blob: cddaba4eb749faba34b721aa95bdb75eb5eb91df [file] [log] [blame]
/*
* FreeRTOS Kernel V10.0.0
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software. If you wish to use our Amazon
* FreeRTOS name, please do so in a fair use way that does not cause confusion.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/* Standard inlcludes. */
#include <limits.h>
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
/* SiLabs library includes. */
#include "em_cmu.h"
#include "em_rtcc.h"
#include "em_rmu.h"
#include "em_int.h"
#include "em_letimer.h"
#include "sleep.h"
/* SEE THE COMMENTS ABOVE THE DEFINITION OF configCREATE_LOW_POWER_DEMO IN
FreeRTOSConfig.h
This file contains functions that will override the default implementations
in the RTOS port layer. Therefore only build this file if the low power demo
is being built. */
#if( configCREATE_LOW_POWER_DEMO == 1 )
/* When lpUSE_TEST_TIMER is 1 a second timer will be used to bring the MCU out
of its low power state before the expected idle time has completed. This is
done purely for test coverage purposes. */
#define lpUSE_TEST_TIMER ( 0 )
/* The RTCC channel used to generate the tick interrupt. */
#define lpRTCC_CHANNEL ( 1 )
/* 32768 clock divided by 1. Don't use a prescale if errata RTCC_E201
applies. */
#define mainTIMER_FREQUENCY_HZ ( 32768UL )
/*
* The low power demo does not use the SysTick, so override the
* vPortSetupTickInterrupt() function with an implementation that configures
* a low power clock source. NOTE: This function name must not be changed as
* it is called from the RTOS portable layer.
*/
void vPortSetupTimerInterrupt( void );
/*
* Override the default definition of vPortSuppressTicksAndSleep() that is
* weakly defined in the FreeRTOS Cortex-M port layer with a version that
* manages the RTC clock, as the tick is generated from the low power RTC
* and not the SysTick as would normally be the case on a Cortex-M.
*/
void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
/*-----------------------------------------------------------*/
/* Calculate how many clock increments make up a single tick period. */
static const uint32_t ulReloadValueForOneTick = ( mainTIMER_FREQUENCY_HZ / configTICK_RATE_HZ );
/* Will hold the maximum number of ticks that can be suppressed. */
static uint32_t xMaximumPossibleSuppressedTicks = 0;
/* Flag set from the tick interrupt to allow the sleep processing to know if
sleep mode was exited because of a timer interrupt or a different interrupt. */
static volatile uint32_t ulTickFlag = pdFALSE;
/* As the clock is only 32KHz, it is likely a value of 1 will be enough. */
static const uint32_t ulStoppedTimerCompensation = 0UL;
/* RTCC configuration structures. */
static const RTCC_Init_TypeDef xRTCInitStruct =
{
false, /* Don't start counting when init complete. */
false, /* Disable counter during debug halt. */
false, /* Don't care. */
true, /* Enable counter wrap on ch. 1 CCV value. */
rtccCntPresc_1, /* NOTE: Do not use a pre-scale if errata RTCC_E201 applies. */
rtccCntTickPresc, /* Count using the clock input directly. */
#if defined(_RTCC_CTRL_BUMODETSEN_MASK)
false, /* Disable storing RTCC counter value in RTCC_CCV2 upon backup mode entry. */
#endif
false, /* Oscillator fail detection disabled. */
rtccCntModeNormal, /* Use RTCC in normal mode (increment by 1 on each tick) and not in calendar mode. */
false /* Don't care. */
};
static const RTCC_CCChConf_TypeDef xRTCCChannel1InitStruct =
{
rtccCapComChModeCompare, /* Use Compare mode. */
rtccCompMatchOutActionPulse,/* Don't care. */
rtccPRSCh0, /* PRS not used. */
rtccInEdgeNone, /* Capture Input not used. */
rtccCompBaseCnt, /* Compare with Base CNT register. */
0, /* Compare mask. */
rtccDayCompareModeMonth /* Don't care. */
};
/*-----------------------------------------------------------*/
void vPortSetupTimerInterrupt( void )
{
/* Configure the RTCC to generate the RTOS tick interrupt. */
/* The maximum number of ticks that can be suppressed depends on the clock
frequency. */
xMaximumPossibleSuppressedTicks = ULONG_MAX / ulReloadValueForOneTick;
/* Ensure LE modules are accessible. */
CMU_ClockEnable( cmuClock_CORELE, true );
/* Use LFXO. */
