET, MASK, VALUE) (0XFD409990, 0x000000FFU ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L2_TM_ILL12_OFFSET, 0x000000FFU, 0x00000010U);
/*##################################################################### */
/*
* Register : L2_TM_E_ILL1 @ 0XFD409924
* E ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , U
* SB3 : SS
* PSU_SERDES_L2_TM_E_ILL1_ILL_BYPASS_E_CALCODE_F0 0xFE
* epi cal code
* (OFFSET, MASK, VALUE) (0XFD409924, 0x000000FFU ,0x000000FEU)
*/
PSU_Mask_Write(SERDES_L2_TM_E_ILL1_OFFSET, 0x000000FFU, 0x000000FEU);
/*##################################################################### */
/*
* Register : L2_TM_E_ILL2 @ 0XFD409928
* E ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
* PSU_SERDES_L2_TM_E_ILL2_ILL_BYPASS_E_CALCODE_F1 0x0
* epi cal code
* (OFFSET, MASK, VALUE) (0XFD409928, 0x000000FFU ,0x00000000U)
*/
PSU_Mask_Write(SERDES_L2_TM_E_ILL2_OFFSET, 0x000000FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : L2_TM_IQ_ILL3 @ 0XFD409900
* IQ ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
* PSU_SERDES_L2_TM_IQ_ILL3_ILL_BYPASS_IQ_CALCODE_F2 0x1A
* iqpi cal code
* (OFFSET, MASK, VALUE) (0XFD409900, 0x000000FFU ,0x0000001AU)
*/
PSU_Mask_Write(SERDES_L2_TM_IQ_ILL3_OFFSET,
0x000000FFU, 0x0000001AU);
/*##################################################################### */
/*
* Register : L2_TM_E_ILL3 @ 0XFD40992C
* E ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
* PSU_SERDES_L2_TM_E_ILL3_ILL_BYPASS_E_CALCODE_F2 0x0
* epi cal code
* (OFFSET, MASK, VALUE) (0XFD40992C, 0x000000FFU ,0x00000000U)
*/
PSU_Mask_Write(SERDES_L2_TM_E_ILL3_OFFSET, 0x000000FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : L2_TM_ILL8 @ 0XFD409980
* ILL calibration code change wait time
* PSU_SERDES_L2_TM_ILL8_ILL_CAL_ITER_WAIT 0xFF
* ILL cal routine control
* (OFFSET, MASK, VALUE) (0XFD409980, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(SERDES_L2_TM_ILL8_OFFSET, 0x000000FFU, 0x000000FFU);
/*##################################################################### */
/*
* Register : L2_TM_IQ_ILL8 @ 0XFD409914
* IQ ILL polytrim bypass value
* PSU_SERDES_L2_TM_IQ_ILL8_ILL_BYPASS_IQ_POLYTRIM_VAL 0xF7
* iqpi polytrim
* (OFFSET, MASK, VALUE) (0XFD409914, 0x000000FFU ,0x000000F7U)
*/
PSU_Mask_Write(SERDES_L2_TM_IQ_ILL8_OFFSET,
0x000000FFU, 0x000000F7U);
/*##################################################################### */
/*
* Register : L2_TM_IQ_ILL9 @ 0XFD409918
* bypass IQ polytrim
* PSU_SERDES_L2_TM_IQ_ILL9_ILL_BYPASS_IQ_POLYTIM 0x1
* enables for lf,constant gm trim and polytirm
* (OFFSET, MASK, VALUE) (0XFD409918, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L2_TM_IQ_ILL9_OFFSET,
0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : L2_TM_E_ILL8 @ 0XFD409940
* E ILL polytrim bypass value
* PSU_SERDES_L2_TM_E_ILL8_ILL_BYPASS_E_POLYTRIM_VAL 0xF7
* epi polytrim
* (OFFSET, MASK, VALUE) (0XFD409940, 0x000000FFU ,0x000000F7U)
*/
PSU_Mask_Write(SERDES_L2_TM_E_ILL8_OFFSET, 0x000000FFU, 0x000000F7U);
/*##################################################################### */
/*
* Register : L2_TM_E_ILL9 @ 0XFD409944
* bypass E polytrim
* PSU_SERDES_L2_TM_E_ILL9_ILL_BYPASS_E_POLYTIM 0x1
* enables for lf,constant gm trim and polytirm
* (OFFSET, MASK, VALUE) (0XFD409944, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L2_TM_E_ILL9_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : L2_TM_ILL13 @ 0XFD409994
* ILL cal idle val refcnt
* PSU_SERDES_L2_TM_ILL13_ILL_CAL_IDLE_VAL_REFCNT 0x7
* ill cal idle value count
* (OFFSET, MASK, VALUE) (0XFD409994, 0x00000007U ,0x00000007U)
*/
PSU_Mask_Write(SERDES_L2_TM_ILL13_OFFSET, 0x00000007U, 0x00000007U);
/*##################################################################### */
/*
* Register : L3_TM_MISC2 @ 0XFD40D89C
* ILL calib counts BYPASSED with calcode bits
* PSU_SERDES_L3_TM_MISC2_ILL_CAL_BYPASS_COUNTS 0x1
* sampler cal
* (OFFSET, MASK, VALUE) (0XFD40D89C, 0x00000080U ,0x00000080U)
*/
PSU_Mask_Write(SERDES_L3_TM_MISC2_OFFSET, 0x00000080U, 0x00000080U);
/*##################################################################### */
/*
* Register : L3_TM_IQ_ILL1 @ 0XFD40D8F8
* IQ ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 ,
* USB3 : SS
* PSU_SERDES_L3_TM_IQ_ILL1_ILL_BYPASS_IQ_CALCODE_F0 0x7D
* iqpi cal code
* (OFFSET, MASK, VALUE) (0XFD40D8F8, 0x000000FFU ,0x0000007DU)
*/
PSU_Mask_Write(SERDES_L3_TM_IQ_ILL1_OFFSET,
0x000000FFU, 0x0000007DU);
/*##################################################################### */
/*
* Register : L3_TM_IQ_ILL2 @ 0XFD40D8FC
* IQ ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
* PSU_SERDES_L3_TM_IQ_ILL2_ILL_BYPASS_IQ_CALCODE_F1 0x7D
* iqpi cal code
* (OFFSET, MASK, VALUE) (0XFD40D8FC, 0x000000FFU ,0x0000007DU)
*/
PSU_Mask_Write(SERDES_L3_TM_IQ_ILL2_OFFSET,
0x000000FFU, 0x0000007DU);
/*##################################################################### */
/*
* Register : L3_TM_ILL12 @ 0XFD40D990
* G1A pll ctr bypass value
* PSU_SERDES_L3_TM_ILL12_G1A_PLL_CTR_BYP_VAL 0x1
* ill pll counter values
* (OFFSET, MASK, VALUE) (0XFD40D990, 0x000000FFU ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L3_TM_ILL12_OFFSET, 0x000000FFU, 0x00000001U);
/*##################################################################### */
/*
* Register : L3_TM_E_ILL1 @ 0XFD40D924
* E ILL F0 CALCODE bypass value. MPHY : G1a, PCIE : Gen 1, SATA : Gen1 , U
* SB3 : SS
* PSU_SERDES_L3_TM_E_ILL1_ILL_BYPASS_E_CALCODE_F0 0x9C
* epi cal code
* (OFFSET, MASK, VALUE) (0XFD40D924, 0x000000FFU ,0x0000009CU)
*/
PSU_Mask_Write(SERDES_L3_TM_E_ILL1_OFFSET, 0x000000FFU, 0x0000009CU);
/*##################################################################### */
/*
* Register : L3_TM_E_ILL2 @ 0XFD40D928
* E ILL F1 CALCODE bypass value. MPHY : G1b, PCIE : Gen2, SATA: Gen2
* PSU_SERDES_L3_TM_E_ILL2_ILL_BYPASS_E_CALCODE_F1 0x39
* epi cal code
* (OFFSET, MASK, VALUE) (0XFD40D928, 0x000000FFU ,0x00000039U)
*/
PSU_Mask_Write(SERDES_L3_TM_E_ILL2_OFFSET, 0x000000FFU, 0x00000039U);
/*##################################################################### */
/*
* Register : L3_TM_ILL11 @ 0XFD40D98C
* G2A_PCIe1 PLL ctr bypass value
* PSU_SERDES_L3_TM_ILL11_G2A_PCIEG1_PLL_CTR_11_8_BYP_VAL 0x2
* ill pll counter values
* (OFFSET, MASK, VALUE) (0XFD40D98C, 0x000000F0U ,0x00000020U)
*/
PSU_Mask_Write(SERDES_L3_TM_ILL11_OFFSET, 0x000000F0U, 0x00000020U);
/*##################################################################### */
/*
* Register : L3_TM_IQ_ILL3 @ 0XFD40D900
* IQ ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
* PSU_SERDES_L3_TM_IQ_ILL3_ILL_BYPASS_IQ_CALCODE_F2 0x7D
* iqpi cal code
* (OFFSET, MASK, VALUE) (0XFD40D900, 0x000000FFU ,0x0000007DU)
*/
PSU_Mask_Write(SERDES_L3_TM_IQ_ILL3_OFFSET,
0x000000FFU, 0x0000007DU);
/*##################################################################### */
/*
* Register : L3_TM_E_ILL3 @ 0XFD40D92C
* E ILL F2CALCODE bypass value. MPHY : G2a, SATA : Gen3
* PSU_SERDES_L3_TM_E_ILL3_ILL_BYPASS_E_CALCODE_F2 0x64
* epi cal code
* (OFFSET, MASK, VALUE) (0XFD40D92C, 0x000000FFU ,0x00000064U)
*/
PSU_Mask_Write(SERDES_L3_TM_E_ILL3_OFFSET, 0x000000FFU, 0x00000064U);
/*##################################################################### */
/*
* Register : L3_TM_ILL8 @ 0XFD40D980
* ILL calibration code change wait time
* PSU_SERDES_L3_TM_ILL8_ILL_CAL_ITER_WAIT 0xFF
* ILL cal routine control
* (OFFSET, MASK, VALUE) (0XFD40D980, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(SERDES_L3_TM_ILL8_OFFSET, 0x000000FFU, 0x000000FFU);
/*##################################################################### */
/*
* Register : L3_TM_IQ_ILL8 @ 0XFD40D914
* IQ ILL polytrim bypass value
* PSU_SERDES_L3_TM_IQ_ILL8_ILL_BYPASS_IQ_POLYTRIM_VAL 0xF7
* iqpi polytrim
* (OFFSET, MASK, VALUE) (0XFD40D914, 0x000000FFU ,0x000000F7U)
*/
PSU_Mask_Write(SERDES_L3_TM_IQ_ILL8_OFFSET,
0x000000FFU, 0x000000F7U);
/*##################################################################### */
/*
* Register : L3_TM_IQ_ILL9 @ 0XFD40D918
* bypass IQ polytrim
* PSU_SERDES_L3_TM_IQ_ILL9_ILL_BYPASS_IQ_POLYTIM 0x1
* enables for lf,constant gm trim and polytirm
* (OFFSET, MASK, VALUE) (0XFD40D918, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L3_TM_IQ_ILL9_OFFSET,
0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : L3_TM_E_ILL8 @ 0XFD40D940
* E ILL polytrim bypass value
* PSU_SERDES_L3_TM_E_ILL8_ILL_BYPASS_E_POLYTRIM_VAL 0xF7
* epi polytrim
* (OFFSET, MASK, VALUE) (0XFD40D940, 0x000000FFU ,0x000000F7U)
*/
PSU_Mask_Write(SERDES_L3_TM_E_ILL8_OFFSET, 0x000000FFU, 0x000000F7U);
/*##################################################################### */
/*
* Register : L3_TM_E_ILL9 @ 0XFD40D944
* bypass E polytrim
* PSU_SERDES_L3_TM_E_ILL9_ILL_BYPASS_E_POLYTIM 0x1
* enables for lf,constant gm trim and polytirm
* (OFFSET, MASK, VALUE) (0XFD40D944, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L3_TM_E_ILL9_OFFSET, 0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : L3_TM_ILL13 @ 0XFD40D994
* ILL cal idle val refcnt
* PSU_SERDES_L3_TM_ILL13_ILL_CAL_IDLE_VAL_REFCNT 0x7
* ill cal idle value count
* (OFFSET, MASK, VALUE) (0XFD40D994, 0x00000007U ,0x00000007U)
*/
PSU_Mask_Write(SERDES_L3_TM_ILL13_OFFSET, 0x00000007U, 0x00000007U);
/*##################################################################### */
/*
* SYMBOL LOCK AND WAIT
*/
/*
* Register : L0_TM_DIG_10 @ 0XFD40107C
* CDR lock wait time. (1-16 us). cdr_lock_wait_time = 4'b xxxx + 4'b 0001
* PSU_SERDES_L0_TM_DIG_10_CDR_BIT_LOCK_TIME 0x1
* test control for changing cdr lock wait time
* (OFFSET, MASK, VALUE) (0XFD40107C, 0x0000000FU ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L0_TM_DIG_10_OFFSET, 0x0000000FU, 0x00000001U);
/*##################################################################### */
/*
* Register : L1_TM_DIG_10 @ 0XFD40507C
* CDR lock wait time. (1-16 us). cdr_lock_wait_time = 4'b xxxx + 4'b 0001
* PSU_SERDES_L1_TM_DIG_10_CDR_BIT_LOCK_TIME 0x1
* test control for changing cdr lock wait time
* (OFFSET, MASK, VALUE) (0XFD40507C, 0x0000000FU ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L1_TM_DIG_10_OFFSET, 0x0000000FU, 0x00000001U);
/*##################################################################### */
/*
* Register : L2_TM_DIG_10 @ 0XFD40907C
* CDR lock wait time. (1-16 us). cdr_lock_wait_time = 4'b xxxx + 4'b 0001
* PSU_SERDES_L2_TM_DIG_10_CDR_BIT_LOCK_TIME 0x1
* test control for changing cdr lock wait time
* (OFFSET, MASK, VALUE) (0XFD40907C, 0x0000000FU ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L2_TM_DIG_10_OFFSET, 0x0000000FU, 0x00000001U);
/*##################################################################### */
/*
* Register : L3_TM_DIG_10 @ 0XFD40D07C
* CDR lock wait time. (1-16 us). cdr_lock_wait_time = 4'b xxxx + 4'b 0001
* PSU_SERDES_L3_TM_DIG_10_CDR_BIT_LOCK_TIME 0x1
* test control for changing cdr lock wait time
* (OFFSET, MASK, VALUE) (0XFD40D07C, 0x0000000FU ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L3_TM_DIG_10_OFFSET, 0x0000000FU, 0x00000001U);
/*##################################################################### */
/*
* SIOU SETTINGS FOR BYPASS CONTROL,HSRX-DIG
*/
/*
* Register : L0_TM_RST_DLY @ 0XFD4019A4
* Delay apb reset by specified amount
* PSU_SERDES_L0_TM_RST_DLY_APB_RST_DLY 0xFF
* reset delay for apb reset w.r.t pso of hsrx
* (OFFSET, MASK, VALUE) (0XFD4019A4, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(SERDES_L0_TM_RST_DLY_OFFSET,
0x000000FFU, 0x000000FFU);
/*##################################################################### */
/*
* Register : L0_TM_ANA_BYP_15 @ 0XFD401038
* Enable Bypass for <7> of TM_ANA_BYPS_15
* PSU_SERDES_L0_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
* Bypass control for pcs-pma interface. EQ supplies, main master supply an
* d ps for samp c2c
* (OFFSET, MASK, VALUE) (0XFD401038, 0x00000040U ,0x00000040U)
*/
PSU_Mask_Write(SERDES_L0_TM_ANA_BYP_15_OFFSET,
0x00000040U, 0x00000040U);
/*##################################################################### */
/*
* Register : L0_TM_ANA_BYP_12 @ 0XFD40102C
* Enable Bypass for <7> of TM_ANA_BYPS_12
* PSU_SERDES_L0_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
* Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr ena
* ble controls
* (OFFSET, MASK, VALUE) (0XFD40102C, 0x00000040U ,0x00000040U)
*/
PSU_Mask_Write(SERDES_L0_TM_ANA_BYP_12_OFFSET,
0x00000040U, 0x00000040U);
/*##################################################################### */
/*
* Register : L1_TM_RST_DLY @ 0XFD4059A4
* Delay apb reset by specified amount
* PSU_SERDES_L1_TM_RST_DLY_APB_RST_DLY 0xFF
* reset delay for apb reset w.r.t pso of hsrx
* (OFFSET, MASK, VALUE) (0XFD4059A4, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(SERDES_L1_TM_RST_DLY_OFFSET,
0x000000FFU, 0x000000FFU);
/*##################################################################### */
/*
* Register : L1_TM_ANA_BYP_15 @ 0XFD405038
* Enable Bypass for <7> of TM_ANA_BYPS_15
* PSU_SERDES_L1_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
* Bypass control for pcs-pma interface. EQ supplies, main master supply an
* d ps for samp c2c
* (OFFSET, MASK, VALUE) (0XFD405038, 0x00000040U ,0x00000040U)
*/
PSU_Mask_Write(SERDES_L1_TM_ANA_BYP_15_OFFSET,
0x00000040U, 0x00000040U);
/*##################################################################### */
