blob: 189d05b5923802c3a84eb7b56b39947c87beaeca [file] [log] [blame]
/*
* FreeRTOS Kernel V10.0.0
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software. If you wish to use our Amazon
* FreeRTOS name, please do so in a fair use way that does not cause confusion.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "queue.h"
#include "task.h"
/*
* "Reg test" tasks - These fill the registers with known values, then check
* that each register maintains its expected value for the lifetime of the
* task. Each task uses a different set of values. The reg test tasks execute
* with a very low priority, so get preempted very frequently. A register
* containing an unexpected value is indicative of an error in the context
* switching mechanism.
*/
void vRegTest1Implementation( void *pvParameters );
void vRegTest2Implementation( void *pvParameters );
void vRegTest3Implementation( void );
void vRegTest4Implementation( void );
/*
* Used as an easy way of deleting a task from inline assembly.
*/
extern void vMainDeleteMe( void ) __attribute__((noinline));
/*
* Used by the first two reg test tasks and a software timer callback function
* to send messages to the check task. The message just lets the check task
* know that the tasks and timer are still functioning correctly. If a reg test
* task detects an error it will delete itself, and in so doing prevent itself
* from sending any more 'I'm Alive' messages to the check task.
*/
extern void vMainSendImAlive( QueueHandle_t xHandle, uint32_t ulTaskNumber );
/* The queue used to send a message to the check task. */
extern QueueHandle_t xGlobalScopeCheckQueue;
/*-----------------------------------------------------------*/
void vRegTest1Implementation( void *pvParameters )
{
/* This task is created in privileged mode so can access the file scope
queue variable. Take a stack copy of this before the task is set into user
mode. Once this task is in user mode the file scope queue variable will no
longer be accessible but the stack copy will. */
QueueHandle_t xQueue = xGlobalScopeCheckQueue;
const TickType_t xDelayTime = pdMS_TO_TICKS( 100UL );
/* Now the queue handle has been obtained the task can switch to user
mode. This is just one method of passing a handle into a protected
task, the other reg test task uses the task parameter instead. */
portSWITCH_TO_USER_MODE();
/* First check that the parameter value is as expected. */
if( pvParameters != ( void * ) configREG_TEST_TASK_1_PARAMETER )
{
/* Error detected. Delete the task so it stops communicating with
the check task. */
vMainDeleteMe();
}
for( ;; )
{
#if defined ( __GNUC__ )
{
/* This task tests the kernel context switch mechanism by reading and
writing directly to registers - which requires the test to be written
in assembly code. */
__asm volatile
(
" MOV R4, #104 \n" /* Set registers to a known value. R0 to R1 are done in the loop below. */
" MOV R5, #105 \n"
" MOV R6, #106 \n"
" MOV R8, #108 \n"
" MOV R9, #109 \n"
" MOV R10, #110 \n"
" MOV R11, #111 \n"
"reg1loop: \n"
" MOV R0, #100 \n" /* Set the scratch registers to known values - done inside the loop as they get clobbered. */
" MOV R1, #101 \n"
" MOV R2, #102 \n"
" MOV R3, #103 \n"
" MOV R12, #112 \n"
" SVC #1 \n" /* Yield just to increase test coverage. */
" CMP R0, #100 \n" /* Check all the registers still contain their expected values. */
" BNE vMainDeleteMe \n" /* Value was not as expected, delete the task so it stops communicating with the check task. */
" CMP R1, #101 \n"
" BNE vMainDeleteMe \n"
" CMP R2, #102 \n"
" BNE vMainDeleteMe \n"
" CMP R3, #103 \n"
" BNE vMainDeleteMe \n"
" CMP R4, #104 \n"
" BNE vMainDeleteMe \n"
" CMP R5, #105 \n"
