#define DEBUG_PRINTF(...) /*printf(__VA_ARGS__)*/ | |
/** | |
* \defgroup uip The uIP TCP/IP stack | |
* @{ | |
* | |
* uIP is an implementation of the TCP/IP protocol stack intended for | |
* small 8-bit and 16-bit microcontrollers. | |
* | |
* uIP provides the necessary protocols for Internet communication, | |
* with a very small code footprint and RAM requirements - the uIP | |
* code size is on the order of a few kilobytes and RAM usage is on | |
* the order of a few hundred bytes. | |
*/ | |
/** | |
* \file | |
* The uIP TCP/IP stack code. | |
* \author Adam Dunkels <adam@dunkels.com> | |
*/ | |
/* | |
* Copyright (c) 2001-2003, Adam Dunkels. | |
* All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions | |
* are met: | |
* 1. Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* 2. Redistributions in binary form must reproduce the above copyright | |
* notice, this list of conditions and the following disclaimer in the | |
* documentation and/or other materials provided with the distribution. | |
* 3. The name of the author may not be used to endorse or promote | |
* products derived from this software without specific prior | |
* written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | |
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | |
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
* | |
* This file is part of the uIP TCP/IP stack. | |
* | |
* $Id: uip.c,v 1.65 2006/06/11 21:46:39 adam Exp $ | |
* | |
*/ | |
/* | |
* uIP is a small implementation of the IP, UDP and TCP protocols (as | |
* well as some basic ICMP stuff). The implementation couples the IP, | |
* UDP, TCP and the application layers very tightly. To keep the size | |
* of the compiled code down, this code frequently uses the goto | |
* statement. While it would be possible to break the uip_process() | |
* function into many smaller functions, this would increase the code | |
* size because of the overhead of parameter passing and the fact that | |
* the optimier would not be as efficient. | |
* | |
* The principle is that we have a small buffer, called the uip_buf, | |
* in which the device driver puts an incoming packet. The TCP/IP | |
* stack parses the headers in the packet, and calls the | |
* application. If the remote host has sent data to the application, | |
* this data is present in the uip_buf and the application read the | |
* data from there. It is up to the application to put this data into | |
* a byte stream if needed. The application will not be fed with data | |
* that is out of sequence. | |
* | |
* If the application whishes to send data to the peer, it should put | |
* its data into the uip_buf. The uip_appdata pointer points to the | |
* first available byte. The TCP/IP stack will calculate the | |
* checksums, and fill in the necessary header fields and finally send | |
* the packet back to the peer. | |
*/ | |
#include "uip.h" | |
#include "uipopt.h" | |
#include "uip_arch.h" | |
#if UIP_CONF_IPV6 | |
#include "uip-neighbor.h" | |
#endif /* UIP_CONF_IPV6 */ | |
#include <string.h> | |
/*---------------------------------------------------------------------------*/ | |
/* Variable definitions. */ | |
/* The IP address of this host. If it is defined to be fixed (by | |
setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set | |
here. Otherwise, the address */ | |
#if UIP_FIXEDADDR > 0 | |
const uip_ipaddr_t uip_hostaddr = | |
{HTONS((UIP_IPADDR0 << 8) | UIP_IPADDR1), | |
HTONS((UIP_IPADDR2 << 8) | UIP_IPADDR3)}; | |
const uip_ipaddr_t uip_draddr = | |
{HTONS((UIP_DRIPADDR0 << 8) | UIP_DRIPADDR1), | |
HTONS((UIP_DRIPADDR2 << 8) | UIP_DRIPADDR3)}; | |
const uip_ipaddr_t uip_netmask = | |
{HTONS((UIP_NETMASK0 << 8) | UIP_NETMASK1), | |
HTONS((UIP_NETMASK2 << 8) | UIP_NETMASK3)}; | |
#else | |
uip_ipaddr_t uip_hostaddr, uip_draddr, uip_netmask; | |
#endif /* UIP_FIXEDADDR */ | |
static const uip_ipaddr_t all_ones_addr = | |
#if UIP_CONF_IPV6 | |
{0xffff,0xffff,0xffff,0xffff,0xffff,0xffff,0xffff,0xffff}; | |
#else /* UIP_CONF_IPV6 */ | |
{0xffff,0xffff}; | |
#endif /* UIP_CONF_IPV6 */ | |
static const uip_ipaddr_t all_zeroes_addr = | |
#if UIP_CONF_IPV6 | |
{0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000}; | |
#else /* UIP_CONF_IPV6 */ | |
{0x0000,0x0000}; | |
#endif /* UIP_CONF_IPV6 */ | |
#if UIP_FIXEDETHADDR | |
const struct uip_eth_addr uip_ethaddr = {{UIP_ETHADDR0, | |
UIP_ETHADDR1, | |
UIP_ETHADDR2, | |
UIP_ETHADDR3, | |
UIP_ETHADDR4, | |
UIP_ETHADDR5}}; | |
#else | |
struct uip_eth_addr uip_ethaddr = {{0,0,0,0,0,0}}; | |
#endif | |
#ifndef UIP_CONF_EXTERNAL_BUFFER | |
#ifdef __ICCARM__ | |
#pragma data_alignment=4 | |
u8_t uip_buf[UIP_BUFSIZE + 2]; /* The packet buffer that contains incoming packets. */ | |
#else | |
u8_t uip_buf[UIP_BUFSIZE + 2] ALIGN_STRUCT_END; /* The packet buffer that contains incoming packets. */ | |
#endif | |
#endif /* UIP_CONF_EXTERNAL_BUFFER */ | |
void *uip_appdata; /* The uip_appdata pointer points to | |
application data. */ | |
void *uip_sappdata; /* The uip_appdata pointer points to | |
the application data which is to | |
be sent. */ | |
#if UIP_URGDATA > 0 | |
void *uip_urgdata; /* The uip_urgdata pointer points to | |
urgent data (out-of-band data), if | |
present. */ | |
u16_t uip_urglen, uip_surglen; | |
#endif /* UIP_URGDATA > 0 */ | |
u16_t uip_len, uip_slen; | |
/* The uip_len is either 8 or 16 bits, | |
depending on the maximum packet | |
size. */ | |
u8_t uip_flags; /* The uip_flags variable is used for | |
communication between the TCP/IP stack | |
and the application program. */ | |
struct uip_conn *uip_conn; /* uip_conn always points to the current | |
connection. */ | |
struct uip_conn uip_conns[UIP_CONNS]; | |
/* The uip_conns array holds all TCP | |
connections. */ | |
u16_t uip_listenports[UIP_LISTENPORTS]; | |
/* The uip_listenports list all currently | |
listning ports. */ | |
#if UIP_UDP | |
struct uip_udp_conn *uip_udp_conn; | |
struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS]; | |
#endif /* UIP_UDP */ | |
static u16_t ipid; /* Ths ipid variable is an increasing | |
number that is used for the IP ID | |
field. */ | |
void uip_setipid(u16_t id) { ipid = id; } | |
static u8_t iss[4]; /* The iss variable is used for the TCP | |
initial sequence number. */ | |
#if UIP_ACTIVE_OPEN | |
static u16_t lastport; /* Keeps track of the last port used for | |
a new connection. */ | |
#endif /* UIP_ACTIVE_OPEN */ | |
/* Temporary variables. */ | |
u8_t uip_acc32[4]; | |
static u8_t c, opt; | |
static u16_t tmp16; | |
/* Structures and definitions. */ | |
#define TCP_FIN 0x01 | |
#define TCP_SYN 0x02 | |
#define TCP_RST 0x04 | |
#define TCP_PSH 0x08 | |
#define TCP_ACK 0x10 | |
#define TCP_URG 0x20 | |
#define TCP_CTL 0x3f | |
#define TCP_OPT_END 0 /* End of TCP options list */ | |
#define TCP_OPT_NOOP 1 /* "No-operation" TCP option */ | |
#define TCP_OPT_MSS 2 /* Maximum segment size TCP option */ | |
#define TCP_OPT_MSS_LEN 4 /* Length of TCP MSS option. */ | |
#define ICMP_ECHO_REPLY 0 | |
#define ICMP_ECHO 8 | |
#define ICMP6_ECHO_REPLY 129 | |
#define ICMP6_ECHO 128 | |
#define ICMP6_NEIGHBOR_SOLICITATION 135 | |
#define ICMP6_NEIGHBOR_ADVERTISEMENT 136 | |
#define ICMP6_FLAG_S (1 << 6) | |