/*
* Register : L1_TM_ANA_BYP_12 @ 0XFD40502C
* Enable Bypass for <7> of TM_ANA_BYPS_12
* PSU_SERDES_L1_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
* Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr ena
* ble controls
* (OFFSET, MASK, VALUE) (0XFD40502C, 0x00000040U ,0x00000040U)
*/
PSU_Mask_Write(SERDES_L1_TM_ANA_BYP_12_OFFSET,
0x00000040U, 0x00000040U);
/*##################################################################### */
/*
* Register : L2_TM_RST_DLY @ 0XFD4099A4
* Delay apb reset by specified amount
* PSU_SERDES_L2_TM_RST_DLY_APB_RST_DLY 0xFF
* reset delay for apb reset w.r.t pso of hsrx
* (OFFSET, MASK, VALUE) (0XFD4099A4, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(SERDES_L2_TM_RST_DLY_OFFSET,
0x000000FFU, 0x000000FFU);
/*##################################################################### */
/*
* Register : L2_TM_ANA_BYP_15 @ 0XFD409038
* Enable Bypass for <7> of TM_ANA_BYPS_15
* PSU_SERDES_L2_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
* Bypass control for pcs-pma interface. EQ supplies, main master supply an
* d ps for samp c2c
* (OFFSET, MASK, VALUE) (0XFD409038, 0x00000040U ,0x00000040U)
*/
PSU_Mask_Write(SERDES_L2_TM_ANA_BYP_15_OFFSET,
0x00000040U, 0x00000040U);
/*##################################################################### */
/*
* Register : L2_TM_ANA_BYP_12 @ 0XFD40902C
* Enable Bypass for <7> of TM_ANA_BYPS_12
* PSU_SERDES_L2_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
* Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr ena
* ble controls
* (OFFSET, MASK, VALUE) (0XFD40902C, 0x00000040U ,0x00000040U)
*/
PSU_Mask_Write(SERDES_L2_TM_ANA_BYP_12_OFFSET,
0x00000040U, 0x00000040U);
/*##################################################################### */
/*
* Register : L3_TM_RST_DLY @ 0XFD40D9A4
* Delay apb reset by specified amount
* PSU_SERDES_L3_TM_RST_DLY_APB_RST_DLY 0xFF
* reset delay for apb reset w.r.t pso of hsrx
* (OFFSET, MASK, VALUE) (0XFD40D9A4, 0x000000FFU ,0x000000FFU)
*/
PSU_Mask_Write(SERDES_L3_TM_RST_DLY_OFFSET,
0x000000FFU, 0x000000FFU);
/*##################################################################### */
/*
* Register : L3_TM_ANA_BYP_15 @ 0XFD40D038
* Enable Bypass for <7> of TM_ANA_BYPS_15
* PSU_SERDES_L3_TM_ANA_BYP_15_FORCE_UPHY_ENABLE_LOW_LEAKAGE 0x1
* Bypass control for pcs-pma interface. EQ supplies, main master supply an
* d ps for samp c2c
* (OFFSET, MASK, VALUE) (0XFD40D038, 0x00000040U ,0x00000040U)
*/
PSU_Mask_Write(SERDES_L3_TM_ANA_BYP_15_OFFSET,
0x00000040U, 0x00000040U);
/*##################################################################### */
/*
* Register : L3_TM_ANA_BYP_12 @ 0XFD40D02C
* Enable Bypass for <7> of TM_ANA_BYPS_12
* PSU_SERDES_L3_TM_ANA_BYP_12_FORCE_UPHY_PSO_HSRXDIG 0x1
* Bypass control for pcs-pma interface. Hsrx supply, hsrx des, and cdr ena
* ble controls
* (OFFSET, MASK, VALUE) (0XFD40D02C, 0x00000040U ,0x00000040U)
*/
PSU_Mask_Write(SERDES_L3_TM_ANA_BYP_12_OFFSET,
0x00000040U, 0x00000040U);
/*##################################################################### */
/*
* DISABLE FPL/FFL
*/
/*
* Register : L0_TM_MISC3 @ 0XFD4019AC
* CDR fast phase lock control
* PSU_SERDES_L0_TM_MISC3_CDR_EN_FPL 0x0
* CDR fast frequency lock control
* PSU_SERDES_L0_TM_MISC3_CDR_EN_FFL 0x0
* debug bus selection bit, cdr fast phase and freq controls
* (OFFSET, MASK, VALUE) (0XFD4019AC, 0x00000003U ,0x00000000U)
*/
PSU_Mask_Write(SERDES_L0_TM_MISC3_OFFSET, 0x00000003U, 0x00000000U);
/*##################################################################### */
/*
* Register : L1_TM_MISC3 @ 0XFD4059AC
* CDR fast phase lock control
* PSU_SERDES_L1_TM_MISC3_CDR_EN_FPL 0x0
* CDR fast frequency lock control
* PSU_SERDES_L1_TM_MISC3_CDR_EN_FFL 0x0
* debug bus selection bit, cdr fast phase and freq controls
* (OFFSET, MASK, VALUE) (0XFD4059AC, 0x00000003U ,0x00000000U)
*/
PSU_Mask_Write(SERDES_L1_TM_MISC3_OFFSET, 0x00000003U, 0x00000000U);
/*##################################################################### */
/*
* Register : L2_TM_MISC3 @ 0XFD4099AC
* CDR fast phase lock control
* PSU_SERDES_L2_TM_MISC3_CDR_EN_FPL 0x0
* CDR fast frequency lock control
* PSU_SERDES_L2_TM_MISC3_CDR_EN_FFL 0x0
* debug bus selection bit, cdr fast phase and freq controls
* (OFFSET, MASK, VALUE) (0XFD4099AC, 0x00000003U ,0x00000000U)
*/
PSU_Mask_Write(SERDES_L2_TM_MISC3_OFFSET, 0x00000003U, 0x00000000U);
/*##################################################################### */
/*
* Register : L3_TM_MISC3 @ 0XFD40D9AC
* CDR fast phase lock control
* PSU_SERDES_L3_TM_MISC3_CDR_EN_FPL 0x0
* CDR fast frequency lock control
* PSU_SERDES_L3_TM_MISC3_CDR_EN_FFL 0x0
* debug bus selection bit, cdr fast phase and freq controls
* (OFFSET, MASK, VALUE) (0XFD40D9AC, 0x00000003U ,0x00000000U)
*/
PSU_Mask_Write(SERDES_L3_TM_MISC3_OFFSET, 0x00000003U, 0x00000000U);
/*##################################################################### */
/*
* DISABLE DYNAMIC OFFSET CALIBRATION
*/
/*
* Register : L0_TM_EQ11 @ 0XFD401978
* Force EQ offset correction algo off if not forced on
* PSU_SERDES_L0_TM_EQ11_FORCE_EQ_OFFS_OFF 0x1
* eq dynamic offset correction
* (OFFSET, MASK, VALUE) (0XFD401978, 0x00000010U ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L0_TM_EQ11_OFFSET, 0x00000010U, 0x00000010U);
/*##################################################################### */
/*
* Register : L1_TM_EQ11 @ 0XFD405978
* Force EQ offset correction algo off if not forced on
* PSU_SERDES_L1_TM_EQ11_FORCE_EQ_OFFS_OFF 0x1
* eq dynamic offset correction
* (OFFSET, MASK, VALUE) (0XFD405978, 0x00000010U ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L1_TM_EQ11_OFFSET, 0x00000010U, 0x00000010U);
/*##################################################################### */
/*
* Register : L2_TM_EQ11 @ 0XFD409978
* Force EQ offset correction algo off if not forced on
* PSU_SERDES_L2_TM_EQ11_FORCE_EQ_OFFS_OFF 0x1
* eq dynamic offset correction
* (OFFSET, MASK, VALUE) (0XFD409978, 0x00000010U ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L2_TM_EQ11_OFFSET, 0x00000010U, 0x00000010U);
/*##################################################################### */
/*
* Register : L3_TM_EQ11 @ 0XFD40D978
* Force EQ offset correction algo off if not forced on
* PSU_SERDES_L3_TM_EQ11_FORCE_EQ_OFFS_OFF 0x1
* eq dynamic offset correction
* (OFFSET, MASK, VALUE) (0XFD40D978, 0x00000010U ,0x00000010U)
*/
PSU_Mask_Write(SERDES_L3_TM_EQ11_OFFSET, 0x00000010U, 0x00000010U);
/*##################################################################### */
/*
* DISABLE ECO FOR PCIE
*/
/*
* Register : eco_0 @ 0XFD3D001C
* For future use
* PSU_SIOU_ECO_0_FIELD 0x1
* ECO Register for future use
* (OFFSET, MASK, VALUE) (0XFD3D001C, 0xFFFFFFFFU ,0x00000001U)
*/
PSU_Mask_Write(SIOU_ECO_0_OFFSET, 0xFFFFFFFFU, 0x00000001U);
/*##################################################################### */
/*
* GT LANE SETTINGS
*/
/*
* Register : ICM_CFG0 @ 0XFD410010
* Controls UPHY Lane 0 protocol configuration. 0 - PowerDown, 1 - PCIe .0,
* 2 - Sata0, 3 - USB0, 4 - DP.1, 5 - SGMII0, 6 - Unused, 7 - Unused
* PSU_SERDES_ICM_CFG0_L0_ICM_CFG 1
* Controls UPHY Lane 1 protocol configuration. 0 - PowerDown, 1 - PCIe.1,
* 2 - Sata1, 3 - USB0, 4 - DP.0, 5 - SGMII1, 6 - Unused, 7 - Unused
* PSU_SERDES_ICM_CFG0_L1_ICM_CFG 4
* ICM Configuration Register 0
* (OFFSET, MASK, VALUE) (0XFD410010, 0x00000077U ,0x00000041U)
*/
PSU_Mask_Write(SERDES_ICM_CFG0_OFFSET, 0x00000077U, 0x00000041U);
/*##################################################################### */
/*
* Register : ICM_CFG1 @ 0XFD410014
* Controls UPHY Lane 2 protocol configuration. 0 - PowerDown, 1 - PCIe.1,
* 2 - Sata0, 3 - USB0, 4 - DP.1, 5 - SGMII2, 6 - Unused, 7 - Unused
* PSU_SERDES_ICM_CFG1_L2_ICM_CFG 3
* Controls UPHY Lane 3 protocol configuration. 0 - PowerDown, 1 - PCIe.3,
* 2 - Sata1, 3 - USB1, 4 - DP.0, 5 - SGMII3, 6 - Unused, 7 - Unused
* PSU_SERDES_ICM_CFG1_L3_ICM_CFG 2
* ICM Configuration Register 1
* (OFFSET, MASK, VALUE) (0XFD410014, 0x00000077U ,0x00000023U)
*/
PSU_Mask_Write(SERDES_ICM_CFG1_OFFSET, 0x00000077U, 0x00000023U);
/*##################################################################### */
/*
* CHECKING PLL LOCK
*/
/*
* ENABLE SERIAL DATA MUX DEEMPH
*/
/*
* Register : L1_TXPMD_TM_45 @ 0XFD404CB4
* Enable/disable DP post2 path
* PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_DP_ENABLE_POST2_PATH 0x1
* Override enable/disable of DP post2 path
* PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_OVRD_DP_ENABLE_POST2_PATH 0x1
* Override enable/disable of DP post1 path
* PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_OVRD_DP_ENABLE_POST1_PATH 0x1
* Enable/disable DP main path
* PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_DP_ENABLE_MAIN_PATH 0x1
* Override enable/disable of DP main path
* PSU_SERDES_L1_TXPMD_TM_45_DP_TM_TX_OVRD_DP_ENABLE_MAIN_PATH 0x1
* Post or pre or main DP path selection
* (OFFSET, MASK, VALUE) (0XFD404CB4, 0x00000037U ,0x00000037U)
*/
PSU_Mask_Write(SERDES_L1_TXPMD_TM_45_OFFSET,
0x00000037U, 0x00000037U);
/*##################################################################### */
/*
* Register : L1_TX_ANA_TM_118 @ 0XFD4041D8
* Test register force for enabling/disablign TX deemphasis bits <17:0>
* PSU_SERDES_L1_TX_ANA_TM_118_FORCE_TX_DEEMPH_17_0 0x1
* Enable Override of TX deemphasis
* (OFFSET, MASK, VALUE) (0XFD4041D8, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L1_TX_ANA_TM_118_OFFSET,
0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* Register : L3_TX_ANA_TM_118 @ 0XFD40C1D8
* Test register force for enabling/disablign TX deemphasis bits <17:0>
* PSU_SERDES_L3_TX_ANA_TM_118_FORCE_TX_DEEMPH_17_0 0x1
* Enable Override of TX deemphasis
* (OFFSET, MASK, VALUE) (0XFD40C1D8, 0x00000001U ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L3_TX_ANA_TM_118_OFFSET,
0x00000001U, 0x00000001U);
/*##################################################################### */
/*
* CDR AND RX EQUALIZATION SETTINGS
*/
/*
* Register : L3_TM_CDR5 @ 0XFD40DC14
* FPHL FSM accumulate cycles
* PSU_SERDES_L3_TM_CDR5_FPHL_FSM_ACC_CYCLES 0x7
* FFL Phase0 int gain aka 2ol SD update rate
* PSU_SERDES_L3_TM_CDR5_FFL_PH0_INT_GAIN 0x6
* Fast phase lock controls -- FSM accumulator cycle control and phase 0 in
* t gain control.
* (OFFSET, MASK, VALUE) (0XFD40DC14, 0x000000FFU ,0x000000E6U)
*/
PSU_Mask_Write(SERDES_L3_TM_CDR5_OFFSET, 0x000000FFU, 0x000000E6U);
/*##################################################################### */
/*
* Register : L3_TM_CDR16 @ 0XFD40DC40
* FFL Phase0 prop gain aka 1ol SD update rate
* PSU_SERDES_L3_TM_CDR16_FFL_PH0_PROP_GAIN 0xC
* Fast phase lock controls -- phase 0 prop gain
* (OFFSET, MASK, VALUE) (0XFD40DC40, 0x0000001FU ,0x0000000CU)
*/
PSU_Mask_Write(SERDES_L3_TM_CDR16_OFFSET, 0x0000001FU, 0x0000000CU);
/*##################################################################### */
/*
* Register : L3_TM_EQ0 @ 0XFD40D94C
* EQ stg 2 controls BYPASSED
* PSU_SERDES_L3_TM_EQ0_EQ_STG2_CTRL_BYP 1
* eq stg1 and stg2 controls
* (OFFSET, MASK, VALUE) (0XFD40D94C, 0x00000020U ,0x00000020U)
*/
PSU_Mask_Write(SERDES_L3_TM_EQ0_OFFSET, 0x00000020U, 0x00000020U);
/*##################################################################### */
/*
* Register : L3_TM_EQ1 @ 0XFD40D950
* EQ STG2 RL PROG
* PSU_SERDES_L3_TM_EQ1_EQ_STG2_RL_PROG 0x2
* EQ stg 2 preamp mode val
* PSU_SERDES_L3_TM_EQ1_EQ_STG2_PREAMP_MODE_VAL 0x1
* eq stg1 and stg2 controls
* (OFFSET, MASK, VALUE) (0XFD40D950, 0x00000007U ,0x00000006U)
*/
PSU_Mask_Write(SERDES_L3_TM_EQ1_OFFSET, 0x00000007U, 0x00000006U);
/*##################################################################### */
/*
* GEM SERDES SETTINGS
*/
/*
* ENABLE PRE EMPHAIS AND VOLTAGE SWING
*/
/*
* Register : L1_TXPMD_TM_48 @ 0XFD404CC0
* Margining factor value
* PSU_SERDES_L1_TXPMD_TM_48_TM_RESULTANT_MARGINING_FACTOR 0
* Margining factor
* (OFFSET, MASK, VALUE) (0XFD404CC0, 0x0000001FU ,0x00000000U)
*/
PSU_Mask_Write(SERDES_L1_TXPMD_TM_48_OFFSET,
0x0000001FU, 0x00000000U);
/*##################################################################### */
/*
* Register : L1_TX_ANA_TM_18 @ 0XFD404048
* pipe_TX_Deemph. 0: -6dB de-emphasis, 1: -3.5dB de-emphasis, 2 : No de-em
* phasis, Others: reserved
* PSU_SERDES_L1_TX_ANA_TM_18_PIPE_TX_DEEMPH_7_0 0
* Override for PIPE TX de-emphasis
* (OFFSET, MASK, VALUE) (0XFD404048, 0x000000FFU ,0x00000000U)
*/
PSU_Mask_Write(SERDES_L1_TX_ANA_TM_18_OFFSET,
0x000000FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : L3_TX_ANA_TM_18 @ 0XFD40C048
* pipe_TX_Deemph. 0: -6dB de-emphasis, 1: -3.5dB de-emphasis, 2 : No de-em
* phasis, Others: reserved
* PSU_SERDES_L3_TX_ANA_TM_18_PIPE_TX_DEEMPH_7_0 0x1
* Override for PIPE TX de-emphasis
* (OFFSET, MASK, VALUE) (0XFD40C048, 0x000000FFU ,0x00000001U)
*/
PSU_Mask_Write(SERDES_L3_TX_ANA_TM_18_OFFSET,
0x000000FFU, 0x00000001U);
/*##################################################################### */
return 1;
}
unsigned long psu_resetout_init_data(void)
{
/*
* TAKING SERDES PERIPHERAL OUT OF RESET RESET
*/
/*
* PUTTING USB0 IN RESET
*/
/*
* Register : RST_LPD_TOP @ 0XFF5E023C
* USB 0 reset for control registers
* PSU_CRL_APB_RST_LPD_TOP_USB0_APB_RESET 0X0
* Software control register for the LPD block.