CMU_ClockSelectSet( cmuClock_LFE, cmuSelect_LFXO );
/* Enable clock to the RTC module. */
CMU_ClockEnable( cmuClock_RTCC, true );
/* Use channel 1 to generate the RTOS tick interrupt. */
RTCC_ChannelCCVSet( lpRTCC_CHANNEL, ulReloadValueForOneTick );
RTCC_Init( &xRTCInitStruct );
RTCC_ChannelInit( lpRTCC_CHANNEL, &xRTCCChannel1InitStruct );
RTCC_EM4WakeupEnable( true );
/* Disable RTCC interrupt. */
RTCC_IntDisable( _RTCC_IF_MASK );
RTCC_IntClear( _RTCC_IF_MASK );
RTCC->CNT = _RTCC_CNT_RESETVALUE;
/* The tick interrupt must be set to the lowest priority possible. */
NVIC_SetPriority( RTCC_IRQn, configLIBRARY_LOWEST_INTERRUPT_PRIORITY );
NVIC_ClearPendingIRQ( RTCC_IRQn );
NVIC_EnableIRQ( RTCC_IRQn );
RTCC_IntEnable( RTCC_IEN_CC1 );
RTCC_Enable( true );
#if( lpUSE_TEST_TIMER == 1 )
{
void prvSetupTestTimer( void );
/* A second timer is used to test the path where the MCU is brought out
of a low power state by a timer other than the tick timer. */
prvSetupTestTimer();
}
#endif
}
/*-----------------------------------------------------------*/
void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
{
uint32_t ulReloadValue, ulCompleteTickPeriods, ulCountAfterSleep;
eSleepModeStatus eSleepAction;
TickType_t xModifiableIdleTime;
/* THIS FUNCTION IS CALLED WITH THE SCHEDULER SUSPENDED. */
/* Make sure the RTC reload value does not overflow the counter. */
if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
{
xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
}
/* Calculate the reload value required to wait xExpectedIdleTime tick
periods. */
ulReloadValue = ulReloadValueForOneTick * xExpectedIdleTime;
if( ulReloadValue > ulStoppedTimerCompensation )
{
/* Compensate for the fact that the RTC is going to be stopped
momentarily. */
ulReloadValue -= ulStoppedTimerCompensation;
}
/* Stop the RTC momentarily. The time the RTC is stopped for is accounted
for as best it can be, but using the tickless mode will inevitably result
in some tiny drift of the time maintained by the kernel with respect to
calendar time. */
RTCC_Enable( false );
/* Enter a critical section but don't use the taskENTER_CRITICAL() method as
that will mask interrupts that should exit sleep mode. */
INT_Disable();
__asm volatile( "dsb" );
__asm volatile( "isb" );
/* The tick flag is set to false before sleeping. If it is true when sleep
mode is exited then sleep mode was probably exited because the tick was
suppressed for the entire xExpectedIdleTime period. */
ulTickFlag = pdFALSE;
/* If a context switch is pending then abandon the low power entry as the
context switch might have been pended by an external interrupt that requires
processing. */
eSleepAction = eTaskConfirmSleepModeStatus();
if( eSleepAction == eAbortSleep )
{
/* Restart tick and continue counting to complete the current time
slice. */
RTCC_Enable( true );
/* Re-enable interrupts - see comments above the RTCC_Enable() call
above. */
INT_Enable();
}
else
{
RTCC_ChannelCCVSet( lpRTCC_CHANNEL, ulReloadValue );
/* Restart the RTC. */
RTCC_Enable( true );
/* Allow the application to define some pre-sleep processing. */
xModifiableIdleTime = xExpectedIdleTime;
configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
/* xExpectedIdleTime being set to 0 by configPRE_SLEEP_PROCESSING()
means the application defined code has already executed the WAIT
instruction. */
if( xModifiableIdleTime > 0 )
{
__asm volatile( "dsb" );
SLEEP_Sleep();
__asm volatile( "isb" );
}
/* Allow the application to define some post sleep processing. */
configPOST_SLEEP_PROCESSING( xModifiableIdleTime );
/* Stop RTC. Again, the time the SysTick is stopped for is accounted
for as best it can be, but using the tickless mode will inevitably
result in some tiny drift of the time maintained by the kernel with
respect to calendar time. */
RTCC_Enable( false );
ulCountAfterSleep = RTCC_CounterGet();
/* Re-enable interrupts - see comments above the INT_Enable() call
above. */
INT_Enable();
__asm volatile( "dsb" );
__asm volatile( "isb" );
if( ulTickFlag != pdFALSE )
{
/* The tick interrupt has already executed, although because this
function is called with the scheduler suspended the actual tick
processing will not occur until after this function has exited.