#define ICMP6_OPTION_SOURCE_LINK_ADDRESS 1 | |
#define ICMP6_OPTION_TARGET_LINK_ADDRESS 2 | |
/* Macros. */ | |
#define BUF ((struct uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN]) | |
#define FBUF ((struct uip_tcpip_hdr *)&uip_reassbuf[0]) | |
#define ICMPBUF ((struct uip_icmpip_hdr *)&uip_buf[UIP_LLH_LEN]) | |
#define UDPBUF ((struct uip_udpip_hdr *)&uip_buf[UIP_LLH_LEN]) | |
#if UIP_STATISTICS == 1 | |
struct uip_stats uip_stat; | |
#define UIP_STAT(s) s | |
#else | |
#define UIP_STAT(s) | |
#endif /* UIP_STATISTICS == 1 */ | |
#if UIP_LOGGING == 1 | |
#include <stdio.h> | |
void uip_log(char *msg); | |
#define UIP_LOG(m) uip_log(m) | |
#else | |
#define UIP_LOG(m) | |
#endif /* UIP_LOGGING == 1 */ | |
#if ! UIP_ARCH_ADD32 | |
void | |
uip_add32(u8_t *op32, u16_t op16) | |
{ | |
uip_acc32[3] = op32[3] + (op16 & 0xff); | |
uip_acc32[2] = op32[2] + (op16 >> 8); | |
uip_acc32[1] = op32[1]; | |
uip_acc32[0] = op32[0]; | |
if(uip_acc32[2] < (op16 >> 8)) { | |
++uip_acc32[1]; | |
if(uip_acc32[1] == 0) { | |
++uip_acc32[0]; | |
} | |
} | |
if(uip_acc32[3] < (op16 & 0xff)) { | |
++uip_acc32[2]; | |
if(uip_acc32[2] == 0) { | |
++uip_acc32[1]; | |
if(uip_acc32[1] == 0) { | |
++uip_acc32[0]; | |
} | |
} | |
} | |
} | |
#endif /* UIP_ARCH_ADD32 */ | |
#if ! UIP_ARCH_CHKSUM | |
/*---------------------------------------------------------------------------*/ | |
static u16_t | |
chksum(u16_t sum, const u8_t *data, u16_t len) | |
{ | |
u16_t t; | |
const u8_t *dataptr; | |
const u8_t *last_byte; | |
dataptr = data; | |
last_byte = data + len - 1; | |
while(dataptr < last_byte) { /* At least two more bytes */ | |
t = (dataptr[0] << 8) + dataptr[1]; | |
sum += t; | |
if(sum < t) { | |
sum++; /* carry */ | |
} | |
dataptr += 2; | |
} | |
if(dataptr == last_byte) { | |
t = (dataptr[0] << 8) + 0; | |
sum += t; | |
if(sum < t) { | |
sum++; /* carry */ | |
} | |
} | |
/* Return sum in host byte order. */ | |
return sum; | |
} | |
/*---------------------------------------------------------------------------*/ | |
u16_t | |
uip_chksum(u16_t *data, u16_t len) | |
{ | |
return htons(chksum(0, (u8_t *)data, len)); | |
} | |
/*---------------------------------------------------------------------------*/ | |
#ifndef UIP_ARCH_IPCHKSUM | |
u16_t | |
uip_ipchksum(void) | |
{ | |
u16_t sum; | |
sum = chksum(0, &uip_buf[UIP_LLH_LEN], UIP_IPH_LEN); | |
DEBUG_PRINTF("uip_ipchksum: sum 0x%04x\n", sum); | |
return (sum == 0) ? 0xffff : htons(sum); | |
} | |
#endif | |
/*---------------------------------------------------------------------------*/ | |
static u16_t | |
upper_layer_chksum(u8_t proto) | |
{ | |
u16_t upper_layer_len; | |
u16_t sum; | |
#if UIP_CONF_IPV6 | |
upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]); | |
#else /* UIP_CONF_IPV6 */ | |
upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]) - UIP_IPH_LEN; | |
#endif /* UIP_CONF_IPV6 */ | |
/* First sum pseudoheader. */ | |
/* IP protocol and length fields. This addition cannot carry. */ | |
sum = upper_layer_len + proto; | |
/* Sum IP source and destination addresses. */ | |
sum = chksum(sum, (u8_t *)&BUF->srcipaddr[0], 2 * sizeof(uip_ipaddr_t)); | |
/* Sum TCP header and data. */ | |
sum = chksum(sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN], | |
upper_layer_len); | |
return (sum == 0) ? 0xffff : htons(sum); | |
} | |
/*---------------------------------------------------------------------------*/ | |
#if UIP_CONF_IPV6 | |
u16_t | |
uip_icmp6chksum(void) | |
{ | |
return upper_layer_chksum(UIP_PROTO_ICMP6); | |
} | |
#endif /* UIP_CONF_IPV6 */ | |
/*---------------------------------------------------------------------------*/ | |
u16_t | |
uip_tcpchksum(void) | |
{ | |
return upper_layer_chksum(UIP_PROTO_TCP); | |
} | |
/*---------------------------------------------------------------------------*/ | |
#if UIP_UDP_CHECKSUMS | |
u16_t | |
uip_udpchksum(void) | |
{ | |
return upper_layer_chksum(UIP_PROTO_UDP); | |
} | |
#endif /* UIP_UDP_CHECKSUMS */ | |
#endif /* UIP_ARCH_CHKSUM */ | |
/*---------------------------------------------------------------------------*/ | |
void | |
uip_init(void) | |
{ | |
for(c = 0; c < UIP_LISTENPORTS; ++c) { | |
uip_listenports[c] = 0; | |
} | |
for(c = 0; c < UIP_CONNS; ++c) { | |
uip_conns[c].tcpstateflags = UIP_CLOSED; | |
} | |
#if UIP_ACTIVE_OPEN | |
lastport = 1024; | |
#endif /* UIP_ACTIVE_OPEN */ | |
#if UIP_UDP | |
for(c = 0; c < UIP_UDP_CONNS; ++c) { | |
uip_udp_conns[c].lport = 0; | |
} | |
#endif /* UIP_UDP */ | |
/* IPv4 initialization. */ | |
#if UIP_FIXEDADDR == 0 | |
/* uip_hostaddr[0] = uip_hostaddr[1] = 0;*/ | |
#endif /* UIP_FIXEDADDR */ | |
} | |
/*---------------------------------------------------------------------------*/ | |
#if UIP_ACTIVE_OPEN | |
struct uip_conn * | |
uip_connect(uip_ipaddr_t *ripaddr, u16_t rport) | |
{ | |
register struct uip_conn *conn, *cconn; | |
/* Find an unused local port. */ | |
again: | |
++lastport; | |
if(lastport >= 32000) { | |
lastport = 4096; | |
} | |
/* Check if this port is already in use, and if so try to find | |
another one. */ | |
for(c = 0; c < UIP_CONNS; ++c) { | |
conn = &uip_conns[c]; | |
if(conn->tcpstateflags != UIP_CLOSED && | |
conn->lport == htons(lastport)) { | |
goto again; | |
} | |
} | |
conn = 0; | |
for(c = 0; c < UIP_CONNS; ++c) { | |
cconn = &uip_conns[c]; | |
if(cconn->tcpstateflags == UIP_CLOSED) { | |
conn = cconn; | |
break; | |
} | |
if(cconn->tcpstateflags == UIP_TIME_WAIT) { | |
if(conn == 0 || | |
cconn->timer > conn->timer) { | |
conn = cconn; | |
} | |
} | |
} | |
if(conn == 0) { | |
return 0; | |
} | |
conn->tcpstateflags = UIP_SYN_SENT; | |
conn->snd_nxt[0] = iss[0]; | |
conn->snd_nxt[1] = iss[1]; | |
conn->snd_nxt[2] = iss[2]; | |
conn->snd_nxt[3] = iss[3]; | |
conn->initialmss = conn->mss = UIP_TCP_MSS; | |
conn->len = 1; /* TCP length of the SYN is one. */ | |
conn->nrtx = 0; | |
conn->timer = 1; /* Send the SYN next time around. */ | |
conn->rto = UIP_RTO; | |
conn->sa = 0; | |
conn->sv = 16; /* Initial value of the RTT variance. */ | |
conn->lport = htons(lastport); | |
conn->rport = rport; | |
uip_ipaddr_copy(&conn->ripaddr, ripaddr); | |
return conn; | |
} | |
#endif /* UIP_ACTIVE_OPEN */ | |
/*---------------------------------------------------------------------------*/ | |
#if UIP_UDP | |
struct uip_udp_conn * | |
uip_udp_new(uip_ipaddr_t *ripaddr, u16_t rport) | |
{ | |
register struct uip_udp_conn *conn; | |
/* Find an unused local port. */ | |
again: | |
++lastport; | |
if(lastport >= 32000) { | |
lastport = 4096; | |
} | |
for(c = 0; c < UIP_UDP_CONNS; ++c) { | |
if(uip_udp_conns[c].lport == htons(lastport)) { | |
goto again; | |
} | |
} | |
conn = 0; | |
for(c = 0; c < UIP_UDP_CONNS; ++c) { | |
if(uip_udp_conns[c].lport == 0) { | |
conn = &uip_udp_conns[c]; | |
break; | |
} | |
} | |
if(conn == 0) { | |
return 0; | |
} | |
conn->lport = HTONS(lastport); | |
conn->rport = rport; | |
if(ripaddr == NULL) { | |
memset(conn->ripaddr, 0, sizeof(uip_ipaddr_t)); | |
} else { | |
uip_ipaddr_copy(&conn->ripaddr, ripaddr); | |
} | |
conn->ttl = UIP_TTL; | |
return conn; | |
} | |
#endif /* UIP_UDP */ | |
/*---------------------------------------------------------------------------*/ | |
void | |