* (OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000400U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_TOP_OFFSET, 0x00000400U, 0x00000000U);
/*##################################################################### */
/*
* HIBERREST
*/
/*
* Register : RST_LPD_TOP @ 0XFF5E023C
* USB 0 sleep circuit reset
* PSU_CRL_APB_RST_LPD_TOP_USB0_HIBERRESET 0X0
* USB 0 reset
* PSU_CRL_APB_RST_LPD_TOP_USB0_CORERESET 0X0
* Software control register for the LPD block.
* (OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000140U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_TOP_OFFSET, 0x00000140U, 0x00000000U);
/*##################################################################### */
/*
* PUTTING GEM0 IN RESET
*/
/*
* Register : RST_LPD_IOU0 @ 0XFF5E0230
* GEM 3 reset
* PSU_CRL_APB_RST_LPD_IOU0_GEM3_RESET 0X0
* Software controlled reset for the GEMs
* (OFFSET, MASK, VALUE) (0XFF5E0230, 0x00000008U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU0_OFFSET,
0x00000008U, 0x00000000U);
/*##################################################################### */
/*
* PUTTING SATA IN RESET
*/
/*
* Register : sata_misc_ctrl @ 0XFD3D0100
* Sata PM clock control select
* PSU_SIOU_SATA_MISC_CTRL_SATA_PM_CLK_SEL 0x3
* Misc Contorls for SATA.This register may only be modified during bootup
* (while SATA block is disabled)
* (OFFSET, MASK, VALUE) (0XFD3D0100, 0x00000003U ,0x00000003U)
*/
PSU_Mask_Write(SIOU_SATA_MISC_CTRL_OFFSET, 0x00000003U, 0x00000003U);
/*##################################################################### */
/*
* Register : RST_FPD_TOP @ 0XFD1A0100
* Sata block level reset
* PSU_CRF_APB_RST_FPD_TOP_SATA_RESET 0X0
* FPD Block level software controlled reset
* (OFFSET, MASK, VALUE) (0XFD1A0100, 0x00000002U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_RST_FPD_TOP_OFFSET, 0x00000002U, 0x00000000U);
/*##################################################################### */
/*
* PUTTING PCIE CFG AND BRIDGE IN RESET
*/
/*
* Register : RST_FPD_TOP @ 0XFD1A0100
* PCIE config reset
* PSU_CRF_APB_RST_FPD_TOP_PCIE_CFG_RESET 0X0
* PCIE bridge block level reset (AXI interface)
* PSU_CRF_APB_RST_FPD_TOP_PCIE_BRIDGE_RESET 0X0
* FPD Block level software controlled reset
* (OFFSET, MASK, VALUE) (0XFD1A0100, 0x000C0000U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_RST_FPD_TOP_OFFSET, 0x000C0000U, 0x00000000U);
/*##################################################################### */
/*
* PUTTING DP IN RESET
*/
/*
* Register : RST_FPD_TOP @ 0XFD1A0100
* Display Port block level reset (includes DPDMA)
* PSU_CRF_APB_RST_FPD_TOP_DP_RESET 0X0
* FPD Block level software controlled reset
* (OFFSET, MASK, VALUE) (0XFD1A0100, 0x00010000U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_RST_FPD_TOP_OFFSET, 0x00010000U, 0x00000000U);
/*##################################################################### */
/*
* Register : DP_PHY_RESET @ 0XFD4A0200
* Set to '1' to hold the GT in reset. Clear to release.
* PSU_DP_DP_PHY_RESET_GT_RESET 0X0
* Reset the transmitter PHY.
* (OFFSET, MASK, VALUE) (0XFD4A0200, 0x00000002U ,0x00000000U)
*/
PSU_Mask_Write(DP_DP_PHY_RESET_OFFSET, 0x00000002U, 0x00000000U);
/*##################################################################### */
/*
* Register : DP_TX_PHY_POWER_DOWN @ 0XFD4A0238
* Two bits per lane. When set to 11, moves the GT to power down mode. When
* set to 00, GT will be in active state. bits [1:0] - lane0 Bits [3:2] -
* lane 1
* PSU_DP_DP_TX_PHY_POWER_DOWN_POWER_DWN 0X0
* Control PHY Power down
* (OFFSET, MASK, VALUE) (0XFD4A0238, 0x0000000FU ,0x00000000U)
*/
PSU_Mask_Write(DP_DP_TX_PHY_POWER_DOWN_OFFSET,
0x0000000FU, 0x00000000U);
/*##################################################################### */
/*
* USB0 GFLADJ
*/
/*
* Register : GUSB2PHYCFG @ 0XFE20C200
* USB 2.0 Turnaround Time (USBTrdTim) Sets the turnaround time in PHY cloc
* ks. Specifies the response time for a MAC request to the Packet FIFO Con
* troller (PFC) to fetch data from the DFIFO (SPRAM). The following are th
* e required values for the minimum SoC bus frequency of 60 MHz. USB turna
* round time is a critical certification criteria when using long cables a
* nd five hub levels. The required values for this field: - 4'h5: When the
* MAC interface is 16-bit UTMI+. - 4'h9: When the MAC interface is 8-bit
* UTMI+/ULPI. If SoC bus clock is less than 60 MHz, and USB turnaround tim
* e is not critical, this field can be set to a larger value. Note: This f
* ield is valid only in device mode.
* PSU_USB3_0_XHCI_GUSB2PHYCFG_USBTRDTIM 0x9
* Transceiver Delay: Enables a delay between the assertion of the UTMI/ULP
* I Transceiver Select signal (for HS) and the assertion of the TxValid si
* gnal during a HS Chirp. When this bit is set to 1, a delay (of approxima
* tely 2.5 us) is introduced from the time when the Transceiver Select is
* set to 2'b00 (HS) to the time the TxValid is driven to 0 for sending the
* chirp-K. This delay is required for some UTMI/ULPI PHYs. Note: - If you
* enable the hibernation feature when the device core comes out of power-
* off, you must re-initialize this bit with the appropriate value because
* the core does not save and restore this bit value during hibernation. -
* This bit is valid only in device mode.
* PSU_USB3_0_XHCI_GUSB2PHYCFG_XCVRDLY 0x0
* Enable utmi_sleep_n and utmi_l1_suspend_n (EnblSlpM) The application use
* s this bit to control utmi_sleep_n and utmi_l1_suspend_n assertion to th
* e PHY in the L1 state. - 1'b0: utmi_sleep_n and utmi_l1_suspend_n assert
* ion from the core is not transferred to the external PHY. - 1'b1: utmi_s
* leep_n and utmi_l1_suspend_n assertion from the core is transferred to t
* he external PHY. Note: This bit must be set high for Port0 if PHY is use
* d. Note: In Device mode - Before issuing any device endpoint command whe
* n operating in 2.0 speeds, disable this bit and enable it after the comm
* and completes. Without disabling this bit, if a command is issued when t
* he device is in L1 state and if mac2_clk (utmi_clk/ulpi_clk) is gated of
* f, the command will not get completed.
* PSU_USB3_0_XHCI_GUSB2PHYCFG_ENBLSLPM 0x0
* USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial Transceiver Select T
* he application uses this bit to select a high-speed PHY or a full-speed
* transceiver. - 1'b0: USB 2.0 high-speed UTMI+ or ULPI PHY. This bit is a
* lways 0, with Write Only access. - 1'b1: USB 1.1 full-speed serial trans
* ceiver. This bit is always 1, with Write Only access. If both interface
* types are selected in coreConsultant (that is, parameters' values are no
* t zero), the application uses this bit to select the active interface is
* active, with Read-Write bit access. Note: USB 1.1 full-serial transceiv
* er is not supported. This bit always reads as 1'b0.
* PSU_USB3_0_XHCI_GUSB2PHYCFG_PHYSEL 0x0
* Suspend USB2.0 HS/FS/LS PHY (SusPHY) When set, USB2.0 PHY enters Suspend
* mode if Suspend conditions are valid. For DRD/OTG configurations, it is
* recommended that this bit is set to 0 during coreConsultant configurati
* on. If it is set to 1, then the application must clear this bit after po
* wer-on reset. Application needs to set it to 1 after the core initializa
* tion completes. For all other configurations, this bit can be set to 1 d
* uring core configuration. Note: - In host mode, on reset, this bit is se
* t to 1. Software can override this bit after reset. - In device mode, be
* fore issuing any device endpoint command when operating in 2.0 speeds, d
* isable this bit and enable it after the command completes. If you issue
* a command without disabling this bit when the device is in L2 state and
* if mac2_clk (utmi_clk/ulpi_clk) is gated off, the command will not get c
* ompleted.
* PSU_USB3_0_XHCI_GUSB2PHYCFG_SUSPENDUSB20 0x1
* Full-Speed Serial Interface Select (FSIntf) The application uses this bi
* t to select a unidirectional or bidirectional USB 1.1 full-speed serial
* transceiver interface. - 1'b0: 6-pin unidirectional full-speed serial in
* terface. This bit is set to 0 with Read Only access. - 1'b1: 3-pin bidir
* ectional full-speed serial interface. This bit is set to 0 with Read Onl
* y access. Note: USB 1.1 full-speed serial interface is not supported. Th
* is bit always reads as 1'b0.
* PSU_USB3_0_XHCI_GUSB2PHYCFG_FSINTF 0x0
* ULPI or UTMI+ Select (ULPI_UTMI_Sel) The application uses this bit to se
* lect a UTMI+ or ULPI Interface. - 1'b0: UTMI+ Interface - 1'b1: ULPI Int
* erface This bit is writable only if UTMI+ and ULPI is specified for High
* -Speed PHY Interface(s) in coreConsultant configuration (DWC_USB3_HSPHY_
* INTERFACE = 3). Otherwise, this bit is read-only and the value depends o
* n the interface selected through DWC_USB3_HSPHY_INTERFACE.
* PSU_USB3_0_XHCI_GUSB2PHYCFG_ULPI_UTMI_SEL 0x1
* PHY Interface (PHYIf) If UTMI+ is selected, the application uses this bi
* t to configure the core to support a UTMI+ PHY with an 8- or 16-bit inte
* rface. - 1'b0: 8 bits - 1'b1: 16 bits ULPI Mode: 1'b0 Note: - All the en
* abled 2.0 ports must have the same clock frequency as Port0 clock freque
* ncy (utmi_clk[0]). - The UTMI 8-bit and 16-bit modes cannot be used toge
* ther for different ports at the same time (that is, all the ports must b
* e in 8-bit mode, or all of them must be in 16-bit mode, at a time). - If
* any of the USB 2.0 ports is selected as ULPI port for operation, then a
* ll the USB 2.0 ports must be operating at 60 MHz.
* PSU_USB3_0_XHCI_GUSB2PHYCFG_PHYIF 0x0
* HS/FS Timeout Calibration (TOutCal) The number of PHY clocks, as indicat
* ed by the application in this field, is multiplied by a bit-time factor;
* this factor is added to the high-speed/full-speed interpacket timeout d
* uration in the core to account for additional delays introduced by the P
* HY. This may be required, since the delay introduced by the PHY in gener
* ating the linestate condition may vary among PHYs. The USB standard time
* out value for high-speed operation is 736 to 816 (inclusive) bit times.
* The USB standard timeout value for full-speed operation is 16 to 18 (inc
* lusive) bit times. The application must program this field based on the
* speed of connection. The number of bit times added per PHY clock are: Hi
* gh-speed operation: - One 30-MHz PHY clock = 16 bit times - One 60-MHz P
* HY clock = 8 bit times Full-speed operation: - One 30-MHz PHY clock = 0.
* 4 bit times - One 60-MHz PHY clock = 0.2 bit times - One 48-MHz PHY cloc
* k = 0.25 bit times
* PSU_USB3_0_XHCI_GUSB2PHYCFG_TOUTCAL 0x7
* ULPI External VBUS Drive (ULPIExtVbusDrv) Selects supply source to drive
* 5V on VBUS, in the ULPI PHY. - 1'b0: PHY drives VBUS with internal char
* ge pump (default). - 1'b1: PHY drives VBUS with an external supply. (Onl
* y when RTL parameter DWC_USB3_HSPHY_INTERFACE = 2 or 3)
* PSU_USB3_0_XHCI_GUSB2PHYCFG_ULPIEXTVBUSDRV 0x1
* Global USB2 PHY Configuration Register The application must program this
* register before starting any transactions on either the SoC bus or the
* USB. In Device-only configurations, only one register is needed. In Host
* mode, per-port registers are implemented.
* (OFFSET, MASK, VALUE) (0XFE20C200, 0x00023FFFU ,0x00022457U)
*/
PSU_Mask_Write(USB3_0_XHCI_GUSB2PHYCFG_OFFSET,
0x00023FFFU, 0x00022457U);
/*##################################################################### */
/*
* Register : GFLADJ @ 0XFE20C630
* This field indicates the frame length adjustment to be applied when SOF/
* ITP counter is running on the ref_clk. This register value is used to ad
* just the ITP interval when GCTL[SOFITPSYNC] is set to '1'; SOF and ITP i
* nterval when GLADJ.GFLADJ_REFCLK_LPM_SEL is set to '1'. This field must
* be programmed to a non-zero value only if GFLADJ_REFCLK_LPM_SEL is set t
* o '1' or GCTL.SOFITPSYNC is set to '1'. The value is derived as follows:
* FLADJ_REF_CLK_FLADJ=((125000/ref_clk_period_integer)-(125000/ref_clk_pe
* riod)) * ref_clk_period where - the ref_clk_period_integer is the intege
* r value of the ref_clk period got by truncating the decimal (fractional)
* value that is programmed in the GUCTL.REF_CLK_PERIOD field. - the ref_c
* lk_period is the ref_clk period including the fractional value. Examples
* : If the ref_clk is 24 MHz then - GUCTL.REF_CLK_PERIOD = 41 - GFLADJ.GLA
* DJ_REFCLK_FLADJ = ((125000/41)-(125000/41.6666))*41.6666 = 2032 (ignorin
* g the fractional value) If the ref_clk is 48 MHz then - GUCTL.REF_CLK_PE
* RIOD = 20 - GFLADJ.GLADJ_REFCLK_FLADJ = ((125000/20)-(125000/20.8333))*2
* 0.8333 = 5208 (ignoring the fractional value)
* PSU_USB3_0_XHCI_GFLADJ_GFLADJ_REFCLK_FLADJ 0x0
* Global Frame Length Adjustment Register This register provides options f
* or the software to control the core behavior with respect to SOF (Start
* of Frame) and ITP (Isochronous Timestamp Packet) timers and frame timer
* functionality. It provides an option to override the fladj_30mhz_reg sid
* eband signal. In addition, it enables running SOF or ITP frame timer cou
* nters completely from the ref_clk. This facilitates hardware LPM in host
* mode with the SOF or ITP counters being run from the ref_clk signal.