" BNE vMainDeleteMe \n"
" CMP R6, #106 \n"
" BNE vMainDeleteMe \n"
" CMP R8, #108 \n"
" BNE vMainDeleteMe \n"
" CMP R9, #109 \n"
" BNE vMainDeleteMe \n"
" CMP R10, #110 \n"
" BNE vMainDeleteMe \n"
" CMP R11, #111 \n"
" BNE vMainDeleteMe \n"
" CMP R12, #112 \n"
" BNE vMainDeleteMe \n"
:::"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r8", "r9", "r10", "r11", "r12"
);
}
#endif /* __GNUC__ */
/* Send configREG_TEST_1_STILL_EXECUTING to the check task to indicate that this
task is still functioning. */
vMainSendImAlive( xQueue, configREG_TEST_1_STILL_EXECUTING );
vTaskDelay( xDelayTime );
#if defined ( __GNUC__ )
{
/* Go back to check all the register values again. */
__asm volatile( " B reg1loop " );
}
#endif /* __GNUC__ */
}
}
/*-----------------------------------------------------------*/
void vRegTest2Implementation( void *pvParameters )
{
/* The queue handle is passed in as the task parameter. This is one method of
passing data into a protected task, the other reg test task uses a different
method. */
QueueHandle_t xQueue = ( QueueHandle_t ) pvParameters;
const TickType_t xDelayTime = pdMS_TO_TICKS( 100UL );
for( ;; )
{
#if defined ( __GNUC__ )
{
/* This task tests the kernel context switch mechanism by reading and
writing directly to registers - which requires the test to be written
in assembly code. */
__asm volatile
(
" MOV R4, #4 \n" /* Set registers to a known value. R0 to R1 are done in the loop below. */
" MOV R5, #5 \n"
" MOV R6, #6 \n"
" MOV R8, #8 \n" /* Frame pointer is omitted as it must not be changed. */
" MOV R9, #9 \n"
" MOV R10, 10 \n"
" MOV R11, #11 \n"
"reg2loop: \n"
" MOV R0, #13 \n" /* Set the scratch registers to known values - done inside the loop as they get clobbered. */
" MOV R1, #1 \n"
" MOV R2, #2 \n"
" MOV R3, #3 \n"
" MOV R12, #12 \n"
" CMP R0, #13 \n" /* Check all the registers still contain their expected values. */
" BNE vMainDeleteMe \n" /* Value was not as expected, delete the task so it stops communicating with the check task */
" CMP R1, #1 \n"
" BNE vMainDeleteMe \n"
" CMP R2, #2 \n"
" BNE vMainDeleteMe \n"
" CMP R3, #3 \n"
" BNE vMainDeleteMe \n"
" CMP R4, #4 \n"
" BNE vMainDeleteMe \n"
" CMP R5, #5 \n"
" BNE vMainDeleteMe \n"
" CMP R6, #6 \n"
" BNE vMainDeleteMe \n"
" CMP R8, #8 \n"
" BNE vMainDeleteMe \n"
" CMP R9, #9 \n"
" BNE vMainDeleteMe \n"
" CMP R10, #10 \n"
" BNE vMainDeleteMe \n"
" CMP R11, #11 \n"
" BNE vMainDeleteMe \n"
" CMP R12, #12 \n"
" BNE vMainDeleteMe \n"
:::"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r8", "r9", "r10", "r11", "r12"
);
}
#endif /* __GNUC__ */
/* Send configREG_TEST_2_STILL_EXECUTING to the check task to indicate
that this task is still functioning. */
vMainSendImAlive( xQueue, configREG_TEST_2_STILL_EXECUTING );
vTaskDelay( xDelayTime );
#if defined ( __GNUC__ )
{
/* Go back to check all the register values again. */
__asm volatile( " B reg2loop " );
}
#endif /* __GNUC__ */
}
}
/*-----------------------------------------------------------*/
__asm void vRegTest3Implementation( void )
{
extern pulRegTest3LoopCounter
PRESERVE8
/* Fill the core registers with known values. */
mov r0, #100
mov r1, #101
mov r2, #102
mov r3, #103
mov r4, #104
mov r5, #105
mov r6, #106
mov r7, #107
mov r8, #108
mov r9, #109
mov r10, #110
mov r11, #111
mov r12, #112
/* Fill the VFP registers with known values. */
vmov d0, r0, r1
vmov d1, r2, r3
vmov d2, r4, r5
vmov d3, r6, r7
vmov d4, r8, r9
vmov d5, r10, r11
vmov d6, r0, r1
vmov d7, r2, r3
vmov d8, r4, r5
vmov d9, r6, r7
vmov d10, r8, r9
vmov d11, r10, r11
vmov d12, r0, r1
vmov d13, r2, r3
vmov d14, r4, r5
vmov d15, r6, r7
reg1_loop
/* Check all the VFP registers still contain the values set above.