uip_unlisten(u16_t port) | |
{ | |
for(c = 0; c < UIP_LISTENPORTS; ++c) { | |
if(uip_listenports[c] == port) { | |
uip_listenports[c] = 0; | |
return; | |
} | |
} | |
} | |
/*---------------------------------------------------------------------------*/ | |
void | |
uip_listen(u16_t port) | |
{ | |
for(c = 0; c < UIP_LISTENPORTS; ++c) { | |
if(uip_listenports[c] == 0) { | |
uip_listenports[c] = port; | |
return; | |
} | |
} | |
} | |
/*---------------------------------------------------------------------------*/ | |
/* XXX: IP fragment reassembly: not well-tested. */ | |
#if UIP_REASSEMBLY && !UIP_CONF_IPV6 | |
#define UIP_REASS_BUFSIZE (UIP_BUFSIZE - UIP_LLH_LEN) | |
static u8_t uip_reassbuf[UIP_REASS_BUFSIZE]; | |
static u8_t uip_reassbitmap[UIP_REASS_BUFSIZE / (8 * 8)]; | |
static const u8_t bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f, | |
0x0f, 0x07, 0x03, 0x01}; | |
static u16_t uip_reasslen; | |
static u8_t uip_reassflags; | |
#define UIP_REASS_FLAG_LASTFRAG 0x01 | |
static u8_t uip_reasstmr; | |
#define IP_MF 0x20 | |
static u8_t | |
uip_reass(void) | |
{ | |
u16_t offset, len; | |
u16_t i; | |
/* If ip_reasstmr is zero, no packet is present in the buffer, so we | |
write the IP header of the fragment into the reassembly | |
buffer. The timer is updated with the maximum age. */ | |
if(uip_reasstmr == 0) { | |
memcpy(uip_reassbuf, &BUF->vhl, UIP_IPH_LEN); | |
uip_reasstmr = UIP_REASS_MAXAGE; | |
uip_reassflags = 0; | |
/* Clear the bitmap. */ | |
memset(uip_reassbitmap, 0, sizeof(uip_reassbitmap)); | |
} | |
/* Check if the incoming fragment matches the one currently present | |
in the reasembly buffer. If so, we proceed with copying the | |
fragment into the buffer. */ | |
if(BUF->srcipaddr[0] == FBUF->srcipaddr[0] && | |
BUF->srcipaddr[1] == FBUF->srcipaddr[1] && | |
BUF->destipaddr[0] == FBUF->destipaddr[0] && | |
BUF->destipaddr[1] == FBUF->destipaddr[1] && | |
BUF->ipid[0] == FBUF->ipid[0] && | |
BUF->ipid[1] == FBUF->ipid[1]) { | |
len = (BUF->len[0] << 8) + BUF->len[1] - (BUF->vhl & 0x0f) * 4; | |
offset = (((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1]) * 8; | |
/* If the offset or the offset + fragment length overflows the | |
reassembly buffer, we discard the entire packet. */ | |
if(offset > UIP_REASS_BUFSIZE || | |
offset + len > UIP_REASS_BUFSIZE) { | |
uip_reasstmr = 0; | |
goto nullreturn; | |
} | |
/* Copy the fragment into the reassembly buffer, at the right | |
offset. */ | |
memcpy(&uip_reassbuf[UIP_IPH_LEN + offset], | |
(char *)BUF + (int)((BUF->vhl & 0x0f) * 4), | |
len); | |
/* Update the bitmap. */ | |
if(offset / (8 * 8) == (offset + len) / (8 * 8)) { | |
/* If the two endpoints are in the same byte, we only update | |
that byte. */ | |
uip_reassbitmap[offset / (8 * 8)] |= | |
bitmap_bits[(offset / 8 ) & 7] & | |
~bitmap_bits[((offset + len) / 8 ) & 7]; | |
} else { | |
/* If the two endpoints are in different bytes, we update the | |
bytes in the endpoints and fill the stuff inbetween with | |
0xff. */ | |
uip_reassbitmap[offset / (8 * 8)] |= | |
bitmap_bits[(offset / 8 ) & 7]; | |
for(i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) { | |
uip_reassbitmap[i] = 0xff; | |
} | |
uip_reassbitmap[(offset + len) / (8 * 8)] |= | |
~bitmap_bits[((offset + len) / 8 ) & 7]; | |
} | |
/* If this fragment has the More Fragments flag set to zero, we | |
know that this is the last fragment, so we can calculate the | |
size of the entire packet. We also set the | |
IP_REASS_FLAG_LASTFRAG flag to indicate that we have received | |
the final fragment. */ | |
if((BUF->ipoffset[0] & IP_MF) == 0) { | |
uip_reassflags |= UIP_REASS_FLAG_LASTFRAG; | |
uip_reasslen = offset + len; | |
} | |
/* Finally, we check if we have a full packet in the buffer. We do | |
this by checking if we have the last fragment and if all bits | |
in the bitmap are set. */ | |
if(uip_reassflags & UIP_REASS_FLAG_LASTFRAG) { | |
/* Check all bytes up to and including all but the last byte in | |
the bitmap. */ | |
for(i = 0; i < uip_reasslen / (8 * 8) - 1; ++i) { | |
if(uip_reassbitmap[i] != 0xff) { | |
goto nullreturn; | |
} | |
} | |
/* Check the last byte in the bitmap. It should contain just the | |
right amount of bits. */ | |
if(uip_reassbitmap[uip_reasslen / (8 * 8)] != | |
(u8_t)~bitmap_bits[uip_reasslen / 8 & 7]) { | |
goto nullreturn; | |
} | |
/* If we have come this far, we have a full packet in the | |
buffer, so we allocate a pbuf and copy the packet into it. We | |
also reset the timer. */ | |
uip_reasstmr = 0; | |
memcpy(BUF, FBUF, uip_reasslen); | |
/* Pretend to be a "normal" (i.e., not fragmented) IP packet | |
from now on. */ | |
BUF->ipoffset[0] = BUF->ipoffset[1] = 0; | |
BUF->len[0] = uip_reasslen >> 8; | |
BUF->len[1] = uip_reasslen & 0xff; | |
BUF->ipchksum = 0; | |
BUF->ipchksum = ~(uip_ipchksum()); | |
return uip_reasslen; | |
} | |
} | |
nullreturn: | |
return 0; | |
} | |
#endif /* UIP_REASSEMBLY */ | |
/*---------------------------------------------------------------------------*/ | |
static void | |
uip_add_rcv_nxt(u16_t n) | |
{ | |
uip_add32(uip_conn->rcv_nxt, n); | |
uip_conn->rcv_nxt[0] = uip_acc32[0]; | |
uip_conn->rcv_nxt[1] = uip_acc32[1]; | |
uip_conn->rcv_nxt[2] = uip_acc32[2]; | |
uip_conn->rcv_nxt[3] = uip_acc32[3]; | |
} | |
/*---------------------------------------------------------------------------*/ | |
void | |
uip_process(u8_t flag) | |
{ | |
register struct uip_conn *uip_connr = uip_conn; | |
#if UIP_UDP | |
if(flag == UIP_UDP_SEND_CONN) { | |
goto udp_send; | |
} | |
#endif /* UIP_UDP */ | |
uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN]; | |
/* Check if we were invoked because of a poll request for a | |
particular connection. */ | |
if(flag == UIP_POLL_REQUEST) { | |
if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED && | |
!uip_outstanding(uip_connr)) { | |
uip_flags = UIP_POLL; | |
UIP_APPCALL(); | |
goto appsend; | |
} | |
goto drop; | |
/* Check if we were invoked because of the perodic timer fireing. */ | |
} else if(flag == UIP_TIMER) { | |
#if UIP_REASSEMBLY | |
if(uip_reasstmr != 0) { | |
--uip_reasstmr; | |
} | |
#endif /* UIP_REASSEMBLY */ | |
/* Increase the initial sequence number. */ | |
if(++iss[3] == 0) { | |
if(++iss[2] == 0) { | |
if(++iss[1] == 0) { | |
++iss[0]; | |
} | |
} | |
} | |
/* Reset the length variables. */ | |
uip_len = 0; | |
uip_slen = 0; | |
/* Check if the connection is in a state in which we simply wait | |
for the connection to time out. If so, we increase the | |
connection's timer and remove the connection if it times | |
out. */ | |
if(uip_connr->tcpstateflags == UIP_TIME_WAIT || | |
uip_connr->tcpstateflags == UIP_FIN_WAIT_2) { | |
++(uip_connr->timer); | |
if(uip_connr->timer == UIP_TIME_WAIT_TIMEOUT) { | |
uip_connr->tcpstateflags = UIP_CLOSED; | |
} | |
} else if(uip_connr->tcpstateflags != UIP_CLOSED) { | |
/* If the connection has outstanding data, we increase the | |
connection's timer and see if it has reached the RTO value | |
in which case we retransmit. */ | |
if(uip_outstanding(uip_connr)) { | |
uip_connr->timer = uip_connr->timer - 1; | |
if(uip_connr->timer == 0) { | |
if(uip_connr->nrtx == UIP_MAXRTX || | |
((uip_connr->tcpstateflags == UIP_SYN_SENT || | |