* (OFFSET, MASK, VALUE) (0XFE20C630, 0x003FFF00U ,0x00000000U)
*/
PSU_Mask_Write(USB3_0_XHCI_GFLADJ_OFFSET, 0x003FFF00U, 0x00000000U);
/*##################################################################### */
/*
* Register : GUCTL1 @ 0XFE20C11C
* When this bit is set to '0', termsel, xcvrsel will become 0 during end o
* f resume while the opmode will become 0 once controller completes end of
* resume and enters U0 state (2 separate commandswill be issued). When th
* is bit is set to '1', all the termsel, xcvrsel, opmode becomes 0 during
* end of resume itself (only 1 command will be issued)
* PSU_USB3_0_XHCI_GUCTL1_RESUME_TERMSEL_XCVRSEL_UNIFY 0x1
* Reserved
* PSU_USB3_0_XHCI_GUCTL1_RESERVED_9 0x1
* Global User Control Register 1
* (OFFSET, MASK, VALUE) (0XFE20C11C, 0x00000600U ,0x00000600U)
*/
PSU_Mask_Write(USB3_0_XHCI_GUCTL1_OFFSET, 0x00000600U, 0x00000600U);
/*##################################################################### */
/*
* Register : GUCTL @ 0XFE20C12C
* Host IN Auto Retry (USBHstInAutoRetryEn) When set, this field enables th
* e Auto Retry feature. For IN transfers (non-isochronous) that encounter
* data packets with CRC errors or internal overrun scenarios, the auto ret
* ry feature causes the Host core to reply to the device with a non-termin
* ating retry ACK (that is, an ACK transaction packet with Retry = 1 and N
* umP != 0). If the Auto Retry feature is disabled (default), the core wil
* l respond with a terminating retry ACK (that is, an ACK transaction pack
* et with Retry = 1 and NumP = 0). - 1'b0: Auto Retry Disabled - 1'b1: Aut
* o Retry Enabled Note: This bit is also applicable to the device mode.
* PSU_USB3_0_XHCI_GUCTL_USBHSTINAUTORETRYEN 0x1
* Global User Control Register: This register provides a few options for t
* he software to control the core behavior in the Host mode. Most of the o
* ptions are used to improve host inter-operability with different devices
* .
* (OFFSET, MASK, VALUE) (0XFE20C12C, 0x00004000U ,0x00004000U)
*/
PSU_Mask_Write(USB3_0_XHCI_GUCTL_OFFSET, 0x00004000U, 0x00004000U);
/*##################################################################### */
/*
* UPDATING TWO PCIE REGISTERS DEFAULT VALUES, AS THESE REGISTERS HAVE INCO
* RRECT RESET VALUES IN SILICON.
*/
/*
* Register : ATTR_25 @ 0XFD480064
* If TRUE Completion Timeout Disable is supported. This is required to be
* TRUE for Endpoint and either setting allowed for Root ports. Drives Devi
* ce Capability 2 [4]; EP=0x0001; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_25_ATTR_CPL_TIMEOUT_DISABLE_SUPPORTED 0X1
* ATTR_25
* (OFFSET, MASK, VALUE) (0XFD480064, 0x00000200U ,0x00000200U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_25_OFFSET, 0x00000200U, 0x00000200U);
/*##################################################################### */
/*
* PCIE SETTINGS
*/
/*
* Register : ATTR_7 @ 0XFD48001C
* Specifies mask/settings for Base Address Register (BAR) 0. If BAR is not
* to be implemented, set to 32'h00000000. Bits are defined as follows: Me
* mory Space BAR [0] = Mem Space Indicator (set to 0) [2:1] = Type field (
* 10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask
* for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to 1, w
* here 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:
* n bits of \'7bBAR1,BAR0\'7d to 1. IO Space BAR 0] = IO Space Indicator (
* set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of B
* AR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in bytes.;
* EP=0x0004; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_7_ATTR_BAR0 0x0
* ATTR_7
* (OFFSET, MASK, VALUE) (0XFD48001C, 0x0000FFFFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_7_OFFSET, 0x0000FFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_8 @ 0XFD480020
* Specifies mask/settings for Base Address Register (BAR) 0. If BAR is not
* to be implemented, set to 32'h00000000. Bits are defined as follows: Me
* mory Space BAR [0] = Mem Space Indicator (set to 0) [2:1] = Type field (
* 10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = Mask
* for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to 1, w
* here 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost 63:
* n bits of \'7bBAR1,BAR0\'7d to 1. IO Space BAR 0] = IO Space Indicator (
* set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits of B
* AR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in bytes.;
* EP=0xFFF0; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_8_ATTR_BAR0 0x0
* ATTR_8
* (OFFSET, MASK, VALUE) (0XFD480020, 0x0000FFFFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_8_OFFSET, 0x0000FFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_9 @ 0XFD480024
* Specifies mask/settings for Base Address Register (BAR) 1 if BAR0 is a 3
* 2-bit BAR, or the upper bits of \'7bBAR1,BAR0\'7d if BAR0 is a 64-bit BA
* R. If BAR is not to be implemented, set to 32'h00000000. See BAR0 descri
* ption if this functions as the upper bits of a 64-bit BAR. Bits are defi
* ned as follows: Memory Space BAR (not upper bits of BAR0) [0] = Mem Spac
* e Indicator (set to 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit)
* [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if
* 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory aperture size
* in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR2,BAR1\'7d t
* o 1. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set
* to 0) [31:2] = Mask for writable bits of BAR; set uppermost 31:n bits t
* o 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_9_ATTR_BAR1 0x0
* ATTR_9
* (OFFSET, MASK, VALUE) (0XFD480024, 0x0000FFFFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_9_OFFSET, 0x0000FFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_10 @ 0XFD480028
* Specifies mask/settings for Base Address Register (BAR) 1 if BAR0 is a 3
* 2-bit BAR, or the upper bits of \'7bBAR1,BAR0\'7d if BAR0 is a 64-bit BA
* R. If BAR is not to be implemented, set to 32'h00000000. See BAR0 descri
* ption if this functions as the upper bits of a 64-bit BAR. Bits are defi
* ned as follows: Memory Space BAR (not upper bits of BAR0) [0] = Mem Spac
* e Indicator (set to 0) [2:1] = Type field (10 for 64-bit, 00 for 32-bit)
* [3] = Prefetchable (0 or 1) [31:4] = Mask for writable bits of BAR; if
* 32-bit BAR, set uppermost 31:n bits to 1, where 2^n=memory aperture size
* in bytes. If 64-bit BAR, set uppermost 63:n bits of \'7bBAR2,BAR1\'7d t
* o 1. IO Space BAR 0] = IO Space Indicator (set to 1) [1] = Reserved (set
* to 0) [31:2] = Mask for writable bits of BAR; set uppermost 31:n bits t
* o 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_10_ATTR_BAR1 0x0
* ATTR_10
* (OFFSET, MASK, VALUE) (0XFD480028, 0x0000FFFFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_10_OFFSET, 0x0000FFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_11 @ 0XFD48002C
* For an endpoint, specifies mask/settings for Base Address Register (BAR)
* 2 if BAR1 is a 32-bit BAR, or the upper bits of \'7bBAR2,BAR1\'7d if BA
* R1 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
* et to 32'h00000000. See BAR1 description if this functions as the upper
* bits of a 64-bit BAR. For a switch or root: This must be set to 00FF_FFF
* F. For an endpoint, bits are defined as follows: Memory Space BAR (not u
* pper bits of BAR1) [0] = Mem Space Indicator (set to 0) [2:1] = Type fie
* ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = M
* ask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to
* 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost
* 63:n bits of \'7bBAR3,BAR2\'7d to 1. IO Space BAR 0] = IO Space Indicat
* or (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits
* of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in byt
* es.; EP=0x0004; RP=0xFFFF
* PSU_PCIE_ATTRIB_ATTR_11_ATTR_BAR2 0xFFFF
* ATTR_11
* (OFFSET, MASK, VALUE) (0XFD48002C, 0x0000FFFFU ,0x0000FFFFU)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_11_OFFSET, 0x0000FFFFU, 0x0000FFFFU);
/*##################################################################### */
/*
* Register : ATTR_12 @ 0XFD480030
* For an endpoint, specifies mask/settings for Base Address Register (BAR)
* 2 if BAR1 is a 32-bit BAR, or the upper bits of \'7bBAR2,BAR1\'7d if BA
* R1 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
* et to 32'h00000000. See BAR1 description if this functions as the upper
* bits of a 64-bit BAR. For a switch or root: This must be set to 00FF_FFF
* F. For an endpoint, bits are defined as follows: Memory Space BAR (not u
* pper bits of BAR1) [0] = Mem Space Indicator (set to 0) [2:1] = Type fie
* ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = M
* ask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to
* 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost
* 63:n bits of \'7bBAR3,BAR2\'7d to 1. IO Space BAR 0] = IO Space Indicat
* or (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits
* of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in byt
* es.; EP=0xFFF0; RP=0x00FF
* PSU_PCIE_ATTRIB_ATTR_12_ATTR_BAR2 0xFF
* ATTR_12
* (OFFSET, MASK, VALUE) (0XFD480030, 0x0000FFFFU ,0x000000FFU)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_12_OFFSET, 0x0000FFFFU, 0x000000FFU);
/*##################################################################### */
/*
* Register : ATTR_13 @ 0XFD480034
* For an endpoint, specifies mask/settings for Base Address Register (BAR)
* 3 if BAR2 is a 32-bit BAR, or the upper bits of \'7bBAR3,BAR2\'7d if BA
* R2 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
* et to 32'h00000000. See BAR2 description if this functions as the upper
* bits of a 64-bit BAR. For a switch or root, this must be set to: FFFF_00
* 00 = IO Limit/Base Registers not implemented FFFF_F0F0 = IO Limit/Base R
* egisters use 16-bit decode FFFF_F1F1 = IO Limit/Base Registers use 32-bi
* t decode For an endpoint, bits are defined as follows: Memory Space BAR
* (not upper bits of BAR2) [0] = Mem Space Indicator (set to 0) [2:1] = Ty
* pe field (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:
* 4] = Mask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bi
* ts to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set upp
* ermost 63:n bits of \'7bBAR4,BAR3\'7d to 1. IO Space BAR 0] = IO Space I
* ndicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable
* bits of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size
* in bytes.; EP=0xFFFF; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_13_ATTR_BAR3 0x0
* ATTR_13
* (OFFSET, MASK, VALUE) (0XFD480034, 0x0000FFFFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_13_OFFSET, 0x0000FFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_14 @ 0XFD480038
* For an endpoint, specifies mask/settings for Base Address Register (BAR)
* 3 if BAR2 is a 32-bit BAR, or the upper bits of \'7bBAR3,BAR2\'7d if BA
* R2 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
* et to 32'h00000000. See BAR2 description if this functions as the upper
* bits of a 64-bit BAR. For a switch or root, this must be set to: FFFF_00
* 00 = IO Limit/Base Registers not implemented FFFF_F0F0 = IO Limit/Base R
* egisters use 16-bit decode FFFF_F1F1 = IO Limit/Base Registers use 32-bi
* t decode For an endpoint, bits are defined as follows: Memory Space BAR
* (not upper bits of BAR2) [0] = Mem Space Indicator (set to 0) [2:1] = Ty
* pe field (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:
* 4] = Mask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bi
* ts to 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set upp
* ermost 63:n bits of \'7bBAR4,BAR3\'7d to 1. IO Space BAR 0] = IO Space I
* ndicator (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable
* bits of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size
* in bytes.; EP=0xFFFF; RP=0xFFFF
* PSU_PCIE_ATTRIB_ATTR_14_ATTR_BAR3 0xFFFF
* ATTR_14
* (OFFSET, MASK, VALUE) (0XFD480038, 0x0000FFFFU ,0x0000FFFFU)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_14_OFFSET, 0x0000FFFFU, 0x0000FFFFU);
/*##################################################################### */
/*
* Register : ATTR_15 @ 0XFD48003C
* For an endpoint, specifies mask/settings for Base Address Register (BAR)
* 4 if BAR3 is a 32-bit BAR, or the upper bits of \'7bBAR4,BAR3\'7d if BA
* R3 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
* et to 32'h00000000. See BAR3 description if this functions as the upper
* bits of a 64-bit BAR. For a switch or root: This must be set to FFF0_FFF
* 0. For an endpoint, bits are defined as follows: Memory Space BAR (not u
* pper bits of BAR3) [0] = Mem Space Indicator (set to 0) [2:1] = Type fie
* ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = M
* ask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to
* 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost
* 63:n bits of \'7bBAR5,BAR4\'7d to 1. IO Space BAR 0] = IO Space Indicat
* or (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits
* of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in byt
* es.; EP=0x0004; RP=0xFFF0
* PSU_PCIE_ATTRIB_ATTR_15_ATTR_BAR4 0xFFF0
* ATTR_15
* (OFFSET, MASK, VALUE) (0XFD48003C, 0x0000FFFFU ,0x0000FFF0U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_15_OFFSET, 0x0000FFFFU, 0x0000FFF0U);
/*##################################################################### */
/*
* Register : ATTR_16 @ 0XFD480040
* For an endpoint, specifies mask/settings for Base Address Register (BAR)
* 4 if BAR3 is a 32-bit BAR, or the upper bits of \'7bBAR4,BAR3\'7d if BA
* R3 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
* et to 32'h00000000. See BAR3 description if this functions as the upper
* bits of a 64-bit BAR. For a switch or root: This must be set to FFF0_FFF
* 0. For an endpoint, bits are defined as follows: Memory Space BAR (not u
* pper bits of BAR3) [0] = Mem Space Indicator (set to 0) [2:1] = Type fie
* ld (10 for 64-bit, 00 for 32-bit) [3] = Prefetchable (0 or 1) [31:4] = M
* ask for writable bits of BAR; if 32-bit BAR, set uppermost 31:n bits to
* 1, where 2^n=memory aperture size in bytes. If 64-bit BAR, set uppermost
* 63:n bits of \'7bBAR5,BAR4\'7d to 1. IO Space BAR 0] = IO Space Indicat
* or (set to 1) [1] = Reserved (set to 0) [31:2] = Mask for writable bits
* of BAR; set uppermost 31:n bits to 1, where 2^n=i/o aperture size in byt
* es.; EP=0xFFF0; RP=0xFFF0
* PSU_PCIE_ATTRIB_ATTR_16_ATTR_BAR4 0xFFF0
* ATTR_16
* (OFFSET, MASK, VALUE) (0XFD480040, 0x0000FFFFU ,0x0000FFF0U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_16_OFFSET, 0x0000FFFFU, 0x0000FFF0U);
/*##################################################################### */
/*
* Register : ATTR_17 @ 0XFD480044
* For an endpoint, specifies mask/settings for Base Address Register (BAR)
* 5 if BAR4 is a 32-bit BAR, or the upper bits of \'7bBAR5,BAR4\'7d if BA
* R4 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
* et to 32'h00000000. See BAR4 description if this functions as the upper
* bits of a 64-bit BAR. For a switch or root, this must be set to: 0000_00
* 00 = Prefetchable Memory Limit/Base Registers not implemented FFF0_FFF0
* = 32-bit Prefetchable Memory Limit/Base implemented FFF1_FFF1 = 64-bit P
* refetchable Memory Limit/Base implemented For an endpoint, bits are defi
* ned as follows: Memory Space BAR (not upper bits of BAR4) [0] = Mem Spac
* e Indicator (set to 0) [2:1] = Type field (00 for 32-bit; BAR5 cannot be
* lower part of a 64-bit BAR) [3] = Prefetchable (0 or 1) [31:4] = Mask f
* or writable bits of BAR; set uppermost 31:n bits to 1, where 2^n=memory
* aperture size in bytes. IO Space BAR 0] = IO Space Indicator (set to 1)
* [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set up
* permost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF
* ; RP=0xFFF1
* PSU_PCIE_ATTRIB_ATTR_17_ATTR_BAR5 0xFFF1
* ATTR_17
* (OFFSET, MASK, VALUE) (0XFD480044, 0x0000FFFFU ,0x0000FFF1U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_17_OFFSET, 0x0000FFFFU, 0x0000FFF1U);
/*##################################################################### */
/*
* Register : ATTR_18 @ 0XFD480048
* For an endpoint, specifies mask/settings for Base Address Register (BAR)
* 5 if BAR4 is a 32-bit BAR, or the upper bits of \'7bBAR5,BAR4\'7d if BA
* R4 is the lower part of a 64-bit BAR. If BAR is not to be implemented, s
* et to 32'h00000000. See BAR4 description if this functions as the upper
* bits of a 64-bit BAR. For a switch or root, this must be set to: 0000_00
* 00 = Prefetchable Memory Limit/Base Registers not implemented FFF0_FFF0
* = 32-bit Prefetchable Memory Limit/Base implemented FFF1_FFF1 = 64-bit P
* refetchable Memory Limit/Base implemented For an endpoint, bits are defi
* ned as follows: Memory Space BAR (not upper bits of BAR4) [0] = Mem Spac
* e Indicator (set to 0) [2:1] = Type field (00 for 32-bit; BAR5 cannot be
* lower part of a 64-bit BAR) [3] = Prefetchable (0 or 1) [31:4] = Mask f
* or writable bits of BAR; set uppermost 31:n bits to 1, where 2^n=memory
* aperture size in bytes. IO Space BAR 0] = IO Space Indicator (set to 1)
* [1] = Reserved (set to 0) [31:2] = Mask for writable bits of BAR; set up
* permost 31:n bits to 1, where 2^n=i/o aperture size in bytes.; EP=0xFFFF
* ; RP=0xFFF1
* PSU_PCIE_ATTRIB_ATTR_18_ATTR_BAR5 0xFFF1
* ATTR_18
* (OFFSET, MASK, VALUE) (0XFD480048, 0x0000FFFFU ,0x0000FFF1U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_18_OFFSET, 0x0000FFFFU, 0x0000FFF1U);
/*##################################################################### */
/*
* Register : ATTR_27 @ 0XFD48006C
* Specifies maximum payload supported. Valid settings are: 0- 128 bytes, 1
* - 256 bytes, 2- 512 bytes, 3- 1024 bytes. Transferred to the Device Capa
* bilities register. The values: 4-2048 bytes, 5- 4096 bytes are not suppo
* rted; EP=0x0001; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_27_ATTR_DEV_CAP_MAX_PAYLOAD_SUPPORTED 1
* Endpoint L1 Acceptable Latency. Records the latency that the endpoint ca
* n withstand on transitions from L1 state to L0 (if L1 state supported).
