blob: 21774bf65c9de10557860fcc719c2fc59077b304 [file] [log] [blame]
/*
FreeRTOS V7.4.0 - Copyright (C) 2013 Real Time Engineers Ltd.
FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT
http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>>>>NOTE<<<<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel.
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License
and the FreeRTOS license exception along with FreeRTOS; if not itcan be
viewed here: http://www.freertos.org/a00114.html and also obtained by
writing to Real Time Engineers Ltd., contact details for whom are available
on the FreeRTOS WEB site.
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, and our new
fully thread aware and reentrant UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems, who sell the code with commercial support,
indemnification and middleware, under the OpenRTOS brand.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
*/
/*
Changes from V1.2.3
+ The created tasks now include calls to tskYIELD(), allowing them to be used
with the cooperative scheduler.
*/
/**
* This does the same as flop. c, but uses variables of type long instead of
* type double.
*
* As with flop. c, the tasks created in this file are a good test of the
* scheduler context switch mechanism. The processor has to access 32bit
* variables in two or four chunks (depending on the processor). The low
* priority of these tasks means there is a high probability that a context
* switch will occur mid calculation. See the flop. c documentation for
* more information.
*
* \page IntegerC integer.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V1.2.1
+ The constants used in the calculations are larger to ensure the
optimiser does not truncate them to 16 bits.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "print.h"
/* Demo program include files. */
#include "integer.h"
#define intgSTACK_SIZE ( ( unsigned short ) 256 )
#define intgNUMBER_OF_TASKS ( 8 )
/* Four tasks, each of which performs a different calculation on four byte
variables. Each of the four is created twice. */
static void vCompeteingIntMathTask1( void *pvParameters );
static void vCompeteingIntMathTask2( void *pvParameters );
static void vCompeteingIntMathTask3( void *pvParameters );
static void vCompeteingIntMathTask4( void *pvParameters );
/* These variables are used to check that all the tasks are still running. If a
task gets a calculation wrong it will stop incrementing its check variable. */
static volatile unsigned short usTaskCheck[ intgNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
/*-----------------------------------------------------------*/
void vStartIntegerMathTasks( unsigned portBASE_TYPE uxPriority )
{
xTaskCreate( vCompeteingIntMathTask1, "IntMath1", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask2, "IntMath2", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask3, "IntMath3", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask4, "IntMath4", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask1, "IntMath5", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask2, "IntMath6", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask3, "IntMath7", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
xTaskCreate( vCompeteingIntMathTask4, "IntMath8", intgSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
}
/*-----------------------------------------------------------*/
static void vCompeteingIntMathTask1( void *pvParameters )
{
long l1, l2, l3, l4;
short sError = pdFALSE;
volatile unsigned short *pusTaskCheckVariable;
const long lAnswer = ( ( long ) 74565L + ( long ) 1234567L ) * ( long ) -918L;
const char * const pcTaskStartMsg = "Integer math task 1 started.\r\n";
const char * const pcTaskFailMsg = "Integer math task 1 failed.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for(;;)
{
l1 = ( long ) 74565L;
l2 = ( long ) 1234567L;
l3 = ( long ) -918L;
l4 = ( l1 + l2 ) * l3;
taskYIELD();
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( l4 != lAnswer )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
static void vCompeteingIntMathTask2( void *pvParameters )
{
long l1, l2, l3, l4;
short sError = pdFALSE;
volatile unsigned short *pusTaskCheckVariable;
const long lAnswer = ( ( long ) -389000L / ( long ) 329999L ) * ( long ) -89L;
const char * const pcTaskStartMsg = "Integer math task 2 started.\r\n";
const char * const pcTaskFailMsg = "Integer math task 2 failed.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for( ;; )
{
l1 = -389000L;
l2 = 329999L;
l3 = -89L;
l4 = ( l1 / l2 ) * l3;
taskYIELD();
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( l4 != lAnswer )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
static void vCompeteingIntMathTask3( void *pvParameters )
{
long *plArray, lTotal1, lTotal2;
short sError = pdFALSE;
volatile unsigned short *pusTaskCheckVariable;
const unsigned short usArraySize = ( unsigned short ) 250;
unsigned short usPosition;
const char * const pcTaskStartMsg = "Integer math task 3 started.\r\n";
const char * const pcTaskFailMsg = "Integer math task 3 failed.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Create the array we are going to use for our check calculation. */
plArray = ( long * ) pvPortMalloc( ( size_t ) 250 * sizeof( long ) );
/* Keep filling the array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
lTotal1 = ( long ) 0;
lTotal2 = ( long ) 0;
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
plArray[ usPosition ] = ( long ) usPosition + ( long ) 5;
lTotal1 += ( long ) usPosition + ( long ) 5;
}
taskYIELD();
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
lTotal2 += plArray[ usPosition ];
}
if( lTotal1 != lTotal2 )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
taskYIELD();
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
static void vCompeteingIntMathTask4( void *pvParameters )
{
long *plArray, lTotal1, lTotal2;
short sError = pdFALSE;
volatile unsigned short *pusTaskCheckVariable;
const unsigned short usArraySize = 250;
unsigned short usPosition;
const char * const pcTaskStartMsg = "Integer math task 4 started.\r\n";
const char * const pcTaskFailMsg = "Integer math task 4 failed.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Create the array we are going to use for our check calculation. */
plArray = ( long * ) pvPortMalloc( ( size_t ) 250 * sizeof( long ) );
/* Keep filling the array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
lTotal1 = ( long ) 0;
lTotal2 = ( long ) 0;
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
plArray[ usPosition ] = ( long ) usPosition * ( long ) 12;
lTotal1 += ( long ) usPosition * ( long ) 12;
}
taskYIELD();
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
{
lTotal2 += plArray[ usPosition ];
}
if( lTotal1 != lTotal2 )
{
vPrintDisplayMessage( &pcTaskFailMsg );
sError = pdTRUE;
}
taskYIELD();
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreIntegerMathsTaskStillRunning( void )
{
/* Keep a history of the check variables so we know if they have been incremented
since the last call. */
static unsigned short usLastTaskCheck[ intgNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
portBASE_TYPE xReturn = pdTRUE, xTask;
/* Check the maths tasks are still running by ensuring their check variables
are still incrementing. */
for( xTask = 0; xTask < intgNUMBER_OF_TASKS; xTask++ )
{
if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
{
/* The check has not incremented so an error exists. */
xReturn = pdFALSE;
}
usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
}
return xReturn;
}