uip_connr->tcpstateflags == UIP_SYN_RCVD) && | |
uip_connr->nrtx == UIP_MAXSYNRTX)) { | |
uip_connr->tcpstateflags = UIP_CLOSED; | |
/* We call UIP_APPCALL() with uip_flags set to | |
UIP_TIMEDOUT to inform the application that the | |
connection has timed out. */ | |
uip_flags = UIP_TIMEDOUT; | |
UIP_APPCALL(); | |
/* We also send a reset packet to the remote host. */ | |
BUF->flags = TCP_RST | TCP_ACK; | |
goto tcp_send_nodata; | |
} | |
/* Exponential backoff. */ | |
uip_connr->timer = UIP_RTO << (uip_connr->nrtx > 4? | |
4: | |
uip_connr->nrtx); | |
++(uip_connr->nrtx); | |
/* Ok, so we need to retransmit. We do this differently | |
depending on which state we are in. In ESTABLISHED, we | |
call upon the application so that it may prepare the | |
data for the retransmit. In SYN_RCVD, we resend the | |
SYNACK that we sent earlier and in LAST_ACK we have to | |
retransmit our FINACK. */ | |
UIP_STAT(++uip_stat.tcp.rexmit); | |
switch(uip_connr->tcpstateflags & UIP_TS_MASK) { | |
case UIP_SYN_RCVD: | |
/* In the SYN_RCVD state, we should retransmit our | |
SYNACK. */ | |
goto tcp_send_synack; | |
#if UIP_ACTIVE_OPEN | |
case UIP_SYN_SENT: | |
/* In the SYN_SENT state, we retransmit out SYN. */ | |
BUF->flags = 0; | |
goto tcp_send_syn; | |
#endif /* UIP_ACTIVE_OPEN */ | |
case UIP_ESTABLISHED: | |
/* In the ESTABLISHED state, we call upon the application | |
to do the actual retransmit after which we jump into | |
the code for sending out the packet (the apprexmit | |
label). */ | |
uip_flags = UIP_REXMIT; | |
UIP_APPCALL(); | |
goto apprexmit; | |
case UIP_FIN_WAIT_1: | |
case UIP_CLOSING: | |
case UIP_LAST_ACK: | |
/* In all these states we should retransmit a FINACK. */ | |
goto tcp_send_finack; | |
} | |
} | |
} else if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED) { | |
/* If there was no need for a retransmission, we poll the | |
application for new data. */ | |
uip_flags = UIP_POLL; | |
UIP_APPCALL(); | |
goto appsend; | |
} | |
} | |
goto drop; | |
} | |
#if UIP_UDP | |
if(flag == UIP_UDP_TIMER) { | |
if(uip_udp_conn->lport != 0) { | |
uip_conn = NULL; | |
uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | |
uip_len = uip_slen = 0; | |
uip_flags = UIP_POLL; | |
UIP_UDP_APPCALL(); | |
goto udp_send; | |
} else { | |
goto drop; | |
} | |
} | |
#endif | |
/* This is where the input processing starts. */ | |
UIP_STAT(++uip_stat.ip.recv); | |
/* Start of IP input header processing code. */ | |
#if UIP_CONF_IPV6 | |
/* Check validity of the IP header. */ | |
if((BUF->vtc & 0xf0) != 0x60) { /* IP version and header length. */ | |
UIP_STAT(++uip_stat.ip.drop); | |
UIP_STAT(++uip_stat.ip.vhlerr); | |
UIP_LOG("ipv6: invalid version."); | |
goto drop; | |
} | |
#else /* UIP_CONF_IPV6 */ | |
/* Check validity of the IP header. */ | |
if(BUF->vhl != 0x45) { /* IP version and header length. */ | |
UIP_STAT(++uip_stat.ip.drop); | |
UIP_STAT(++uip_stat.ip.vhlerr); | |
UIP_LOG("ip: invalid version or header length."); | |
goto drop; | |
} | |
#endif /* UIP_CONF_IPV6 */ | |
/* Check the size of the packet. If the size reported to us in | |
uip_len is smaller the size reported in the IP header, we assume | |
that the packet has been corrupted in transit. If the size of | |
uip_len is larger than the size reported in the IP packet header, | |
the packet has been padded and we set uip_len to the correct | |
value.. */ | |
if((BUF->len[0] << 8) + BUF->len[1] <= uip_len) { | |
uip_len = (BUF->len[0] << 8) + BUF->len[1]; | |
#if UIP_CONF_IPV6 | |
uip_len += 40; /* The length reported in the IPv6 header is the | |
length of the payload that follows the | |
header. However, uIP uses the uip_len variable | |
for holding the size of the entire packet, | |
including the IP header. For IPv4 this is not a | |
problem as the length field in the IPv4 header | |
contains the length of the entire packet. But | |
for IPv6 we need to add the size of the IPv6 | |
header (40 bytes). */ | |
#endif /* UIP_CONF_IPV6 */ | |
} else { | |
UIP_LOG("ip: packet shorter than reported in IP header."); | |
goto drop; | |
} | |
#if !UIP_CONF_IPV6 | |
/* Check the fragment flag. */ | |
if((BUF->ipoffset[0] & 0x3f) != 0 || | |
BUF->ipoffset[1] != 0) { | |
#if UIP_REASSEMBLY | |
uip_len = uip_reass(); | |
if(uip_len == 0) { | |
goto drop; | |
} | |
#else /* UIP_REASSEMBLY */ | |
UIP_STAT(++uip_stat.ip.drop); | |
UIP_STAT(++uip_stat.ip.fragerr); | |
UIP_LOG("ip: fragment dropped."); | |
goto drop; | |
#endif /* UIP_REASSEMBLY */ | |
} | |
#endif /* UIP_CONF_IPV6 */ | |
if(uip_ipaddr_cmp(uip_hostaddr, all_zeroes_addr)) { | |
/* If we are configured to use ping IP address configuration and | |
hasn't been assigned an IP address yet, we accept all ICMP | |
packets. */ | |
#if UIP_PINGADDRCONF && !UIP_CONF_IPV6 | |
if(BUF->proto == UIP_PROTO_ICMP) { | |
UIP_LOG("ip: possible ping config packet received."); | |
goto icmp_input; | |
} else { | |
UIP_LOG("ip: packet dropped since no address assigned."); | |
goto drop; | |
} | |
#endif /* UIP_PINGADDRCONF */ | |
} else { | |
/* If IP broadcast support is configured, we check for a broadcast | |
UDP packet, which may be destined to us. */ | |
#if UIP_BROADCAST | |
DEBUG_PRINTF("UDP IP checksum 0x%04x\n", uip_ipchksum()); | |
if(BUF->proto == UIP_PROTO_UDP && | |
uip_ipaddr_cmp(BUF->destipaddr, all_ones_addr) | |
/*&& | |
uip_ipchksum() == 0xffff*/) { | |
goto udp_input; | |
} | |
#endif /* UIP_BROADCAST */ | |
/* Check if the packet is destined for our IP address. */ | |
#if !UIP_CONF_IPV6 | |
if(!uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr)) { | |
UIP_STAT(++uip_stat.ip.drop); | |
goto drop; | |
} | |
#else /* UIP_CONF_IPV6 */ | |
/* For IPv6, packet reception is a little trickier as we need to | |
make sure that we listen to certain multicast addresses (all | |
hosts multicast address, and the solicited-node multicast | |
address) as well. However, we will cheat here and accept all | |
multicast packets that are sent to the ff02::/16 addresses. */ | |
if(!uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr) && | |
BUF->destipaddr[0] != HTONS(0xff02)) { | |
UIP_STAT(++uip_stat.ip.drop); | |
goto drop; | |
} | |
#endif /* UIP_CONF_IPV6 */ | |
} | |
#if !UIP_CONF_IPV6 | |
if(uip_ipchksum() != 0xffff) { /* Compute and check the IP header | |
checksum. */ | |
UIP_STAT(++uip_stat.ip.drop); | |
UIP_STAT(++uip_stat.ip.chkerr); | |
UIP_LOG("ip: bad checksum."); | |
goto drop; | |
} | |
#endif /* UIP_CONF_IPV6 */ | |
if(BUF->proto == UIP_PROTO_TCP) { /* Check for TCP packet. If so, | |
proceed with TCP input | |
processing. */ | |
goto tcp_input; | |
} | |
#if UIP_UDP | |
if(BUF->proto == UIP_PROTO_UDP) { | |
goto udp_input; | |
} | |
#endif /* UIP_UDP */ | |
#if !UIP_CONF_IPV6 | |
/* ICMPv4 processing code follows. */ | |
if(BUF->proto != UIP_PROTO_ICMP) { /* We only allow ICMP packets from | |
here. */ | |
UIP_STAT(++uip_stat.ip.drop); | |
UIP_STAT(++uip_stat.ip.protoerr); | |
UIP_LOG("ip: neither tcp nor icmp."); | |
goto drop; | |
} | |
#if UIP_PINGADDRCONF | |
icmp_input: | |
#endif /* UIP_PINGADDRCONF */ | |
UIP_STAT(++uip_stat.icmp.recv); | |
/* ICMP echo (i.e., ping) processing. This is simple, we only change | |