* Valid settings are: 0h less than 1us, 1h 1 to 2us, 2h 2 to 4us, 3h 4 to
* 8us, 4h 8 to 16us, 5h 16 to 32us, 6h 32 to 64us, 7h more than 64us. For
* Endpoints only. Must be 0h for other devices.; EP=0x0007; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_27_ATTR_DEV_CAP_ENDPOINT_L1_LATENCY 0x0
* ATTR_27
* (OFFSET, MASK, VALUE) (0XFD48006C, 0x00000738U ,0x00000100U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_27_OFFSET, 0x00000738U, 0x00000100U);
/*##################################################################### */
/*
* Register : ATTR_50 @ 0XFD4800C8
* Identifies the type of device/port as follows: 0000b PCI Express Endpoin
* t device, 0001b Legacy PCI Express Endpoint device, 0100b Root Port of P
* CI Express Root Complex, 0101b Upstream Port of PCI Express Switch, 0110
* b Downstream Port of PCI Express Switch, 0111b PCIE Express to PCI/PCI-X
* Bridge, 1000b PCI/PCI-X to PCI Express Bridge. Transferred to PCI Expre
* ss Capabilities register. Must be consistent with IS_SWITCH and UPSTREAM
* _FACING settings.; EP=0x0000; RP=0x0004
* PSU_PCIE_ATTRIB_ATTR_50_ATTR_PCIE_CAP_DEVICE_PORT_TYPE 4
* PCIe Capability's Next Capability Offset pointer to the next item in the
* capabilities list, or 00h if this is the final capability.; EP=0x009C;
* RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_50_ATTR_PCIE_CAP_NEXTPTR 0
* ATTR_50
* (OFFSET, MASK, VALUE) (0XFD4800C8, 0x0000FFF0U ,0x00000040U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_50_OFFSET, 0x0000FFF0U, 0x00000040U);
/*##################################################################### */
/*
* Register : ATTR_105 @ 0XFD4801A4
* Number of credits that should be advertised for Completion data received
* on Virtual Channel 0. The bytes advertised must be less than or equal t
* o the bram bytes available. See VC0_RX_RAM_LIMIT; EP=0x0172; RP=0x00CD
* PSU_PCIE_ATTRIB_ATTR_105_ATTR_VC0_TOTAL_CREDITS_CD 0xCD
* ATTR_105
* (OFFSET, MASK, VALUE) (0XFD4801A4, 0x000007FFU ,0x000000CDU)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_105_OFFSET,
0x000007FFU, 0x000000CDU);
/*##################################################################### */
/*
* Register : ATTR_106 @ 0XFD4801A8
* Number of credits that should be advertised for Completion headers recei
* ved on Virtual Channel 0. The sum of the posted, non posted, and complet
* ion header credits must be <= 80; EP=0x0048; RP=0x0024
* PSU_PCIE_ATTRIB_ATTR_106_ATTR_VC0_TOTAL_CREDITS_CH 0x24
* Number of credits that should be advertised for Non-Posted headers recei
* ved on Virtual Channel 0. The number of non posted data credits advertis
* ed by the block is equal to the number of non posted header credits. The
* sum of the posted, non posted, and completion header credits must be <=
* 80; EP=0x0004; RP=0x000C
* PSU_PCIE_ATTRIB_ATTR_106_ATTR_VC0_TOTAL_CREDITS_NPH 0xC
* ATTR_106
* (OFFSET, MASK, VALUE) (0XFD4801A8, 0x00003FFFU ,0x00000624U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_106_OFFSET,
0x00003FFFU, 0x00000624U);
/*##################################################################### */
/*
* Register : ATTR_107 @ 0XFD4801AC
* Number of credits that should be advertised for Non-Posted data received
* on Virtual Channel 0. The number of non posted data credits advertised
* by the block is equal to two times the number of non posted header credi
* ts if atomic operations are supported or is equal to the number of non p
* osted header credits if atomic operations are not supported. The bytes a
* dvertised must be less than or equal to the bram bytes available. See VC
* 0_RX_RAM_LIMIT; EP=0x0008; RP=0x0018
* PSU_PCIE_ATTRIB_ATTR_107_ATTR_VC0_TOTAL_CREDITS_NPD 0x18
* ATTR_107
* (OFFSET, MASK, VALUE) (0XFD4801AC, 0x000007FFU ,0x00000018U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_107_OFFSET,
0x000007FFU, 0x00000018U);
/*##################################################################### */
/*
* Register : ATTR_108 @ 0XFD4801B0
* Number of credits that should be advertised for Posted data received on
* Virtual Channel 0. The bytes advertised must be less than or equal to th
* e bram bytes available. See VC0_RX_RAM_LIMIT; EP=0x0020; RP=0x00B5
* PSU_PCIE_ATTRIB_ATTR_108_ATTR_VC0_TOTAL_CREDITS_PD 0xB5
* ATTR_108
* (OFFSET, MASK, VALUE) (0XFD4801B0, 0x000007FFU ,0x000000B5U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_108_OFFSET,
0x000007FFU, 0x000000B5U);
/*##################################################################### */
/*
* Register : ATTR_109 @ 0XFD4801B4
* Not currently in use. Invert ECRC generated by block when trn_tecrc_gen_
* n and trn_terrfwd_n are asserted.; EP=0x0000; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_109_ATTR_TECRC_EP_INV 0x0
* Enables td bit clear and ECRC trim on received TLP's FALSE == don't trim
* TRUE == trim.; EP=0x0001; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_109_ATTR_RECRC_CHK_TRIM 0x1
* Enables ECRC check on received TLP's 0 == don't check 1 == always check
* 3 == check if enabled by ECRC check enable bit of AER cap structure; EP=
* 0x0003; RP=0x0003
* PSU_PCIE_ATTRIB_ATTR_109_ATTR_RECRC_CHK 0x3
* Index of last packet buffer used by TX TLM (i.e. number of buffers - 1).
* Calculated from max payload size supported and the number of brams conf
* igured for transmit; EP=0x001C; RP=0x001C
* PSU_PCIE_ATTRIB_ATTR_109_ATTR_VC0_TX_LASTPACKET 0x1c
* Number of credits that should be advertised for Posted headers received
* on Virtual Channel 0. The sum of the posted, non posted, and completion
* header credits must be <= 80; EP=0x0004; RP=0x0020
* PSU_PCIE_ATTRIB_ATTR_109_ATTR_VC0_TOTAL_CREDITS_PH 0x20
* ATTR_109
* (OFFSET, MASK, VALUE) (0XFD4801B4, 0x0000FFFFU ,0x00007E20U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_109_OFFSET,
0x0000FFFFU, 0x00007E20U);
/*##################################################################### */
/*
* Register : ATTR_34 @ 0XFD480088
* Specifies values to be transferred to Header Type register. Bit 7 should
* be set to '0' indicating single-function device. Bit 0 identifies heade
* r as Type 0 or Type 1, with '0' indicating a Type 0 header.; EP=0x0000;
* RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_34_ATTR_HEADER_TYPE 0x1
* ATTR_34
* (OFFSET, MASK, VALUE) (0XFD480088, 0x000000FFU ,0x00000001U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_34_OFFSET, 0x000000FFU, 0x00000001U);
/*##################################################################### */
/*
* Register : ATTR_53 @ 0XFD4800D4
* PM Capability's Next Capability Offset pointer to the next item in the c
* apabilities list, or 00h if this is the final capability.; EP=0x0048; RP
* =0x0060
* PSU_PCIE_ATTRIB_ATTR_53_ATTR_PM_CAP_NEXTPTR 0x60
* ATTR_53
* (OFFSET, MASK, VALUE) (0XFD4800D4, 0x000000FFU ,0x00000060U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_53_OFFSET, 0x000000FFU, 0x00000060U);
/*##################################################################### */
/*
* Register : ATTR_41 @ 0XFD4800A4
* MSI Per-Vector Masking Capable. The value is transferred to the MSI Cont
* rol Register[8]. When set, adds Mask and Pending Dword to Cap structure;
* EP=0x0000; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_PER_VECTOR_MASKING_CAPABLE 0x0
* Indicates that the MSI structures exists. If this is FALSE, then the MSI
* structure cannot be accessed via either the link or the management port
* .; EP=0x0001; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_ON 0
* MSI Capability's Next Capability Offset pointer to the next item in the
* capabilities list, or 00h if this is the final capability.; EP=0x0060; R
* P=0x0000
* PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_NEXTPTR 0x0
* Indicates that the MSI structures exists. If this is FALSE, then the MSI
* structure cannot be accessed via either the link or the management port
* .; EP=0x0001; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_41_ATTR_MSI_CAP_ON 0
* ATTR_41
* (OFFSET, MASK, VALUE) (0XFD4800A4, 0x000003FFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_41_OFFSET, 0x000003FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_97 @ 0XFD480184
* Maximum Link Width. Valid settings are: 000001b x1, 000010b x2, 000100b
* x4, 001000b x8.; EP=0x0004; RP=0x0004
* PSU_PCIE_ATTRIB_ATTR_97_ATTR_LINK_CAP_MAX_LINK_WIDTH 0x1
* Used by LTSSM to set Maximum Link Width. Valid settings are: 000001b [x1
* ], 000010b [x2], 000100b [x4], 001000b [x8].; EP=0x0004; RP=0x0004
* PSU_PCIE_ATTRIB_ATTR_97_ATTR_LTSSM_MAX_LINK_WIDTH 0x1
* ATTR_97
* (OFFSET, MASK, VALUE) (0XFD480184, 0x00000FFFU ,0x00000041U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_97_OFFSET, 0x00000FFFU, 0x00000041U);
/*##################################################################### */
/*
* Register : ATTR_100 @ 0XFD480190
* TRUE specifies upstream-facing port. FALSE specifies downstream-facing p
* ort.; EP=0x0001; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_100_ATTR_UPSTREAM_FACING 0x0
* ATTR_100
* (OFFSET, MASK, VALUE) (0XFD480190, 0x00000040U ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_100_OFFSET,
0x00000040U, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_101 @ 0XFD480194
* Enable the routing of message TLPs to the user through the TRN RX interf
* ace. A bit value of 1 enables routing of the message TLP to the user. Me
* ssages are always decoded by the message decoder. Bit 0 - ERR COR, Bit 1
* - ERR NONFATAL, Bit 2 - ERR FATAL, Bit 3 - INTA Bit 4 - INTB, Bit 5 - I
* NTC, Bit 6 - INTD, Bit 7 PM_PME, Bit 8 - PME_TO_ACK, Bit 9 - unlock, Bit
* 10 PME_Turn_Off; EP=0x0000; RP=0x07FF
* PSU_PCIE_ATTRIB_ATTR_101_ATTR_ENABLE_MSG_ROUTE 0x7FF
* Disable BAR filtering. Does not change the behavior of the bar hit outpu
* ts; EP=0x0000; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_101_ATTR_DISABLE_BAR_FILTERING 0x1
* ATTR_101
* (OFFSET, MASK, VALUE) (0XFD480194, 0x0000FFE2U ,0x0000FFE2U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_101_OFFSET,
0x0000FFE2U, 0x0000FFE2U);
/*##################################################################### */
/*
* Register : ATTR_37 @ 0XFD480094
* Link Bandwidth notification capability. Indicates support for the link b
* andwidth notification status and interrupt mechanism. Required for Root.