First save registers that are clobbered by the test. */
push { r0-r1 }
vmov r0, r1, d0
cmp r0, #100
bne reg1_error_loopf
cmp r1, #101
bne reg1_error_loopf
vmov r0, r1, d1
cmp r0, #102
bne reg1_error_loopf
cmp r1, #103
bne reg1_error_loopf
vmov r0, r1, d2
cmp r0, #104
bne reg1_error_loopf
cmp r1, #105
bne reg1_error_loopf
vmov r0, r1, d3
cmp r0, #106
bne reg1_error_loopf
cmp r1, #107
bne reg1_error_loopf
vmov r0, r1, d4
cmp r0, #108
bne reg1_error_loopf
cmp r1, #109
bne reg1_error_loopf
vmov r0, r1, d5
cmp r0, #110
bne reg1_error_loopf
cmp r1, #111
bne reg1_error_loopf
vmov r0, r1, d6
cmp r0, #100
bne reg1_error_loopf
cmp r1, #101
bne reg1_error_loopf
vmov r0, r1, d7
cmp r0, #102
bne reg1_error_loopf
cmp r1, #103
bne reg1_error_loopf
vmov r0, r1, d8
cmp r0, #104
bne reg1_error_loopf
cmp r1, #105
bne reg1_error_loopf
vmov r0, r1, d9
cmp r0, #106
bne reg1_error_loopf
cmp r1, #107
bne reg1_error_loopf
vmov r0, r1, d10
cmp r0, #108
bne reg1_error_loopf
cmp r1, #109
bne reg1_error_loopf
vmov r0, r1, d11
cmp r0, #110
bne reg1_error_loopf
cmp r1, #111
bne reg1_error_loopf
vmov r0, r1, d12
cmp r0, #100
bne reg1_error_loopf
cmp r1, #101
bne reg1_error_loopf
vmov r0, r1, d13
cmp r0, #102
bne reg1_error_loopf
cmp r1, #103
bne reg1_error_loopf
vmov r0, r1, d14
cmp r0, #104
bne reg1_error_loopf
cmp r1, #105
bne reg1_error_loopf
vmov r0, r1, d15
cmp r0, #106
bne reg1_error_loopf
cmp r1, #107
bne reg1_error_loopf
/* Restore the registers that were clobbered by the test. */
pop {r0-r1}
/* VFP register test passed. Jump to the core register test. */
b reg1_loopf_pass
reg1_error_loopf
/* If this line is hit then a VFP register value was found to be incorrect. */
b reg1_error_loopf
reg1_loopf_pass
cmp r0, #100
bne reg1_error_loop
cmp r1, #101
bne reg1_error_loop
cmp r2, #102
bne reg1_error_loop
cmp r3, #103
bne reg1_error_loop
cmp r4, #104
bne reg1_error_loop
cmp r5, #105
bne reg1_error_loop
cmp r6, #106
bne reg1_error_loop
cmp r7, #107
bne reg1_error_loop
cmp r8, #108
bne reg1_error_loop
cmp r9, #109
bne reg1_error_loop
cmp r10, #110
bne reg1_error_loop
cmp r11, #111
bne reg1_error_loop
cmp r12, #112
bne reg1_error_loop
/* Everything passed, increment the loop counter. */
push { r0-r1 }
ldr r0, =pulRegTest3LoopCounter
ldr r0, [r0]
ldr r1, [r0]
adds r1, r1, #1
str r1, [r0]
pop { r0-r1 }
/* Start again. */
b reg1_loop
reg1_error_loop
/* If this line is hit then there was an error in a core register value.
The loop ensures the loop counter stops incrementing. */
b reg1_error_loop
nop
nop
}
/*-----------------------------------------------------------*/
__asm void vRegTest4Implementation( void )
{
extern pulRegTest4LoopCounter;
PRESERVE8
/* Set all the core registers to known values. */
mov r0, #-1
mov r1, #1
mov r2, #2
mov r3, #3
mov r4, #4
mov r5, #5
mov r6, #6
mov r7, #7
mov r8, #8
mov r9, #9
mov r10, #10
mov r11, #11
mov r12, #12
/* Set all the VFP to known values. */
vmov d0, r0, r1
vmov d1, r2, r3
vmov d2, r4, r5
vmov d3, r6, r7
vmov d4, r8, r9
vmov d5, r10, r11
vmov d6, r0, r1
vmov d7, r2, r3
vmov d8, r4, r5
vmov d9, r6, r7
vmov d10, r8, r9
vmov d11, r10, r11
vmov d12, r0, r1
vmov d13, r2, r3
vmov d14, r4, r5
vmov d15, r6, r7
reg2_loop
/* Check all the VFP registers still contain the values set above.