the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP | |
checksum before we return the packet. */ | |
if(ICMPBUF->type != ICMP_ECHO) { | |
UIP_STAT(++uip_stat.icmp.drop); | |
UIP_STAT(++uip_stat.icmp.typeerr); | |
UIP_LOG("icmp: not icmp echo."); | |
goto drop; | |
} | |
/* If we are configured to use ping IP address assignment, we use | |
the destination IP address of this ping packet and assign it to | |
ourself. */ | |
#if UIP_PINGADDRCONF | |
if((uip_hostaddr[0] | uip_hostaddr[1]) == 0) { | |
uip_hostaddr[0] = BUF->destipaddr[0]; | |
uip_hostaddr[1] = BUF->destipaddr[1]; | |
} | |
#endif /* UIP_PINGADDRCONF */ | |
ICMPBUF->type = ICMP_ECHO_REPLY; | |
if(ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8))) { | |
ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8) + 1; | |
} else { | |
ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8); | |
} | |
/* Swap IP addresses. */ | |
uip_ipaddr_copy(BUF->destipaddr, BUF->srcipaddr); | |
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr); | |
UIP_STAT(++uip_stat.icmp.sent); | |
goto send; | |
/* End of IPv4 input header processing code. */ | |
#else /* !UIP_CONF_IPV6 */ | |
/* This is IPv6 ICMPv6 processing code. */ | |
DEBUG_PRINTF("icmp6_input: length %d\n", uip_len); | |
if(BUF->proto != UIP_PROTO_ICMP6) { /* We only allow ICMPv6 packets from | |
here. */ | |
UIP_STAT(++uip_stat.ip.drop); | |
UIP_STAT(++uip_stat.ip.protoerr); | |
UIP_LOG("ip: neither tcp nor icmp6."); | |
goto drop; | |
} | |
UIP_STAT(++uip_stat.icmp.recv); | |
/* If we get a neighbor solicitation for our address we should send | |
a neighbor advertisement message back. */ | |
if(ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION) { | |
if(uip_ipaddr_cmp(ICMPBUF->icmp6data, uip_hostaddr)) { | |
if(ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS) { | |
/* Save the sender's address in our neighbor list. */ | |
uip_neighbor_add(ICMPBUF->srcipaddr, &(ICMPBUF->options[2])); | |
} | |
/* We should now send a neighbor advertisement back to where the | |
neighbor solicication came from. */ | |
ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT; | |
ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */ | |
ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0; | |
uip_ipaddr_copy(ICMPBUF->destipaddr, ICMPBUF->srcipaddr); | |
uip_ipaddr_copy(ICMPBUF->srcipaddr, uip_hostaddr); | |
ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS; | |
ICMPBUF->options[1] = 1; /* Options length, 1 = 8 bytes. */ | |
memcpy(&(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr)); | |
ICMPBUF->icmpchksum = 0; | |
ICMPBUF->icmpchksum = ~uip_icmp6chksum(); | |
goto send; | |
} | |
goto drop; | |
} else if(ICMPBUF->type == ICMP6_ECHO) { | |
/* ICMP echo (i.e., ping) processing. This is simple, we only | |
change the ICMP type from ECHO to ECHO_REPLY and update the | |
ICMP checksum before we return the packet. */ | |
ICMPBUF->type = ICMP6_ECHO_REPLY; | |
uip_ipaddr_copy(BUF->destipaddr, BUF->srcipaddr); | |
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr); | |
ICMPBUF->icmpchksum = 0; | |
ICMPBUF->icmpchksum = ~uip_icmp6chksum(); | |
UIP_STAT(++uip_stat.icmp.sent); | |
goto send; | |
} else { | |
DEBUG_PRINTF("Unknown icmp6 message type %d\n", ICMPBUF->type); | |
UIP_STAT(++uip_stat.icmp.drop); | |
UIP_STAT(++uip_stat.icmp.typeerr); | |
UIP_LOG("icmp: unknown ICMP message."); | |
goto drop; | |
} | |
/* End of IPv6 ICMP processing. */ | |
#endif /* !UIP_CONF_IPV6 */ | |
#if UIP_UDP | |
/* UDP input processing. */ | |
udp_input: | |
/* UDP processing is really just a hack. We don't do anything to the | |
UDP/IP headers, but let the UDP application do all the hard | |
work. If the application sets uip_slen, it has a packet to | |
send. */ | |
#if UIP_UDP_CHECKSUMS | |
uip_len = uip_len - UIP_IPUDPH_LEN; | |
uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | |
if(UDPBUF->udpchksum != 0 && uip_udpchksum() != 0xffff) { | |
UIP_STAT(++uip_stat.udp.drop); | |
UIP_STAT(++uip_stat.udp.chkerr); | |
UIP_LOG("udp: bad checksum."); | |
goto drop; | |
} | |
#else /* UIP_UDP_CHECKSUMS */ | |
uip_len = uip_len - UIP_IPUDPH_LEN; | |
#endif /* UIP_UDP_CHECKSUMS */ | |
/* Demultiplex this UDP packet between the UDP "connections". */ | |
for(uip_udp_conn = &uip_udp_conns[0]; | |
uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS]; | |
++uip_udp_conn) { | |
/* If the local UDP port is non-zero, the connection is considered | |
to be used. If so, the local port number is checked against the | |
destination port number in the received packet. If the two port | |
numbers match, the remote port number is checked if the | |
connection is bound to a remote port. Finally, if the | |
connection is bound to a remote IP address, the source IP | |
address of the packet is checked. */ | |
if(uip_udp_conn->lport != 0 && | |
UDPBUF->destport == uip_udp_conn->lport && | |
(uip_udp_conn->rport == 0 || | |
UDPBUF->srcport == uip_udp_conn->rport) && | |
(uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_zeroes_addr) || | |
uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_ones_addr) || | |
uip_ipaddr_cmp(BUF->srcipaddr, uip_udp_conn->ripaddr))) { | |
goto udp_found; | |
} | |
} | |
UIP_LOG("udp: no matching connection found"); | |
goto drop; | |
udp_found: | |
UIP_STAT(++uip_stat.udp.recv); | |
uip_conn = NULL; | |
uip_flags = UIP_NEWDATA; | |
uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | |
uip_slen = 0; | |
UIP_UDP_APPCALL(); | |
udp_send: | |
if(uip_slen == 0) { | |
goto drop; | |
} | |
uip_len = uip_slen + UIP_IPUDPH_LEN; | |
#if UIP_CONF_IPV6 | |
/* For IPv6, the IP length field does not include the IPv6 IP header | |
length. */ | |
BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8); | |
BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff); | |
#else /* UIP_CONF_IPV6 */ | |
BUF->len[0] = (uip_len >> 8); | |
BUF->len[1] = (uip_len & 0xff); | |
#endif /* UIP_CONF_IPV6 */ | |
BUF->ttl = uip_udp_conn->ttl; | |
BUF->proto = UIP_PROTO_UDP; | |
UDPBUF->udplen = HTONS(uip_slen + UIP_UDPH_LEN); | |
UDPBUF->udpchksum = 0; | |
BUF->srcport = uip_udp_conn->lport; | |
BUF->destport = uip_udp_conn->rport; | |
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr); | |
uip_ipaddr_copy(BUF->destipaddr, uip_udp_conn->ripaddr); | |
uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN]; | |
#if UIP_UDP_CHECKSUMS | |
/* Calculate UDP checksum. */ | |
UDPBUF->udpchksum = ~(uip_udpchksum()); | |
if(UDPBUF->udpchksum == 0) { | |
UDPBUF->udpchksum = 0xffff; | |
} | |
#endif /* UIP_UDP_CHECKSUMS */ | |
UIP_STAT(++uip_stat.udp.sent); | |
goto ip_send_nolen; | |
#endif /* UIP_UDP */ | |
/* TCP input processing. */ | |
tcp_input: | |
UIP_STAT(++uip_stat.tcp.recv); | |
/* Start of TCP input header processing code. */ | |
if(uip_tcpchksum() != 0xffff) { /* Compute and check the TCP | |
checksum. */ | |
UIP_STAT(++uip_stat.tcp.drop); | |
UIP_STAT(++uip_stat.tcp.chkerr); | |
UIP_LOG("tcp: bad checksum."); | |
goto drop; | |
} | |
/* Demultiplex this segment. */ | |
/* First check any active connections. */ | |
for(uip_connr = &uip_conns[0]; uip_connr <= &uip_conns[UIP_CONNS - 1]; | |
++uip_connr) { | |
if(uip_connr->tcpstateflags != UIP_CLOSED && | |
BUF->destport == uip_connr->lport && | |