* ; EP=0x0000; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_37_ATTR_LINK_CAP_LINK_BANDWIDTH_NOTIFICATION_CAP 0x1
* Sets the ASPM Optionality Compliance bit, to comply with the 2.1 ASPM Op
* tionality ECN. Transferred to the Link Capabilities register.; EP=0x0001
* ; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_37_ATTR_LINK_CAP_ASPM_OPTIONALITY 0x1
* ATTR_37
* (OFFSET, MASK, VALUE) (0XFD480094, 0x00004200U ,0x00004200U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_37_OFFSET, 0x00004200U, 0x00004200U);
/*##################################################################### */
/*
* Register : ATTR_93 @ 0XFD480174
* Enables the Replay Timer to use the user-defined LL_REPLAY_TIMEOUT value
* (or combined with the built-in value, depending on LL_REPLAY_TIMEOUT_FU
* NC). If FALSE, the built-in value is used.; EP=0x0000; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_93_ATTR_LL_REPLAY_TIMEOUT_EN 0x1
* Sets a user-defined timeout for the Replay Timer to force cause the retr
* ansmission of unacknowledged TLPs; refer to LL_REPLAY_TIMEOUT_EN and LL_
* REPLAY_TIMEOUT_FUNC to see how this value is used. The unit for this att
* ribute is in symbol times, which is 4ns at GEN1 speeds and 2ns at GEN2.;
* EP=0x0000; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_93_ATTR_LL_REPLAY_TIMEOUT 0x1000
* ATTR_93
* (OFFSET, MASK, VALUE) (0XFD480174, 0x0000FFFFU ,0x00009000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_93_OFFSET, 0x0000FFFFU, 0x00009000U);
/*##################################################################### */
/*
* Register : ID @ 0XFD480200
* Device ID for the the PCIe Cap Structure Device ID field
* PSU_PCIE_ATTRIB_ID_CFG_DEV_ID 0xd021
* Vendor ID for the PCIe Cap Structure Vendor ID field
* PSU_PCIE_ATTRIB_ID_CFG_VEND_ID 0x10ee
* ID
* (OFFSET, MASK, VALUE) (0XFD480200, 0xFFFFFFFFU ,0x10EED021U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ID_OFFSET, 0xFFFFFFFFU, 0x10EED021U);
/*##################################################################### */
/*
* Register : SUBSYS_ID @ 0XFD480204
* Subsystem ID for the the PCIe Cap Structure Subsystem ID field
* PSU_PCIE_ATTRIB_SUBSYS_ID_CFG_SUBSYS_ID 0x7
* Subsystem Vendor ID for the PCIe Cap Structure Subsystem Vendor ID field
* PSU_PCIE_ATTRIB_SUBSYS_ID_CFG_SUBSYS_VEND_ID 0x10ee
* SUBSYS_ID
* (OFFSET, MASK, VALUE) (0XFD480204, 0xFFFFFFFFU ,0x10EE0007U)
*/
PSU_Mask_Write(PCIE_ATTRIB_SUBSYS_ID_OFFSET,
0xFFFFFFFFU, 0x10EE0007U);
/*##################################################################### */
/*
* Register : REV_ID @ 0XFD480208
* Revision ID for the the PCIe Cap Structure
* PSU_PCIE_ATTRIB_REV_ID_CFG_REV_ID 0x0
* REV_ID
* (OFFSET, MASK, VALUE) (0XFD480208, 0x000000FFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_REV_ID_OFFSET, 0x000000FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_24 @ 0XFD480060
* Code identifying basic function, subclass and applicable programming int
* erface. Transferred to the Class Code register.; EP=0x8000; RP=0x8000
* PSU_PCIE_ATTRIB_ATTR_24_ATTR_CLASS_CODE 0x400
* ATTR_24
* (OFFSET, MASK, VALUE) (0XFD480060, 0x0000FFFFU ,0x00000400U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_24_OFFSET, 0x0000FFFFU, 0x00000400U);
/*##################################################################### */
/*
* Register : ATTR_25 @ 0XFD480064
* Code identifying basic function, subclass and applicable programming int
* erface. Transferred to the Class Code register.; EP=0x0005; RP=0x0006
* PSU_PCIE_ATTRIB_ATTR_25_ATTR_CLASS_CODE 0x6
* INTX Interrupt Generation Capable. If FALSE, this will cause Command[10]
* to be hardwired to 0.; EP=0x0001; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_25_ATTR_CMD_INTX_IMPLEMENTED 0
* ATTR_25
* (OFFSET, MASK, VALUE) (0XFD480064, 0x000001FFU ,0x00000006U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_25_OFFSET, 0x000001FFU, 0x00000006U);
/*##################################################################### */
/*
* Register : ATTR_4 @ 0XFD480010
* Indicates that the AER structures exists. If this is FALSE, then the AER
* structure cannot be accessed via either the link or the management port
* , and AER will be considered to not be present for error management task
* s (such as what types of error messages are sent if an error is detected
* ).; EP=0x0001; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_4_ATTR_AER_CAP_ON 0
* Indicates that the AER structures exists. If this is FALSE, then the AER
* structure cannot be accessed via either the link or the management port
* , and AER will be considered to not be present for error management task
* s (such as what types of error messages are sent if an error is detected
* ).; EP=0x0001; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_4_ATTR_AER_CAP_ON 0
* ATTR_4
* (OFFSET, MASK, VALUE) (0XFD480010, 0x00001000U ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_4_OFFSET, 0x00001000U, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_89 @ 0XFD480164
* VSEC's Next Capability Offset pointer to the next item in the capabiliti
* es list, or 000h if this is the final capability.; EP=0x0140; RP=0x0140
* PSU_PCIE_ATTRIB_ATTR_89_ATTR_VSEC_CAP_NEXTPTR 0
* ATTR_89
* (OFFSET, MASK, VALUE) (0XFD480164, 0x00001FFEU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_89_OFFSET, 0x00001FFEU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_79 @ 0XFD48013C
* CRS SW Visibility. Indicates RC can return CRS to SW. Transferred to the
* Root Capabilities register.; EP=0x0000; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_79_ATTR_ROOT_CAP_CRS_SW_VISIBILITY 1
* ATTR_79
* (OFFSET, MASK, VALUE) (0XFD48013C, 0x00000020U ,0x00000020U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_79_OFFSET, 0x00000020U, 0x00000020U);
/*##################################################################### */
/*
* Register : ATTR_43 @ 0XFD4800AC
* Indicates that the MSIX structures exists. If this is FALSE, then the MS
* IX structure cannot be accessed via either the link or the management po
* rt.; EP=0x0001; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_43_ATTR_MSIX_CAP_ON 0
* ATTR_43
* (OFFSET, MASK, VALUE) (0XFD4800AC, 0x00000100U ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_43_OFFSET, 0x00000100U, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_48 @ 0XFD4800C0
* MSI-X Table Size. This value is transferred to the MSI-X Message Control
* [10:0] field. Set to 0 if MSI-X is not enabled. Note that the core does
* not implement the table; that must be implemented in user logic.; EP=0x0
* 003; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_48_ATTR_MSIX_CAP_TABLE_SIZE 0
* ATTR_48
* (OFFSET, MASK, VALUE) (0XFD4800C0, 0x000007FFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_48_OFFSET, 0x000007FFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_46 @ 0XFD4800B8
* MSI-X Table Offset. This value is transferred to the MSI-X Table Offset
* field. Set to 0 if MSI-X is not enabled.; EP=0x0001; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_46_ATTR_MSIX_CAP_TABLE_OFFSET 0
* ATTR_46
* (OFFSET, MASK, VALUE) (0XFD4800B8, 0x0000FFFFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_46_OFFSET, 0x0000FFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_47 @ 0XFD4800BC
* MSI-X Table Offset. This value is transferred to the MSI-X Table Offset
* field. Set to 0 if MSI-X is not enabled.; EP=0x0000; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_47_ATTR_MSIX_CAP_TABLE_OFFSET 0
* ATTR_47
* (OFFSET, MASK, VALUE) (0XFD4800BC, 0x00001FFFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_47_OFFSET, 0x00001FFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_44 @ 0XFD4800B0
* MSI-X Pending Bit Array Offset This value is transferred to the MSI-X PB
* A Offset field. Set to 0 if MSI-X is not enabled.; EP=0x0001; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_44_ATTR_MSIX_CAP_PBA_OFFSET 0
* ATTR_44
* (OFFSET, MASK, VALUE) (0XFD4800B0, 0x0000FFFFU ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_44_OFFSET, 0x0000FFFFU, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_45 @ 0XFD4800B4
* MSI-X Pending Bit Array Offset This value is transferred to the MSI-X PB
* A Offset field. Set to 0 if MSI-X is not enabled.; EP=0x1000; RP=0x0000
* PSU_PCIE_ATTRIB_ATTR_45_ATTR_MSIX_CAP_PBA_OFFSET 0
* ATTR_45
* (OFFSET, MASK, VALUE) (0XFD4800B4, 0x0000FFF8U ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_45_OFFSET, 0x0000FFF8U, 0x00000000U);
/*##################################################################### */
/*
* Register : CB @ 0XFD48031C
* DT837748 Enable
* PSU_PCIE_ATTRIB_CB_CB1 0x0
* ECO Register 1
* (OFFSET, MASK, VALUE) (0XFD48031C, 0x00000002U ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_CB_OFFSET, 0x00000002U, 0x00000000U);
/*##################################################################### */
/*
* Register : ATTR_35 @ 0XFD48008C
* Active State PM Support. Indicates the level of active state power manag
* ement supported by the selected PCI Express Link, encoded as follows: 0
* Reserved, 1 L0s entry supported, 2 Reserved, 3 L0s and L1 entry supporte
* d.; EP=0x0001; RP=0x0001
* PSU_PCIE_ATTRIB_ATTR_35_ATTR_LINK_CAP_ASPM_SUPPORT 0x0
* ATTR_35
* (OFFSET, MASK, VALUE) (0XFD48008C, 0x00003000U ,0x00000000U)
*/
PSU_Mask_Write(PCIE_ATTRIB_ATTR_35_OFFSET, 0x00003000U, 0x00000000U);
/*##################################################################### */
/*
* PUTTING PCIE CONTROL IN RESET
*/
/*
* Register : RST_FPD_TOP @ 0XFD1A0100
* PCIE control block level reset
* PSU_CRF_APB_RST_FPD_TOP_PCIE_CTRL_RESET 0X0
* FPD Block level software controlled reset
* (OFFSET, MASK, VALUE) (0XFD1A0100, 0x00020000U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_RST_FPD_TOP_OFFSET, 0x00020000U, 0x00000000U);
/*##################################################################### */
/*
* PCIE GPIO RESET
*/
/*
* MASK_DATA_0_LSW LOW BANK [15:0]
*/
/*
* MASK_DATA_0_MSW LOW BANK [25:16]
*/
/*
* MASK_DATA_1_LSW LOW BANK [41:26]
*/
/*
* Register : MASK_DATA_1_LSW @ 0XFF0A0008
* Operation is the same as MASK_DATA_0_LSW[MASK_0_LSW]
* PSU_GPIO_MASK_DATA_1_LSW_MASK_1_LSW 0xffdf
* Operation is the same as MASK_DATA_0_LSW[DATA_0_LSW]
* PSU_GPIO_MASK_DATA_1_LSW_DATA_1_LSW 0x20
* Maskable Output Data (GPIO Bank1, MIO, Lower 16bits)
* (OFFSET, MASK, VALUE) (0XFF0A0008, 0xFFFFFFFFU ,0xFFDF0020U)
*/
PSU_Mask_Write(GPIO_MASK_DATA_1_LSW_OFFSET,
0xFFFFFFFFU, 0xFFDF0020U);
/*##################################################################### */
/*
* MASK_DATA_1_MSW HIGH BANK [51:42]
*/
/*
* MASK_DATA_1_LSW HIGH BANK [67:52]
*/
/*
* MASK_DATA_1_LSW HIGH BANK [77:68]
*/
/*
* CHECK PLL LOCK FOR LANE0
*/
/*
* Register : L0_PLL_STATUS_READ_1 @ 0XFD4023E4
* Status Read value of PLL Lock
* PSU_SERDES_L0_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
* (OFFSET, MASK, VALUE) (0XFD4023E4, 0x00000010U ,0x00000010U)
*/
mask_poll(SERDES_L0_PLL_STATUS_READ_1_OFFSET, 0x00000010U);
/*##################################################################### */
/*
* CHECK PLL LOCK FOR LANE1
*/
/*
* Register : L1_PLL_STATUS_READ_1 @ 0XFD4063E4
* Status Read value of PLL Lock
* PSU_SERDES_L1_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
* (OFFSET, MASK, VALUE) (0XFD4063E4, 0x00000010U ,0x00000010U)
*/
mask_poll(SERDES_L1_PLL_STATUS_READ_1_OFFSET, 0x00000010U);
/*##################################################################### */
/*
* CHECK PLL LOCK FOR LANE2
*/
/*
* Register : L2_PLL_STATUS_READ_1 @ 0XFD40A3E4
* Status Read value of PLL Lock
* PSU_SERDES_L2_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
* (OFFSET, MASK, VALUE) (0XFD40A3E4, 0x00000010U ,0x00000010U)
*/
mask_poll(SERDES_L2_PLL_STATUS_READ_1_OFFSET, 0x00000010U);
/*##################################################################### */
/*
* CHECK PLL LOCK FOR LANE3
*/
/*
* Register : L3_PLL_STATUS_READ_1 @ 0XFD40E3E4
* Status Read value of PLL Lock
* PSU_SERDES_L3_PLL_STATUS_READ_1_PLL_LOCK_STATUS_READ 1
* (OFFSET, MASK, VALUE) (0XFD40E3E4, 0x00000010U ,0x00000010U)
*/
mask_poll(SERDES_L3_PLL_STATUS_READ_1_OFFSET, 0x00000010U);
/*##################################################################### */
/*
* SATA AHCI VENDOR SETTING
*/
/*
* Register : PP2C @ 0XFD0C00AC
* CIBGMN: COMINIT Burst Gap Minimum.
* PSU_SATA_AHCI_VENDOR_PP2C_CIBGMN 0x18
* CIBGMX: COMINIT Burst Gap Maximum.
* PSU_SATA_AHCI_VENDOR_PP2C_CIBGMX 0x40
* CIBGN: COMINIT Burst Gap Nominal.
* PSU_SATA_AHCI_VENDOR_PP2C_CIBGN 0x18
* CINMP: COMINIT Negate Minimum Period.
* PSU_SATA_AHCI_VENDOR_PP2C_CINMP 0x28
* PP2C - Port Phy2Cfg Register. This register controls the configuration o
* f the Phy Control OOB timing for the COMINIT parameters for either Port
* 0 or Port 1. The Port configured is controlled by the value programmed i
* nto the Port Config Register.
* (OFFSET, MASK, VALUE) (0XFD0C00AC, 0xFFFFFFFFU ,0x28184018U)
*/
PSU_Mask_Write(SATA_AHCI_VENDOR_PP2C_OFFSET,
0xFFFFFFFFU, 0x28184018U);
/*##################################################################### */
/*
* Register : PP3C @ 0XFD0C00B0
* CWBGMN: COMWAKE Burst Gap Minimum.
* PSU_SATA_AHCI_VENDOR_PP3C_CWBGMN 0x06
* CWBGMX: COMWAKE Burst Gap Maximum.
* PSU_SATA_AHCI_VENDOR_PP3C_CWBGMX 0x14
* CWBGN: COMWAKE Burst Gap Nominal.
* PSU_SATA_AHCI_VENDOR_PP3C_CWBGN 0x08
* CWNMP: COMWAKE Negate Minimum Period.
* PSU_SATA_AHCI_VENDOR_PP3C_CWNMP 0x0E
* PP3C - Port Phy3CfgRegister. This register controls the configuration of
* the Phy Control OOB timing for the COMWAKE parameters for either Port 0
* or Port 1. The Port configured is controlled by the value programmed in
* to the Port Config Register.
* (OFFSET, MASK, VALUE) (0XFD0C00B0, 0xFFFFFFFFU ,0x0E081406U)
*/
PSU_Mask_Write(SATA_AHCI_VENDOR_PP3C_OFFSET,
0xFFFFFFFFU, 0x0E081406U);
/*##################################################################### */
/*
* Register : PP4C @ 0XFD0C00B4
* BMX: COM Burst Maximum.
* PSU_SATA_AHCI_VENDOR_PP4C_BMX 0x13
* BNM: COM Burst Nominal.
* PSU_SATA_AHCI_VENDOR_PP4C_BNM 0x08
* SFD: Signal Failure Detection, if the signal detection de-asserts for a
* time greater than this then the OOB detector will determine this is a li
* ne idle and cause the PhyInit state machine to exit the Phy Ready State.
* A value of zero disables the Signal Failure Detector. The value is base
* d on the OOB Detector Clock typically (PMCLK Clock Period) * SFD giving
* a nominal time of 500ns based on a 150MHz PMCLK.
* PSU_SATA_AHCI_VENDOR_PP4C_SFD 0x4A
* PTST: Partial to Slumber timer value, specific delay the controller shou
* ld apply while in partial before entering slumber. The value is bases on
* the system clock divided by 128, total delay = (Sys Clock Period) * PTS
* T * 128
* PSU_SATA_AHCI_VENDOR_PP4C_PTST 0x06
* PP4C - Port Phy4Cfg Register. This register controls the configuration o
* f the Phy Control Burst timing for the COM parameters for either Port 0
* or Port 1. The Port configured is controlled by the value programmed int
* o the Port Config Register.
* (OFFSET, MASK, VALUE) (0XFD0C00B4, 0xFFFFFFFFU ,0x064A0813U)
*/
PSU_Mask_Write(SATA_AHCI_VENDOR_PP4C_OFFSET,
0xFFFFFFFFU, 0x064A0813U);
/*##################################################################### */
/*
* Register : PP5C @ 0XFD0C00B8
* RIT: Retry Interval Timer. The calculated value divided by two, the lowe
* r digit of precision is not needed.
* PSU_SATA_AHCI_VENDOR_PP5C_RIT 0xC96A4
* RCT: Rate Change Timer, a value based on the 54.2us for which a SATA dev
* ice will transmit at a fixed rate ALIGNp after OOB has completed, for a
* fast SERDES it is suggested that this value be 54.2us / 4
* PSU_SATA_AHCI_VENDOR_PP5C_RCT 0x3FF
* PP5C - Port Phy5Cfg Register. This register controls the configuration o
* f the Phy Control Retry Interval timing for either Port 0 or Port 1. The
* Port configured is controlled by the value programmed into the Port Con
* fig Register.
* (OFFSET, MASK, VALUE) (0XFD0C00B8, 0xFFFFFFFFU ,0x3FFC96A4U)
*/
PSU_Mask_Write(SATA_AHCI_VENDOR_PP5C_OFFSET,
0xFFFFFFFFU, 0x3FFC96A4U);
/*##################################################################### */
return 1;
}
unsigned long psu_resetin_init_data(void)
{
/*
* PUTTING SERDES PERIPHERAL IN RESET
*/
/*
* PUTTING USB0 IN RESET
*/
/*
* Register : RST_LPD_TOP @ 0XFF5E023C
* USB 0 reset for control registers
* PSU_CRL_APB_RST_LPD_TOP_USB0_APB_RESET 0X1
* USB 0 sleep circuit reset
* PSU_CRL_APB_RST_LPD_TOP_USB0_HIBERRESET 0X1
* USB 0 reset
* PSU_CRL_APB_RST_LPD_TOP_USB0_CORERESET 0X1
* Software control register for the LPD block.