First save registers that are clobbered by the test. */
push { r0-r1 }
vmov r0, r1, d0
cmp r0, #-1
bne reg2_error_loopf
cmp r1, #1
bne reg2_error_loopf
vmov r0, r1, d1
cmp r0, #2
bne reg2_error_loopf
cmp r1, #3
bne reg2_error_loopf
vmov r0, r1, d2
cmp r0, #4
bne reg2_error_loopf
cmp r1, #5
bne reg2_error_loopf
vmov r0, r1, d3
cmp r0, #6
bne reg2_error_loopf
cmp r1, #7
bne reg2_error_loopf
vmov r0, r1, d4
cmp r0, #8
bne reg2_error_loopf
cmp r1, #9
bne reg2_error_loopf
vmov r0, r1, d5
cmp r0, #10
bne reg2_error_loopf
cmp r1, #11
bne reg2_error_loopf
vmov r0, r1, d6
cmp r0, #-1
bne reg2_error_loopf
cmp r1, #1
bne reg2_error_loopf
vmov r0, r1, d7
cmp r0, #2
bne reg2_error_loopf
cmp r1, #3
bne reg2_error_loopf
vmov r0, r1, d8
cmp r0, #4
bne reg2_error_loopf
cmp r1, #5
bne reg2_error_loopf
vmov r0, r1, d9
cmp r0, #6
bne reg2_error_loopf
cmp r1, #7
bne reg2_error_loopf
vmov r0, r1, d10
cmp r0, #8
bne reg2_error_loopf
cmp r1, #9
bne reg2_error_loopf
vmov r0, r1, d11
cmp r0, #10
bne reg2_error_loopf
cmp r1, #11
bne reg2_error_loopf
vmov r0, r1, d12
cmp r0, #-1
bne reg2_error_loopf
cmp r1, #1
bne reg2_error_loopf
vmov r0, r1, d13
cmp r0, #2
bne reg2_error_loopf
cmp r1, #3
bne reg2_error_loopf
vmov r0, r1, d14
cmp r0, #4
bne reg2_error_loopf
cmp r1, #5
bne reg2_error_loopf
vmov r0, r1, d15
cmp r0, #6
bne reg2_error_loopf
cmp r1, #7
bne reg2_error_loopf
/* Restore the registers that were clobbered by the test. */
pop {r0-r1}
/* VFP register test passed. Jump to the core register test. */
b reg2_loopf_pass
reg2_error_loopf
/* If this line is hit then a VFP register value was found to be
incorrect. */
b reg2_error_loopf
reg2_loopf_pass
cmp r0, #-1
bne reg2_error_loop
cmp r1, #1
bne reg2_error_loop
cmp r2, #2
bne reg2_error_loop
cmp r3, #3
bne reg2_error_loop
cmp r4, #4
bne reg2_error_loop
cmp r5, #5
bne reg2_error_loop
cmp r6, #6
bne reg2_error_loop
cmp r7, #7
bne reg2_error_loop
cmp r8, #8
bne reg2_error_loop
cmp r9, #9
bne reg2_error_loop
cmp r10, #10
bne reg2_error_loop
cmp r11, #11
bne reg2_error_loop
cmp r12, #12
bne reg2_error_loop
/* Increment the loop counter so the check task knows this task is
still running. */
push { r0-r1 }
ldr r0, =pulRegTest4LoopCounter
ldr r0, [r0]
ldr r1, [r0]
adds r1, r1, #1
str r1, [r0]
pop { r0-r1 }
/* Yield to increase test coverage. */
SVC #1
/* Start again. */
b reg2_loop
reg2_error_loop
/* If this line is hit then there was an error in a core register value.
This loop ensures the loop counter variable stops incrementing. */
b reg2_error_loop
nop
}
/*-----------------------------------------------------------*/
/* Fault handlers are here for convenience as they use compiler specific syntax
and this file is specific to the Keil compiler. */
void hard_fault_handler( uint32_t * hardfault_args )
{
volatile uint32_t stacked_r0;
volatile uint32_t stacked_r1;
volatile uint32_t stacked_r2;
volatile uint32_t stacked_r3;
volatile uint32_t stacked_r12;
volatile uint32_t stacked_lr;
volatile uint32_t stacked_pc;
volatile uint32_t stacked_psr;
stacked_r0 = ((uint32_t) hardfault_args[ 0 ]);
stacked_r1 = ((uint32_t) hardfault_args[ 1 ]);
stacked_r2 = ((uint32_t) hardfault_args[ 2 ]);
stacked_r3 = ((uint32_t) hardfault_args[ 3 ]);
stacked_r12 = ((uint32_t) hardfault_args[ 4 ]);
stacked_lr = ((uint32_t) hardfault_args[ 5 ]);
stacked_pc = ((uint32_t) hardfault_args[ 6 ]);
stacked_psr = ((uint32_t) hardfault_args[ 7 ]);
/* Inspect stacked_pc to locate the offending instruction. */
for( ;; );
}
/*-----------------------------------------------------------*/
void HardFault_Handler( void );
__asm void HardFault_Handler( void )
{
extern hard_fault_handler
tst lr, #4
ite eq
mrseq r0, msp
mrsne r0, psp
ldr r1, [r0, #24]
ldr r2, hard_fault_handler
bx r2
}
/*-----------------------------------------------------------*/
void MemManage_Handler( void );
__asm void MemManage_Handler( void )
{
extern hard_fault_handler
tst lr, #4
ite eq
mrseq r0, msp
mrsne r0, psp
ldr r1, [r0, #24]
ldr r2, hard_fault_handler
bx r2
}
/*-----------------------------------------------------------*/