BUF->srcport == uip_connr->rport && | |
uip_ipaddr_cmp(BUF->srcipaddr, uip_connr->ripaddr)) { | |
goto found; | |
} | |
} | |
/* If we didn't find and active connection that expected the packet, | |
either this packet is an old duplicate, or this is a SYN packet | |
destined for a connection in LISTEN. If the SYN flag isn't set, | |
it is an old packet and we send a RST. */ | |
if((BUF->flags & TCP_CTL) != TCP_SYN) { | |
goto reset; | |
} | |
tmp16 = BUF->destport; | |
/* Next, check listening connections. */ | |
for(c = 0; c < UIP_LISTENPORTS; ++c) { | |
if(tmp16 == uip_listenports[c]) | |
goto found_listen; | |
} | |
/* No matching connection found, so we send a RST packet. */ | |
UIP_STAT(++uip_stat.tcp.synrst); | |
reset: | |
/* We do not send resets in response to resets. */ | |
if(BUF->flags & TCP_RST) { | |
goto drop; | |
} | |
UIP_STAT(++uip_stat.tcp.rst); | |
BUF->flags = TCP_RST | TCP_ACK; | |
uip_len = UIP_IPTCPH_LEN; | |
BUF->tcpoffset = 5 << 4; | |
/* Flip the seqno and ackno fields in the TCP header. */ | |
c = BUF->seqno[3]; | |
BUF->seqno[3] = BUF->ackno[3]; | |
BUF->ackno[3] = c; | |
c = BUF->seqno[2]; | |
BUF->seqno[2] = BUF->ackno[2]; | |
BUF->ackno[2] = c; | |
c = BUF->seqno[1]; | |
BUF->seqno[1] = BUF->ackno[1]; | |
BUF->ackno[1] = c; | |
c = BUF->seqno[0]; | |
BUF->seqno[0] = BUF->ackno[0]; | |
BUF->ackno[0] = c; | |
/* We also have to increase the sequence number we are | |
acknowledging. If the least significant byte overflowed, we need | |
to propagate the carry to the other bytes as well. */ | |
if(++BUF->ackno[3] == 0) { | |
if(++BUF->ackno[2] == 0) { | |
if(++BUF->ackno[1] == 0) { | |
++BUF->ackno[0]; | |
} | |
} | |
} | |
/* Swap port numbers. */ | |
tmp16 = BUF->srcport; | |
BUF->srcport = BUF->destport; | |
BUF->destport = tmp16; | |
/* Swap IP addresses. */ | |
uip_ipaddr_copy(BUF->destipaddr, BUF->srcipaddr); | |
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr); | |
/* And send out the RST packet! */ | |
goto tcp_send_noconn; | |
/* This label will be jumped to if we matched the incoming packet | |
with a connection in LISTEN. In that case, we should create a new | |
connection and send a SYNACK in return. */ | |
found_listen: | |
/* First we check if there are any connections avaliable. Unused | |
connections are kept in the same table as used connections, but | |
unused ones have the tcpstate set to CLOSED. Also, connections in | |
TIME_WAIT are kept track of and we'll use the oldest one if no | |
CLOSED connections are found. Thanks to Eddie C. Dost for a very | |
nice algorithm for the TIME_WAIT search. */ | |
uip_connr = 0; | |
for(c = 0; c < UIP_CONNS; ++c) { | |
if(uip_conns[c].tcpstateflags == UIP_CLOSED) { | |
uip_connr = &uip_conns[c]; | |
break; | |
} | |
if(uip_conns[c].tcpstateflags == UIP_TIME_WAIT) { | |
if(uip_connr == 0 || | |
uip_conns[c].timer > uip_connr->timer) { | |
uip_connr = &uip_conns[c]; | |
} | |
} | |
} | |
if(uip_connr == 0) { | |
/* All connections are used already, we drop packet and hope that | |
the remote end will retransmit the packet at a time when we | |
have more spare connections. */ | |
UIP_STAT(++uip_stat.tcp.syndrop); | |
UIP_LOG("tcp: found no unused connections."); | |
goto drop; | |
} | |
uip_conn = uip_connr; | |
/* Fill in the necessary fields for the new connection. */ | |
uip_connr->rto = uip_connr->timer = UIP_RTO; | |
uip_connr->sa = 0; | |
uip_connr->sv = 4; | |
uip_connr->nrtx = 0; | |
uip_connr->lport = BUF->destport; | |
uip_connr->rport = BUF->srcport; | |
uip_ipaddr_copy(uip_connr->ripaddr, BUF->srcipaddr); | |
uip_connr->tcpstateflags = UIP_SYN_RCVD; | |
uip_connr->snd_nxt[0] = iss[0]; | |
uip_connr->snd_nxt[1] = iss[1]; | |
uip_connr->snd_nxt[2] = iss[2]; | |
uip_connr->snd_nxt[3] = iss[3]; | |
uip_connr->len = 1; | |
/* rcv_nxt should be the seqno from the incoming packet + 1. */ | |
uip_connr->rcv_nxt[3] = BUF->seqno[3]; | |
uip_connr->rcv_nxt[2] = BUF->seqno[2]; | |
uip_connr->rcv_nxt[1] = BUF->seqno[1]; | |
uip_connr->rcv_nxt[0] = BUF->seqno[0]; | |
uip_add_rcv_nxt(1); | |
/* Parse the TCP MSS option, if present. */ | |
if((BUF->tcpoffset & 0xf0) > 0x50) { | |
for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) { | |
opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c]; | |
if(opt == TCP_OPT_END) { | |
/* End of options. */ | |
break; | |
} else if(opt == TCP_OPT_NOOP) { | |
++c; | |
/* NOP option. */ | |
} else if(opt == TCP_OPT_MSS && | |
uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) { | |
/* An MSS option with the right option length. */ | |
tmp16 = ((u16_t)uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) | | |
(u16_t)uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c]; | |
uip_connr->initialmss = uip_connr->mss = | |
tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16; | |
/* And we are done processing options. */ | |
break; | |
} else { | |
/* All other options have a length field, so that we easily | |
can skip past them. */ | |
if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) { | |
/* If the length field is zero, the options are malformed | |
and we don't process them further. */ | |
break; | |
} | |
c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c]; | |
} | |
} | |
} | |
/* Our response will be a SYNACK. */ | |
#if UIP_ACTIVE_OPEN | |
tcp_send_synack: | |
BUF->flags = TCP_ACK; | |
tcp_send_syn: | |
BUF->flags |= TCP_SYN; | |
#else /* UIP_ACTIVE_OPEN */ | |
tcp_send_synack: | |
BUF->flags = TCP_SYN | TCP_ACK; | |
#endif /* UIP_ACTIVE_OPEN */ | |
/* We send out the TCP Maximum Segment Size option with our | |
SYNACK. */ | |
BUF->optdata[0] = TCP_OPT_MSS; | |
BUF->optdata[1] = TCP_OPT_MSS_LEN; | |
BUF->optdata[2] = (UIP_TCP_MSS) / 256; | |
BUF->optdata[3] = (UIP_TCP_MSS) & 255; | |
uip_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN; | |
BUF->tcpoffset = ((UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4) << 4; | |
goto tcp_send; | |
/* This label will be jumped to if we found an active connection. */ | |
found: | |
uip_conn = uip_connr; | |
uip_flags = 0; | |
/* We do a very naive form of TCP reset processing; we just accept | |
any RST and kill our connection. We should in fact check if the | |
sequence number of this reset is wihtin our advertised window | |
before we accept the reset. */ | |
if(BUF->flags & TCP_RST) { | |
uip_connr->tcpstateflags = UIP_CLOSED; | |
UIP_LOG("tcp: got reset, aborting connection."); | |
uip_flags = UIP_ABORT; | |
UIP_APPCALL(); | |
goto drop; | |
} | |
/* Calculated the length of the data, if the application has sent | |
any data to us. */ | |
c = (BUF->tcpoffset >> 4) << 2; | |
/* uip_len will contain the length of the actual TCP data. This is | |
calculated by subtracing the length of the TCP header (in | |
c) and the length of the IP header (20 bytes). */ | |
uip_len = uip_len - c - UIP_IPH_LEN; | |
/* First, check if the sequence number of the incoming packet is | |
what we're expecting next. If not, we send out an ACK with the | |
correct numbers in. */ | |
if(!(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) && | |
((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)))) { | |
if((uip_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) && | |