* (OFFSET, MASK, VALUE) (0XFF5E023C, 0x00000540U ,0x00000540U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_TOP_OFFSET, 0x00000540U, 0x00000540U);
/*##################################################################### */
/*
* PUTTING GEM0 IN RESET
*/
/*
* Register : RST_LPD_IOU0 @ 0XFF5E0230
* GEM 3 reset
* PSU_CRL_APB_RST_LPD_IOU0_GEM3_RESET 0X1
* Software controlled reset for the GEMs
* (OFFSET, MASK, VALUE) (0XFF5E0230, 0x00000008U ,0x00000008U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_IOU0_OFFSET,
0x00000008U, 0x00000008U);
/*##################################################################### */
/*
* PUTTING SATA IN RESET
*/
/*
* Register : RST_FPD_TOP @ 0XFD1A0100
* Sata block level reset
* PSU_CRF_APB_RST_FPD_TOP_SATA_RESET 0X1
* FPD Block level software controlled reset
* (OFFSET, MASK, VALUE) (0XFD1A0100, 0x00000002U ,0x00000002U)
*/
PSU_Mask_Write(CRF_APB_RST_FPD_TOP_OFFSET, 0x00000002U, 0x00000002U);
/*##################################################################### */
/*
* PUTTING PCIE IN RESET
*/
/*
* Register : RST_FPD_TOP @ 0XFD1A0100
* PCIE config reset
* PSU_CRF_APB_RST_FPD_TOP_PCIE_CFG_RESET 0X1
* PCIE control block level reset
* PSU_CRF_APB_RST_FPD_TOP_PCIE_CTRL_RESET 0X1
* PCIE bridge block level reset (AXI interface)
* PSU_CRF_APB_RST_FPD_TOP_PCIE_BRIDGE_RESET 0X1
* FPD Block level software controlled reset
* (OFFSET, MASK, VALUE) (0XFD1A0100, 0x000E0000U ,0x000E0000U)
*/
PSU_Mask_Write(CRF_APB_RST_FPD_TOP_OFFSET, 0x000E0000U, 0x000E0000U);
/*##################################################################### */
/*
* PUTTING DP IN RESET
*/
/*
* Register : DP_TX_PHY_POWER_DOWN @ 0XFD4A0238
* Two bits per lane. When set to 11, moves the GT to power down mode. When
* set to 00, GT will be in active state. bits [1:0] - lane0 Bits [3:2] -
* lane 1
* PSU_DP_DP_TX_PHY_POWER_DOWN_POWER_DWN 0XA
* Control PHY Power down
* (OFFSET, MASK, VALUE) (0XFD4A0238, 0x0000000FU ,0x0000000AU)
*/
PSU_Mask_Write(DP_DP_TX_PHY_POWER_DOWN_OFFSET,
0x0000000FU, 0x0000000AU);
/*##################################################################### */
/*
* Register : DP_PHY_RESET @ 0XFD4A0200
* Set to '1' to hold the GT in reset. Clear to release.
* PSU_DP_DP_PHY_RESET_GT_RESET 0X1
* Reset the transmitter PHY.
* (OFFSET, MASK, VALUE) (0XFD4A0200, 0x00000002U ,0x00000002U)
*/
PSU_Mask_Write(DP_DP_PHY_RESET_OFFSET, 0x00000002U, 0x00000002U);
/*##################################################################### */
/*
* Register : RST_FPD_TOP @ 0XFD1A0100
* Display Port block level reset (includes DPDMA)
* PSU_CRF_APB_RST_FPD_TOP_DP_RESET 0X1
* FPD Block level software controlled reset
* (OFFSET, MASK, VALUE) (0XFD1A0100, 0x00010000U ,0x00010000U)
*/
PSU_Mask_Write(CRF_APB_RST_FPD_TOP_OFFSET, 0x00010000U, 0x00010000U);
/*##################################################################### */
return 1;
}
unsigned long psu_ps_pl_isolation_removal_data(void)
{
/*
* PS-PL POWER UP REQUEST
*/
/*
* Register : REQ_PWRUP_INT_EN @ 0XFFD80118
* Power-up Request Interrupt Enable for PL
* PSU_PMU_GLOBAL_REQ_PWRUP_INT_EN_PL 1
* Power-up Request Interrupt Enable Register. Writing a 1 to this location
* will unmask the interrupt.
* (OFFSET, MASK, VALUE) (0XFFD80118, 0x00800000U ,0x00800000U)
*/
PSU_Mask_Write(PMU_GLOBAL_REQ_PWRUP_INT_EN_OFFSET,
0x00800000U, 0x00800000U);
/*##################################################################### */
/*
* Register : REQ_PWRUP_TRIG @ 0XFFD80120
* Power-up Request Trigger for PL
* PSU_PMU_GLOBAL_REQ_PWRUP_TRIG_PL 1
* Power-up Request Trigger Register. A write of one to this location will
* generate a power-up request to the PMU.
* (OFFSET, MASK, VALUE) (0XFFD80120, 0x00800000U ,0x00800000U)
*/
PSU_Mask_Write(PMU_GLOBAL_REQ_PWRUP_TRIG_OFFSET,
0x00800000U, 0x00800000U);
/*##################################################################### */
/*
* POLL ON PL POWER STATUS
*/
/*
* Register : REQ_PWRUP_STATUS @ 0XFFD80110
* Power-up Request Status for PL
* PSU_PMU_GLOBAL_REQ_PWRUP_STATUS_PL 1
* (OFFSET, MASK, VALUE) (0XFFD80110, 0x00800000U ,0x00000000U)
*/
mask_pollOnValue(PMU_GLOBAL_REQ_PWRUP_STATUS_OFFSET,
0x00800000U, 0x00000000U);
/*##################################################################### */
return 1;
}
unsigned long psu_afi_config(void)
{
/*
* AFI RESET
*/
/*
* Register : RST_FPD_TOP @ 0XFD1A0100
* AF_FM0 block level reset
* PSU_CRF_APB_RST_FPD_TOP_AFI_FM0_RESET 0
* AF_FM1 block level reset
* PSU_CRF_APB_RST_FPD_TOP_AFI_FM1_RESET 0
* AF_FM2 block level reset
* PSU_CRF_APB_RST_FPD_TOP_AFI_FM2_RESET 0
* AF_FM3 block level reset
* PSU_CRF_APB_RST_FPD_TOP_AFI_FM3_RESET 0
* AF_FM4 block level reset
* PSU_CRF_APB_RST_FPD_TOP_AFI_FM4_RESET 0
* AF_FM5 block level reset
* PSU_CRF_APB_RST_FPD_TOP_AFI_FM5_RESET 0
* FPD Block level software controlled reset
* (OFFSET, MASK, VALUE) (0XFD1A0100, 0x00001F80U ,0x00000000U)
*/
PSU_Mask_Write(CRF_APB_RST_FPD_TOP_OFFSET, 0x00001F80U, 0x00000000U);
/*##################################################################### */
/*
* Register : RST_LPD_TOP @ 0XFF5E023C
* AFI FM 6
* PSU_CRL_APB_RST_LPD_TOP_AFI_FM6_RESET 0
* Software control register for the LPD block.
* (OFFSET, MASK, VALUE) (0XFF5E023C, 0x00080000U ,0x00000000U)
*/
PSU_Mask_Write(CRL_APB_RST_LPD_TOP_OFFSET, 0x00080000U, 0x00000000U);
/*##################################################################### */
/*
* AFIFM INTERFACE WIDTH
*/
/*
* Register : afi_fs @ 0XFD615000
* Select the 32/64/128-bit data width selection for the Slave 0 00: 32-bit
* AXI data width (default) 01: 64-bit AXI data width 10: 128-bit AXI data
* width 11: reserved
* PSU_FPD_SLCR_AFI_FS_DW_SS0_SEL 0x2
* Select the 32/64/128-bit data width selection for the Slave 1 00: 32-bit
* AXI data width (default) 01: 64-bit AXI data width 10: 128-bit AXI data
* width 11: reserved
* PSU_FPD_SLCR_AFI_FS_DW_SS1_SEL 0x2
* afi fs SLCR control register. This register is static and should not be
* modified during operation.
* (OFFSET, MASK, VALUE) (0XFD615000, 0x00000F00U ,0x00000A00U)
*/
PSU_Mask_Write(FPD_SLCR_AFI_FS_OFFSET, 0x00000F00U, 0x00000A00U);
/*##################################################################### */
return 1;
}
unsigned long psu_ps_pl_reset_config_data(void)
{
/*
* PS PL RESET SEQUENCE
*/
/*
* FABRIC RESET USING EMIO
*/
/*
* Register : MASK_DATA_5_MSW @ 0XFF0A002C
* Operation is the same as MASK_DATA_0_LSW[MASK_0_LSW]
* PSU_GPIO_MASK_DATA_5_MSW_MASK_5_MSW 0x8000
* Maskable Output Data (GPIO Bank5, EMIO, Upper 16bits)
* (OFFSET, MASK, VALUE) (0XFF0A002C, 0xFFFF0000U ,0x80000000U)
*/
PSU_Mask_Write(GPIO_MASK_DATA_5_MSW_OFFSET,
0xFFFF0000U, 0x80000000U);
/*##################################################################### */
/*
* Register : DIRM_5 @ 0XFF0A0344
* Operation is the same as DIRM_0[DIRECTION_0]
* PSU_GPIO_DIRM_5_DIRECTION_5 0x80000000
* Direction mode (GPIO Bank5, EMIO)
* (OFFSET, MASK, VALUE) (0XFF0A0344, 0xFFFFFFFFU ,0x80000000U)
*/
PSU_Mask_Write(GPIO_DIRM_5_OFFSET, 0xFFFFFFFFU, 0x80000000U);
/*##################################################################### */
/*
* Register : OEN_5 @ 0XFF0A0348
* Operation is the same as OEN_0[OP_ENABLE_0]
* PSU_GPIO_OEN_5_OP_ENABLE_5 0x80000000
* Output enable (GPIO Bank5, EMIO)
* (OFFSET, MASK, VALUE) (0XFF0A0348, 0xFFFFFFFFU ,0x80000000U)
*/
PSU_Mask_Write(GPIO_OEN_5_OFFSET, 0xFFFFFFFFU, 0x80000000U);
/*##################################################################### */
/*
* Register : DATA_5 @ 0XFF0A0054
* Output Data
* PSU_GPIO_DATA_5_DATA_5 0x80000000
* Output Data (GPIO Bank5, EMIO)
* (OFFSET, MASK, VALUE) (0XFF0A0054, 0xFFFFFFFFU ,0x80000000U)
*/
PSU_Mask_Write(GPIO_DATA_5_OFFSET, 0xFFFFFFFFU, 0x80000000U);
/*##################################################################### */
mask_delay(1);
/*##################################################################### */
/*
* FABRIC RESET USING DATA_5 TOGGLE
*/
/*
* Register : DATA_5 @ 0XFF0A0054
* Output Data
* PSU_GPIO_DATA_5_DATA_5 0X00000000
* Output Data (GPIO Bank5, EMIO)
* (OFFSET, MASK, VALUE) (0XFF0A0054, 0xFFFFFFFFU ,0x00000000U)
*/
PSU_Mask_Write(GPIO_DATA_5_OFFSET, 0xFFFFFFFFU, 0x00000000U);
/*##################################################################### */
mask_delay(1);
/*##################################################################### */
/*
* FABRIC RESET USING DATA_5 TOGGLE
*/
/*
* Register : DATA_5 @ 0XFF0A0054
* Output Data
* PSU_GPIO_DATA_5_DATA_5 0x80000000
* Output Data (GPIO Bank5, EMIO)
* (OFFSET, MASK, VALUE) (0XFF0A0054, 0xFFFFFFFFU ,0x80000000U)
*/
PSU_Mask_Write(GPIO_DATA_5_OFFSET, 0xFFFFFFFFU, 0x80000000U);
/*##################################################################### */
return 1;
}
unsigned long psu_ddr_phybringup_data(void)
{
unsigned int regval = 0;
unsigned int pll_retry = 10;
unsigned int pll_locked = 0;
while ((pll_retry > 0) && (!pll_locked)) {
Xil_Out32(0xFD080004, 0x00040010);/*PIR*/
Xil_Out32(0xFD080004, 0x00040011);/*PIR*/
while ((Xil_In32(0xFD080030) & 0x1) != 1) {
/*****TODO*****/
/*TIMEOUT poll mechanism need to be inserted in this block*/
}
pll_locked = (Xil_In32(0xFD080030) & 0x80000000)
>> 31;/*PGSR0*/
pll_locked &= (Xil_In32(0xFD0807E0) & 0x10000)
>> 16;/*DX0GSR0*/
pll_locked &= (Xil_In32(0xFD0809E0) & 0x10000)
>> 16;/*DX2GSR0*/
pll_locked &= (Xil_In32(0xFD080BE0) & 0x10000)
>> 16;/*DX4GSR0*/
pll_locked &= (Xil_In32(0xFD080DE0) & 0x10000)
>> 16;/*DX6GSR0*/
pll_retry--;
}
Xil_Out32(0xFD0800C0, Xil_In32(0xFD0800C0) |
(pll_retry << 16));/*GPR0*/
Xil_Out32(0xFD080004U, 0x00040063U);
/* PHY BRINGUP SEQ */
while ((Xil_In32(0xFD080030U) & 0x0000000FU) != 0x0000000FU) {
/*****TODO*****/
/*TIMEOUT poll mechanism need to be inserted in this block*/
}
prog_reg(0xFD080004U, 0x00000001U, 0x00000000U, 0x00000001U);
/* poll for PHY initialization to complete */
while ((Xil_In32(0xFD080030U) & 0x000000FFU) != 0x0000001FU) {
/*****TODO*****/
/*TIMEOUT poll mechanism need to be inserted in this block*/
}
Xil_Out32(0xFD0701B0U, 0x00000001U);
Xil_Out32(0xFD070320U, 0x00000001U);
while ((Xil_In32(0xFD070004U) & 0x0000000FU) != 0x00000001U) {
/*****TODO*****/
/*TIMEOUT poll mechanism need to be inserted in this block*/
}
prog_reg(0xFD080014U, 0x00000040U, 0x00000006U, 0x00000001U);
Xil_Out32(0xFD080004, 0x0004FE01); /*PUB_PIR*/
regval = Xil_In32(0xFD080030); /*PUB_PGSR0*/
while (regval != 0x80000FFF)
regval = Xil_In32(0xFD080030); /*PUB_PGSR0*/
/* Run Vref training in static read mode*/
Xil_Out32(0xFD080200U, 0x100091C7U);
Xil_Out32(0xFD080018U, 0x00F01EEFU);
prog_reg(0xFD08001CU, 0x00000018U, 0x00000003U, 0x00000003U);
prog_reg(0xFD08142CU, 0x00000030U, 0x00000004U, 0x00000003U);
prog_reg(0xFD08146CU, 0x00000030U, 0x00000004U, 0x00000003U);
prog_reg(0xFD0814ACU, 0x00000030U, 0x00000004U, 0x00000003U);
prog_reg(0xFD0814ECU, 0x00000030U, 0x00000004U, 0x00000003U);
prog_reg(0xFD08152CU, 0x00000030U, 0x00000004U, 0x00000003U);
Xil_Out32(0xFD080004, 0x00060001); /*PUB_PIR*/
regval = Xil_In32(0xFD080030); /*PUB_PGSR0*/
while ((regval & 0x80004001) != 0x80004001) {
/*PUB_PGSR0*/
regval = Xil_In32(0xFD080030);
}
prog_reg(0xFD08001CU, 0x00000018U, 0x00000003U, 0x00000000U);
prog_reg(0xFD08142CU, 0x00000030U, 0x00000004U, 0x00000000U);
prog_reg(0xFD08146CU, 0x00000030U, 0x00000004U, 0x00000000U);
prog_reg(0xFD0814ACU, 0x00000030U, 0x00000004U, 0x00000000U);
prog_reg(0xFD0814ECU, 0x00000030U, 0x00000004U, 0x00000000U);
prog_reg(0xFD08152CU, 0x00000030U, 0x00000004U, 0x00000000U);
/*Vref training is complete, disabling static read mode*/
Xil_Out32(0xFD080200U, 0x800091C7U);
Xil_Out32(0xFD080018U, 0x00F122E7U);
Xil_Out32(0xFD080004, 0x0000C001); /*PUB_PIR*/
regval = Xil_In32(0xFD080030); /*PUB_PGSR0*/
while ((regval & 0x80000C01) != 0x80000C01) {
/*PUB_PGSR0*/
regval = Xil_In32(0xFD080030);
}
Xil_Out32(0xFD070180U, 0x01000040U);
Xil_Out32(0xFD070060U, 0x00000000U);
prog_reg(0xFD080014U, 0x00000040U, 0x00000006U, 0x00000000U);
return 1;
}
/**
* CRL_APB Base Address
*/
#define CRL_APB_BASEADDR 0XFF5E0000U
#define CRL_APB_RST_LPD_IOU0 ((CRL_APB_BASEADDR) + 0X00000230U)
#define CRL_APB_RST_LPD_IOU1 ((CRL_APB_BASEADDR) + 0X00000234U)
#define CRL_APB_RST_LPD_IOU2 ((CRL_APB_BASEADDR) + 0X00000238U)
#define CRL_APB_RST_LPD_TOP ((CRL_APB_BASEADDR) + 0X0000023CU)
#define CRL_APB_IOU_SWITCH_CTRL ((CRL_APB_BASEADDR) + 0X0000009CU)
/**
* CRF_APB Base Address
*/
#define CRF_APB_BASEADDR 0XFD1A0000U
#define CRF_APB_RST_FPD_TOP ((CRF_APB_BASEADDR) + 0X00000100U)
#define CRF_APB_GPU_REF_CTRL ((CRF_APB_BASEADDR) + 0X00000084U)