The tick interrupt handler will already have pended the tick
processing in the kernel. As the pending tick will be processed as
soon as this function exits, the tick value maintained by the tick
is stepped forward by one less than the time spent sleeping. The
actual stepping of the tick appears later in this function. */
ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
/* The interrupt should have reset the CCV value. */
configASSERT( RTCC_ChannelCCVGet( lpRTCC_CHANNEL ) == ulReloadValueForOneTick );
}
else
{
/* Something other than the tick interrupt ended the sleep. How
many complete tick periods passed while the processor was
sleeping? */
ulCompleteTickPeriods = ulCountAfterSleep / ulReloadValueForOneTick;
/* The next interrupt is configured to occur at whatever fraction of
the current tick period remains by setting the reload value back to
that required for one tick, and truncating the count to remove the
counts that are greater than the reload value. */
RTCC_ChannelCCVSet( lpRTCC_CHANNEL, ulReloadValueForOneTick );
ulCountAfterSleep %= ulReloadValueForOneTick;
RTCC_CounterSet( ulCountAfterSleep );
}
/* Restart the RTC so it runs up to the alarm value. The alarm value
will get set to the value required to generate exactly one tick period
the next time the RTC interrupt executes. */
RTCC_Enable( true );
/* Wind the tick forward by the number of tick periods that the CPU
remained in a low power state. */
vTaskStepTick( ulCompleteTickPeriods );
}
}
/*-----------------------------------------------------------*/
void RTCC_IRQHandler( void )
{
ulTickFlag = pdTRUE;
if( RTCC_ChannelCCVGet( lpRTCC_CHANNEL ) != ulReloadValueForOneTick )
{
/* Set RTC interrupt to one RTOS tick period. */
RTCC_Enable( false );
RTCC_ChannelCCVSet( lpRTCC_CHANNEL, ulReloadValueForOneTick );
RTCC_Enable( true );
}
RTCC_IntClear( _RTCC_IF_MASK );
/* Critical section which protect incrementing the tick*/
portDISABLE_INTERRUPTS();
{
if( xTaskIncrementTick() != pdFALSE )
{
/* Pend a context switch. */
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
}
}
portENABLE_INTERRUPTS();
}
/*-----------------------------------------------------------*/
#if( lpUSE_TEST_TIMER == 1 )
/* Juse used to ensure the second timer is executing. */
volatile uint32_t ulLETimerIncrements = 0;
void LETIMER0_IRQHandler( void )
{
/* This ISR is used purely to bring the MCU out of sleep mode - it has
no other purpose. */
ulLETimerIncrements++;
LETIMER_IntClear( LETIMER0, LETIMER_IF_COMP0 );
}
#endif /* lpUSE_TEST_TIMER == 1 */
/*-----------------------------------------------------------*/
#if( lpUSE_TEST_TIMER == 1 )
/* Set up a timer that used used to bring the MCU out of sleep mode using
an interrupt other than the tick interrupt. This is done for code coverage
puposes only. */
void prvSetupTestTimer( void )
{
static const LETIMER_Init_TypeDef xLETimerInitStruct =
{
true, /* Enable timer when init complete. */
false, /* Stop counter during debug halt. */
true, /* Load COMP0 into CNT on underflow. */
false, /* Do not load COMP1 into COMP0 when REP0 reaches 0. */
0, /* Idle value 0 for output 0. */
0, /* Idle value 0 for output 1. */
letimerUFOANone, /* No action on underflow on output 0. */
letimerUFOANone, /* No action on underflow on output 1. */
letimerRepeatFree /* Count until stopped by SW. */
};
const uint32_t ulCompareMatch = 32768UL / 10UL;
CMU_ClockSelectSet( cmuClock_LFA, cmuSelect_LFXO );
CMU_ClockEnable( cmuClock_LETIMER0, true );
LETIMER_CompareSet( LETIMER0, 0, ulCompareMatch );
LETIMER_IntEnable( LETIMER0, LETIMER_IF_COMP0 );
NVIC_EnableIRQ( LETIMER0_IRQn );
LETIMER_Init( LETIMER0, &xLETimerInitStruct);
}
#endif /* lpUSE_TEST_TIMER == 1 */
#endif /* ( configCREATE_LOW_POWER_DEMO == 1 ) */