(BUF->seqno[0] != uip_connr->rcv_nxt[0] || | |
BUF->seqno[1] != uip_connr->rcv_nxt[1] || | |
BUF->seqno[2] != uip_connr->rcv_nxt[2] || | |
BUF->seqno[3] != uip_connr->rcv_nxt[3])) { | |
goto tcp_send_ack; | |
} | |
} | |
/* Next, check if the incoming segment acknowledges any outstanding | |
data. If so, we update the sequence number, reset the length of | |
the outstanding data, calculate RTT estimations, and reset the | |
retransmission timer. */ | |
if((BUF->flags & TCP_ACK) && uip_outstanding(uip_connr)) { | |
uip_add32(uip_connr->snd_nxt, uip_connr->len); | |
if(BUF->ackno[0] == uip_acc32[0] && | |
BUF->ackno[1] == uip_acc32[1] && | |
BUF->ackno[2] == uip_acc32[2] && | |
BUF->ackno[3] == uip_acc32[3]) { | |
/* Update sequence number. */ | |
uip_connr->snd_nxt[0] = uip_acc32[0]; | |
uip_connr->snd_nxt[1] = uip_acc32[1]; | |
uip_connr->snd_nxt[2] = uip_acc32[2]; | |
uip_connr->snd_nxt[3] = uip_acc32[3]; | |
/* Do RTT estimation, unless we have done retransmissions. */ | |
if(uip_connr->nrtx == 0) { | |
signed char m; | |
m = uip_connr->rto - uip_connr->timer; | |
/* This is taken directly from VJs original code in his paper */ | |
m = m - (uip_connr->sa >> 3); | |
uip_connr->sa += m; | |
if(m < 0) { | |
m = -m; | |
} | |
m = m - (uip_connr->sv >> 2); | |
uip_connr->sv += m; | |
uip_connr->rto = (uip_connr->sa >> 3) + uip_connr->sv; | |
} | |
/* Set the acknowledged flag. */ | |
uip_flags = UIP_ACKDATA; | |
/* Reset the retransmission timer. */ | |
uip_connr->timer = uip_connr->rto; | |
/* Reset length of outstanding data. */ | |
uip_connr->len = 0; | |
} | |
} | |
/* Do different things depending on in what state the connection is. */ | |
switch(uip_connr->tcpstateflags & UIP_TS_MASK) { | |
/* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not | |
implemented, since we force the application to close when the | |
peer sends a FIN (hence the application goes directly from | |
ESTABLISHED to LAST_ACK). */ | |
case UIP_SYN_RCVD: | |
/* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and | |
we are waiting for an ACK that acknowledges the data we sent | |
out the last time. Therefore, we want to have the UIP_ACKDATA | |
flag set. If so, we enter the ESTABLISHED state. */ | |
if(uip_flags & UIP_ACKDATA) { | |
uip_connr->tcpstateflags = UIP_ESTABLISHED; | |
uip_flags = UIP_CONNECTED; | |
uip_connr->len = 0; | |
if(uip_len > 0) { | |
uip_flags |= UIP_NEWDATA; | |
uip_add_rcv_nxt(uip_len); | |
} | |
uip_slen = 0; | |
UIP_APPCALL(); | |
goto appsend; | |
} | |
goto drop; | |
#if UIP_ACTIVE_OPEN | |
case UIP_SYN_SENT: | |
/* In SYN_SENT, we wait for a SYNACK that is sent in response to | |
our SYN. The rcv_nxt is set to sequence number in the SYNACK | |
plus one, and we send an ACK. We move into the ESTABLISHED | |
state. */ | |
if((uip_flags & UIP_ACKDATA) && | |
(BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)) { | |
/* Parse the TCP MSS option, if present. */ | |
if((BUF->tcpoffset & 0xf0) > 0x50) { | |
for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) { | |
opt = uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c]; | |
if(opt == TCP_OPT_END) { | |
/* End of options. */ | |
break; | |
} else if(opt == TCP_OPT_NOOP) { | |
++c; | |
/* NOP option. */ | |
} else if(opt == TCP_OPT_MSS && | |
uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) { | |
/* An MSS option with the right option length. */ | |
tmp16 = (uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) | | |
uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c]; | |
uip_connr->initialmss = | |
uip_connr->mss = tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16; | |
/* And we are done processing options. */ | |
break; | |
} else { | |
/* All other options have a length field, so that we easily | |
can skip past them. */ | |
if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) { | |
/* If the length field is zero, the options are malformed | |
and we don't process them further. */ | |
break; | |
} | |
c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c]; | |
} | |
} | |
} | |
uip_connr->tcpstateflags = UIP_ESTABLISHED; | |
uip_connr->rcv_nxt[0] = BUF->seqno[0]; | |
uip_connr->rcv_nxt[1] = BUF->seqno[1]; | |
uip_connr->rcv_nxt[2] = BUF->seqno[2]; | |
uip_connr->rcv_nxt[3] = BUF->seqno[3]; | |
uip_add_rcv_nxt(1); | |
uip_flags = UIP_CONNECTED | UIP_NEWDATA; | |
uip_connr->len = 0; | |
uip_len = 0; | |
uip_slen = 0; | |
UIP_APPCALL(); | |
goto appsend; | |
} | |
/* Inform the application that the connection failed */ | |
uip_flags = UIP_ABORT; | |
UIP_APPCALL(); | |
/* The connection is closed after we send the RST */ | |
uip_conn->tcpstateflags = UIP_CLOSED; | |
goto reset; | |
#endif /* UIP_ACTIVE_OPEN */ | |
case UIP_ESTABLISHED: | |
/* In the ESTABLISHED state, we call upon the application to feed | |
data into the uip_buf. If the UIP_ACKDATA flag is set, the | |
application should put new data into the buffer, otherwise we are | |
retransmitting an old segment, and the application should put that | |
data into the buffer. | |
If the incoming packet is a FIN, we should close the connection on | |
this side as well, and we send out a FIN and enter the LAST_ACK | |
state. We require that there is no outstanding data; otherwise the | |
sequence numbers will be screwed up. */ | |
if(BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED)) { | |
if(uip_outstanding(uip_connr)) { | |
goto drop; | |
} | |
uip_add_rcv_nxt(1 + uip_len); | |
uip_flags |= UIP_CLOSE; | |
if(uip_len > 0) { | |
uip_flags |= UIP_NEWDATA; | |
} | |
UIP_APPCALL(); | |
uip_connr->len = 1; | |
uip_connr->tcpstateflags = UIP_LAST_ACK; | |
uip_connr->nrtx = 0; | |
tcp_send_finack: | |
BUF->flags = TCP_FIN | TCP_ACK; | |
goto tcp_send_nodata; | |
} | |
/* Check the URG flag. If this is set, the segment carries urgent | |
data that we must pass to the application. */ | |
if((BUF->flags & TCP_URG) != 0) { | |
#if UIP_URGDATA > 0 | |
uip_urglen = (BUF->urgp[0] << 8) | BUF->urgp[1]; | |
if(uip_urglen > uip_len) { | |
/* There is more urgent data in the next segment to come. */ | |
uip_urglen = uip_len; | |
} | |
uip_add_rcv_nxt(uip_urglen); | |
uip_len -= uip_urglen; | |
uip_urgdata = uip_appdata; | |
uip_appdata += uip_urglen; | |
} else { | |
uip_urglen = 0; | |
#else /* UIP_URGDATA > 0 */ | |
uip_appdata = ((char *)uip_appdata) + ((BUF->urgp[0] << 8) | BUF->urgp[1]); | |
uip_len -= (BUF->urgp[0] << 8) | BUF->urgp[1]; | |
#endif /* UIP_URGDATA > 0 */ | |
} | |
/* If uip_len > 0 we have TCP data in the packet, and we flag this | |
by setting the UIP_NEWDATA flag and update the sequence number | |
we acknowledge. If the application has stopped the dataflow | |
using uip_stop(), we must not accept any data packets from the | |
remote host. */ | |
if(uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED)) { | |
uip_flags |= UIP_NEWDATA; | |
uip_add_rcv_nxt(uip_len); | |
} | |
/* Check if the available buffer space advertised by the other end | |
is smaller than the initial MSS for this connection. If so, we | |
set the current MSS to the window size to ensure that the | |
application does not send more data than the other end can | |
handle. | |
If the remote host advertises a zero window, we set the MSS to | |