#define CRF_APB_RST_DDR_SS ((CRF_APB_BASEADDR) + 0X00000108U)
#define PSU_MASK_POLL_TIME 1100000
/**
* * Register: CRF_APB_DPLL_CTRL
*/
#define CRF_APB_DPLL_CTRL ((CRF_APB_BASEADDR) + 0X0000002C)
#define CRF_APB_DPLL_CTRL_DIV2_SHIFT 16
#define CRF_APB_DPLL_CTRL_DIV2_WIDTH 1
#define CRF_APB_DPLL_CTRL_FBDIV_SHIFT 8
#define CRF_APB_DPLL_CTRL_FBDIV_WIDTH 7
#define CRF_APB_DPLL_CTRL_BYPASS_SHIFT 3
#define CRF_APB_DPLL_CTRL_BYPASS_WIDTH 1
#define CRF_APB_DPLL_CTRL_RESET_SHIFT 0
#define CRF_APB_DPLL_CTRL_RESET_WIDTH 1
/**
* * Register: CRF_APB_DPLL_CFG
*/
#define CRF_APB_DPLL_CFG ((CRF_APB_BASEADDR) + 0X00000030)
#define CRF_APB_DPLL_CFG_LOCK_DLY_SHIFT 25
#define CRF_APB_DPLL_CFG_LOCK_DLY_WIDTH 7
#define CRF_APB_DPLL_CFG_LOCK_CNT_SHIFT 13
#define CRF_APB_DPLL_CFG_LOCK_CNT_WIDTH 10
#define CRF_APB_DPLL_CFG_LFHF_SHIFT 10
#define CRF_APB_DPLL_CFG_LFHF_WIDTH 2
#define CRF_APB_DPLL_CFG_CP_SHIFT 5
#define CRF_APB_DPLL_CFG_CP_WIDTH 4
#define CRF_APB_DPLL_CFG_RES_SHIFT 0
#define CRF_APB_DPLL_CFG_RES_WIDTH 4
/**
* Register: CRF_APB_PLL_STATUS
*/
#define CRF_APB_PLL_STATUS ((CRF_APB_BASEADDR) + 0X00000044)
static int mask_pollOnValue(u32 add, u32 mask, u32 value)
{
volatile u32 *addr = (volatile u32 *)(unsigned long) add;
int i = 0;
while ((*addr & mask) != value) {
if (i == PSU_MASK_POLL_TIME)
return 0;
i++;
}
return 1;
}
static int mask_poll(u32 add, u32 mask)
{
volatile u32 *addr = (volatile u32 *)(unsigned long) add;
int i = 0;
while (!(*addr & mask)) {
if (i == PSU_MASK_POLL_TIME)
return 0;
i++;
}
return 1;
}
static void mask_delay(u32 delay)
{
usleep(delay);
}
static u32 mask_read(u32 add, u32 mask)
{
volatile u32 *addr = (volatile u32 *)(unsigned long) add;
u32 val = (*addr & mask);
return val;
}
static void dpll_prog(int ddr_pll_fbdiv, int d_lock_dly, int d_lock_cnt,
int d_lfhf, int d_cp, int d_res) {
unsigned int pll_ctrl_regval;
unsigned int pll_status_regval;
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CTRL);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CTRL_DIV2_MASK);
pll_ctrl_regval = pll_ctrl_regval | (1 << CRF_APB_DPLL_CTRL_DIV2_SHIFT);
Xil_Out32(CRF_APB_DPLL_CTRL, pll_ctrl_regval);
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CFG);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CFG_LOCK_DLY_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(d_lock_dly << CRF_APB_DPLL_CFG_LOCK_DLY_SHIFT);
Xil_Out32(CRF_APB_DPLL_CFG, pll_ctrl_regval);
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CFG);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CFG_LOCK_CNT_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(d_lock_cnt << CRF_APB_DPLL_CFG_LOCK_CNT_SHIFT);
Xil_Out32(CRF_APB_DPLL_CFG, pll_ctrl_regval);
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CFG);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CFG_LFHF_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(d_lfhf << CRF_APB_DPLL_CFG_LFHF_SHIFT);
Xil_Out32(CRF_APB_DPLL_CFG, pll_ctrl_regval);
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CFG);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CFG_CP_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(d_cp << CRF_APB_DPLL_CFG_CP_SHIFT);
Xil_Out32(CRF_APB_DPLL_CFG, pll_ctrl_regval);
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CFG);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CFG_RES_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(d_res << CRF_APB_DPLL_CFG_RES_SHIFT);
Xil_Out32(CRF_APB_DPLL_CFG, pll_ctrl_regval);
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CTRL);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CTRL_FBDIV_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(ddr_pll_fbdiv << CRF_APB_DPLL_CTRL_FBDIV_SHIFT);
Xil_Out32(CRF_APB_DPLL_CTRL, pll_ctrl_regval);
/*Setting PLL BYPASS*/
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CTRL);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CTRL_BYPASS_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(1 << CRF_APB_DPLL_CTRL_BYPASS_SHIFT);
Xil_Out32(CRF_APB_DPLL_CTRL, pll_ctrl_regval);
/*Setting PLL RESET*/
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CTRL);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CTRL_RESET_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(1 << CRF_APB_DPLL_CTRL_RESET_SHIFT);
Xil_Out32(CRF_APB_DPLL_CTRL, pll_ctrl_regval);
/*Clearing PLL RESET*/
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CTRL);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CTRL_RESET_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(0 << CRF_APB_DPLL_CTRL_RESET_SHIFT);
Xil_Out32(CRF_APB_DPLL_CTRL, pll_ctrl_regval);
/*Checking PLL lock*/
pll_status_regval = 0x00000000;
while ((pll_status_regval & CRF_APB_PLL_STATUS_DPLL_LOCK_MASK) !=
CRF_APB_PLL_STATUS_DPLL_LOCK_MASK)
pll_status_regval = Xil_In32(CRF_APB_PLL_STATUS);
/*Clearing PLL BYPASS*/
pll_ctrl_regval = Xil_In32(CRF_APB_DPLL_CTRL);
pll_ctrl_regval = pll_ctrl_regval & (~CRF_APB_DPLL_CTRL_BYPASS_MASK);
pll_ctrl_regval = pll_ctrl_regval |
(0 << CRF_APB_DPLL_CTRL_BYPASS_SHIFT);
Xil_Out32(CRF_APB_DPLL_CTRL, pll_ctrl_regval);
}
/*Following SERDES programming sequences that a user need to follow to work
* around the known limitation with SERDES. These sequences should done
* before STEP 1 and STEP 2 as described in previous section. These
* programming steps are *required for current silicon version and are
* likely to undergo further changes with subsequent silicon versions.
*/
static int serdes_enb_coarse_saturation(void)
{
/*Enable PLL Coarse Code saturation Logic*/
Xil_Out32(0xFD402094, 0x00000010);
Xil_Out32(0xFD406094, 0x00000010);
Xil_Out32(0xFD40A094, 0x00000010);
Xil_Out32(0xFD40E094, 0x00000010);
return 1;
}
int serdes_fixcal_code(void)
{
int MaskStatus = 1;
unsigned int rdata = 0;
/*The valid codes are from 0x26 to 0x3C.
*There are 23 valid codes in total.
*/
/*Each element of array stands for count of occurence of valid code.*/
unsigned int match_pmos_code[23];
/*Each element of array stands for count of occurence of valid code.*/
/*The valid codes are from 0xC to 0x12.
*There are 7 valid codes in total.
*/
unsigned int match_nmos_code[23];
/*Each element of array stands for count of occurence of valid code.*/
/*The valid codes are from 0x6 to 0xC.
* There are 7 valid codes in total.
*/
unsigned int match_ical_code[7];
/*Each element of array stands for count of occurence of valid code.*/
unsigned int match_rcal_code[7];
unsigned int p_code = 0;
unsigned int n_code = 0;
unsigned int i_code = 0;
unsigned int r_code = 0;
unsigned int repeat_count = 0;
unsigned int L3_TM_CALIB_DIG20 = 0;
unsigned int L3_TM_CALIB_DIG19 = 0;
unsigned int L3_TM_CALIB_DIG18 = 0;
unsigned int L3_TM_CALIB_DIG16 = 0;
unsigned int L3_TM_CALIB_DIG15 = 0;
unsigned int L3_TM_CALIB_DIG14 = 0;
int i = 0;
rdata = Xil_In32(0XFD40289C);
rdata = rdata & ~0x03;
rdata = rdata | 0x1;
Xil_Out32(0XFD40289C, rdata);
// check supply good status before starting AFE sequencing
int count = 0;
do
{
if (count == PSU_MASK_POLL_TIME)
break;
rdata = Xil_In32(0xFD402B1C);
count++;
}while((rdata&0x0000000E) !=0x0000000E);
for (i = 0; i < 23; i++) {
match_pmos_code[i] = 0;
match_nmos_code[i] = 0;
}
for (i = 0; i < 7; i++) {
match_ical_code[i] = 0;
match_rcal_code[i] = 0;
}
do {
/*Clear ICM_CFG value*/
Xil_Out32(0xFD410010, 0x00000000);
Xil_Out32(0xFD410014, 0x00000000);
/*Set ICM_CFG value*/
/*This will trigger recalibration of all stages*/
Xil_Out32(0xFD410010, 0x00000001);
Xil_Out32(0xFD410014, 0x00000000);
/*is calibration done? polling on L3_CALIB_DONE_STATUS*/
MaskStatus = mask_poll(0xFD40EF14, 0x2);
if (MaskStatus == 0) {
/*failure here is because of calibration done timeout*/
xil_printf("#SERDES initialization timed out\n\r");
return MaskStatus;
}
p_code = mask_read(0xFD40EF18, 0xFFFFFFFF);/*PMOS code*/
n_code = mask_read(0xFD40EF1C, 0xFFFFFFFF);/*NMOS code*/
/*m_code = mask_read(0xFD40EF20, 0xFFFFFFFF)*/;/*MPHY code*/
i_code = mask_read(0xFD40EF24, 0xFFFFFFFF);/*ICAL code*/
r_code = mask_read(0xFD40EF28, 0xFFFFFFFF);/*RX code*/
/*u_code = mask_read(0xFD40EF2C, 0xFFFFFFFF)*/;/*USB2 code*/
/*PMOS code in acceptable range*/
if ((p_code >= 0x26) && (p_code <= 0x3C))
match_pmos_code[p_code - 0x26] += 1;
/*NMOS code in acceptable range*/
if ((n_code >= 0x26) && (n_code <= 0x3C))
match_nmos_code[n_code - 0x26] += 1;
/*PMOS code in acceptable range*/
if ((i_code >= 0xC) && (i_code <= 0x12))
match_ical_code[i_code - 0xC] += 1;
/*NMOS code in acceptable range*/
if ((r_code >= 0x6) && (r_code <= 0xC))
match_rcal_code[r_code - 0x6] += 1;
} while (repeat_count++ < 10);
/*find the valid code which resulted in maximum times in 10 iterations*/
for (i = 0; i < 23; i++) {
if (match_pmos_code[i] >= match_pmos_code[0]) {
match_pmos_code[0] = match_pmos_code[i];
p_code = 0x26 + i;
}
if (match_nmos_code[i] >= match_nmos_code[0]) {
match_nmos_code[0] = match_nmos_code[i];
n_code = 0x26 + i;
}
}
for (i = 0; i < 7; i++) {
if (match_ical_code[i] >= match_ical_code[0]) {
match_ical_code[0] = match_ical_code[i];
i_code = 0xC + i;
}
if (match_rcal_code[i] >= match_rcal_code[0]) {
match_rcal_code[0] = match_rcal_code[i];
r_code = 0x6 + i;
}
}
/*L3_TM_CALIB_DIG20[3] PSW MSB Override*/
/*L3_TM_CALIB_DIG20[2:0] PSW Code [4:2]*/
L3_TM_CALIB_DIG20 = mask_read(0xFD40EC50, 0xFFFFFFF0);/*read DIG20*/
L3_TM_CALIB_DIG20 = L3_TM_CALIB_DIG20 | 0x8 | ((p_code >> 2) & 0x7);
/*L3_TM_CALIB_DIG19[7:6] PSW Code [1:0]*/
/*L3_TM_CALIB_DIG19[5] PSW Override*/
/*L3_TM_CALIB_DIG19[2] NSW MSB Override*/
/*L3_TM_CALIB_DIG19[1:0] NSW Code [4:3]*/
L3_TM_CALIB_DIG19 = mask_read(0xFD40EC4C, 0xFFFFFF18);/*read DIG19*/
L3_TM_CALIB_DIG19 = L3_TM_CALIB_DIG19 | ((p_code & 0x3) << 6)
| 0x20 | 0x4 | ((n_code >> 3) & 0x3);
/*L3_TM_CALIB_DIG18[7:5] NSW Code [2:0]*/
/*L3_TM_CALIB_DIG18[4] NSW Override*/
L3_TM_CALIB_DIG18 = mask_read(0xFD40EC48, 0xFFFFFF0F);/*read DIG18*/
L3_TM_CALIB_DIG18 = L3_TM_CALIB_DIG18 | ((n_code & 0x7) << 5) | 0x10;
/*L3_TM_CALIB_DIG16[2:0] RX Code [3:1]*/
L3_TM_CALIB_DIG16 = mask_read(0xFD40EC40, 0xFFFFFFF8);/*read DIG16*/
L3_TM_CALIB_DIG16 = L3_TM_CALIB_DIG16 | ((r_code >> 1) & 0x7);
/*L3_TM_CALIB_DIG15[7] RX Code [0]*/
/*L3_TM_CALIB_DIG15[6] RX CODE Override*/
/*L3_TM_CALIB_DIG15[3] ICAL MSB Override*/
/*L3_TM_CALIB_DIG15[2:0] ICAL Code [3:1]*/
L3_TM_CALIB_DIG15 = mask_read(0xFD40EC3C, 0xFFFFFF30);/*read DIG15*/
L3_TM_CALIB_DIG15 = L3_TM_CALIB_DIG15 | ((r_code & 0x1) << 7)
| 0x40 | 0x8 | ((i_code >> 1) & 0x7);
/*L3_TM_CALIB_DIG14[7] ICAL Code [0]*/
/*L3_TM_CALIB_DIG14[6] ICAL Override*/
L3_TM_CALIB_DIG14 = mask_read(0xFD40EC38, 0xFFFFFF3F);/*read DIG14*/
L3_TM_CALIB_DIG14 = L3_TM_CALIB_DIG14 | ((i_code & 0x1) << 7) | 0x40;
/*Forces the calibration values*/
Xil_Out32(0xFD40EC50, L3_TM_CALIB_DIG20);
Xil_Out32(0xFD40EC4C, L3_TM_CALIB_DIG19);
Xil_Out32(0xFD40EC48, L3_TM_CALIB_DIG18);
Xil_Out32(0xFD40EC40, L3_TM_CALIB_DIG16);
Xil_Out32(0xFD40EC3C, L3_TM_CALIB_DIG15);
Xil_Out32(0xFD40EC38, L3_TM_CALIB_DIG14);
return MaskStatus;
}
static int init_serdes(void)
{
int status = 1;
status &= psu_resetin_init_data();
status &= serdes_fixcal_code();
status &= serdes_enb_coarse_saturation();
status &= psu_serdes_init_data();
status &= psu_resetout_init_data();
return status;
}
static void init_peripheral(void)
{
/*SMMU_REG Interrrupt Enable: Followig register need to be written all the time to properly catch SMMU messages.*/
PSU_Mask_Write(0xFD5F0018, 0x8000001FU, 0x8000001FU);
}
static int psu_init_xppu_aper_ram(void)
{
return 0;
}
int psu_lpd_protection(void)
{
psu_init_xppu_aper_ram();
return 0;
}
int psu_ddr_protection(void)
{
psu_ddr_xmpu0_data();
psu_ddr_xmpu1_data();
psu_ddr_xmpu2_data();
psu_ddr_xmpu3_data();
psu_ddr_xmpu4_data();
psu_ddr_xmpu5_data();
return 0;
}
int psu_ocm_protection(void)
{
psu_ocm_xmpu_data();
return 0;
}
int psu_fpd_protection(void)
{
psu_fpd_xmpu_data();
return 0;
}
int psu_protection_lock(void)
{
psu_protection_lock_data();
return 0;
}
int psu_protection(void)
{
psu_apply_master_tz();
psu_ddr_protection();
psu_ocm_protection();
psu_fpd_protection();
psu_lpd_protection();
return 0;
}
int
psu_init(void)
{
int status = 1;
status &= psu_mio_init_data();
status &= psu_pll_init_data();
status &= psu_clock_init_data();
status &= psu_ddr_init_data();
status &= psu_ddr_phybringup_data();
status &= psu_peripherals_init_data();
status &= init_serdes();
init_peripheral();
status &= psu_peripherals_powerdwn_data();
status &= psu_afi_config();
psu_ddr_qos_init_data();
if (status == 0)
return 1;
return 0;
}