the initial MSS so that the application will send an entire MSS | |
of data. This data will not be acknowledged by the receiver, | |
and the application will retransmit it. This is called the | |
"persistent timer" and uses the retransmission mechanim. | |
*/ | |
tmp16 = ((u16_t)BUF->wnd[0] << 8) + (u16_t)BUF->wnd[1]; | |
if(tmp16 > uip_connr->initialmss || | |
tmp16 == 0) { | |
tmp16 = uip_connr->initialmss; | |
} | |
uip_connr->mss = tmp16; | |
/* If this packet constitutes an ACK for outstanding data (flagged | |
by the UIP_ACKDATA flag, we should call the application since it | |
might want to send more data. If the incoming packet had data | |
from the peer (as flagged by the UIP_NEWDATA flag), the | |
application must also be notified. | |
When the application is called, the global variable uip_len | |
contains the length of the incoming data. The application can | |
access the incoming data through the global pointer | |
uip_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN | |
bytes into the uip_buf array. | |
If the application wishes to send any data, this data should be | |
put into the uip_appdata and the length of the data should be | |
put into uip_len. If the application don't have any data to | |
send, uip_len must be set to 0. */ | |
if(uip_flags & (UIP_NEWDATA | UIP_ACKDATA)) { | |
uip_slen = 0; | |
UIP_APPCALL(); | |
appsend: | |
if(uip_flags & UIP_ABORT) { | |
uip_slen = 0; | |
uip_connr->tcpstateflags = UIP_CLOSED; | |
BUF->flags = TCP_RST | TCP_ACK; | |
goto tcp_send_nodata; | |
} | |
if(uip_flags & UIP_CLOSE) { | |
uip_slen = 0; | |
uip_connr->len = 1; | |
uip_connr->tcpstateflags = UIP_FIN_WAIT_1; | |
uip_connr->nrtx = 0; | |
BUF->flags = TCP_FIN | TCP_ACK; | |
goto tcp_send_nodata; | |
} | |
/* If uip_slen > 0, the application has data to be sent. */ | |
if(uip_slen > 0) { | |
/* If the connection has acknowledged data, the contents of | |
the ->len variable should be discarded. */ | |
if((uip_flags & UIP_ACKDATA) != 0) { | |
uip_connr->len = 0; | |
} | |
/* If the ->len variable is non-zero the connection has | |
already data in transit and cannot send anymore right | |
now. */ | |
if(uip_connr->len == 0) { | |
/* The application cannot send more than what is allowed by | |
the mss (the minumum of the MSS and the available | |
window). */ | |
if(uip_slen > uip_connr->mss) { | |
uip_slen = uip_connr->mss; | |
} | |
/* Remember how much data we send out now so that we know | |
when everything has been acknowledged. */ | |
uip_connr->len = uip_slen; | |
} else { | |
/* If the application already had unacknowledged data, we | |
make sure that the application does not send (i.e., | |
retransmit) out more than it previously sent out. */ | |
uip_slen = uip_connr->len; | |
} | |
} | |
uip_connr->nrtx = 0; | |
apprexmit: | |
uip_appdata = uip_sappdata; | |
/* If the application has data to be sent, or if the incoming | |
packet had new data in it, we must send out a packet. */ | |
if(uip_slen > 0 && uip_connr->len > 0) { | |
/* Add the length of the IP and TCP headers. */ | |
uip_len = uip_connr->len + UIP_TCPIP_HLEN; | |
/* We always set the ACK flag in response packets. */ | |
BUF->flags = TCP_ACK | TCP_PSH; | |
/* Send the packet. */ | |
goto tcp_send_noopts; | |
} | |
/* If there is no data to send, just send out a pure ACK if | |
there is newdata. */ | |
if(uip_flags & UIP_NEWDATA) { | |
uip_len = UIP_TCPIP_HLEN; | |
BUF->flags = TCP_ACK; | |
goto tcp_send_noopts; | |
} | |
} | |
goto drop; | |
case UIP_LAST_ACK: | |
/* We can close this connection if the peer has acknowledged our | |
FIN. This is indicated by the UIP_ACKDATA flag. */ | |
if(uip_flags & UIP_ACKDATA) { | |
uip_connr->tcpstateflags = UIP_CLOSED; | |
uip_flags = UIP_CLOSE; | |
UIP_APPCALL(); | |
} | |
break; | |
case UIP_FIN_WAIT_1: | |
/* The application has closed the connection, but the remote host | |
hasn't closed its end yet. Thus we do nothing but wait for a | |
FIN from the other side. */ | |
if(uip_len > 0) { | |
uip_add_rcv_nxt(uip_len); | |
} | |
if(BUF->flags & TCP_FIN) { | |
if(uip_flags & UIP_ACKDATA) { | |
uip_connr->tcpstateflags = UIP_TIME_WAIT; | |
uip_connr->timer = 0; | |
uip_connr->len = 0; | |
} else { | |
uip_connr->tcpstateflags = UIP_CLOSING; | |
} | |
uip_add_rcv_nxt(1); | |
uip_flags = UIP_CLOSE; | |
UIP_APPCALL(); | |
goto tcp_send_ack; | |
} else if(uip_flags & UIP_ACKDATA) { | |
uip_connr->tcpstateflags = UIP_FIN_WAIT_2; | |
uip_connr->len = 0; | |
goto drop; | |
} | |
if(uip_len > 0) { | |
goto tcp_send_ack; | |
} | |
goto drop; | |
case UIP_FIN_WAIT_2: | |
if(uip_len > 0) { | |
uip_add_rcv_nxt(uip_len); | |
} | |
if(BUF->flags & TCP_FIN) { | |
uip_connr->tcpstateflags = UIP_TIME_WAIT; | |
uip_connr->timer = 0; | |
uip_add_rcv_nxt(1); | |
uip_flags = UIP_CLOSE; | |
UIP_APPCALL(); | |
goto tcp_send_ack; | |
} | |
if(uip_len > 0) { | |
goto tcp_send_ack; | |
} | |
goto drop; | |
case UIP_TIME_WAIT: | |
goto tcp_send_ack; | |
case UIP_CLOSING: | |
if(uip_flags & UIP_ACKDATA) { | |
uip_connr->tcpstateflags = UIP_TIME_WAIT; | |
uip_connr->timer = 0; | |
} | |
} | |
goto drop; | |
/* We jump here when we are ready to send the packet, and just want | |
to set the appropriate TCP sequence numbers in the TCP header. */ | |
tcp_send_ack: | |
BUF->flags = TCP_ACK; | |
tcp_send_nodata: | |
uip_len = UIP_IPTCPH_LEN; | |
tcp_send_noopts: | |
BUF->tcpoffset = (UIP_TCPH_LEN / 4) << 4; | |
tcp_send: | |
/* We're done with the input processing. We are now ready to send a | |
reply. Our job is to fill in all the fields of the TCP and IP | |
headers before calculating the checksum and finally send the | |
packet. */ | |
BUF->ackno[0] = uip_connr->rcv_nxt[0]; | |
BUF->ackno[1] = uip_connr->rcv_nxt[1]; | |
BUF->ackno[2] = uip_connr->rcv_nxt[2]; | |
BUF->ackno[3] = uip_connr->rcv_nxt[3]; | |
BUF->seqno[0] = uip_connr->snd_nxt[0]; | |
BUF->seqno[1] = uip_connr->snd_nxt[1]; | |
BUF->seqno[2] = uip_connr->snd_nxt[2]; | |
BUF->seqno[3] = uip_connr->snd_nxt[3]; | |
BUF->proto = UIP_PROTO_TCP; | |
BUF->srcport = uip_connr->lport; | |
BUF->destport = uip_connr->rport; | |
uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr); | |
uip_ipaddr_copy(BUF->destipaddr, uip_connr->ripaddr); | |
if(uip_connr->tcpstateflags & UIP_STOPPED) { | |
/* If the connection has issued uip_stop(), we advertise a zero | |
window so that the remote host will stop sending data. */ | |
BUF->wnd[0] = BUF->wnd[1] = 0; | |
} else { | |
BUF->wnd[0] = ((UIP_RECEIVE_WINDOW) >> 8); | |
BUF->wnd[1] = ((UIP_RECEIVE_WINDOW) & 0xff); | |
} | |
tcp_send_noconn: | |
BUF->ttl = UIP_TTL; | |
#if UIP_CONF_IPV6 | |
/* For IPv6, the IP length field does not include the IPv6 IP header | |
length. */ | |
BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8); | |
BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff); | |
#else /* UIP_CONF_IPV6 */ | |
BUF->len[0] = (uip_len >> 8); | |
BUF->len[1] = (uip_len & 0xff); | |
#endif /* UIP_CONF_IPV6 */ | |
BUF->urgp[0] = BUF->urgp[1] = 0; | |
/* Calculate TCP checksum. */ | |
BUF->tcpchksum = 0; | |
BUF->tcpchksum = ~(uip_tcpchksum()); | |
#if UIP_UDP | |
ip_send_nolen: | |
#endif /* UIP_UDP */ | |
#if UIP_CONF_IPV6 | |
BUF->vtc = 0x60; | |
BUF->tcflow = 0x00; | |
BUF->flow = 0x00; | |
#else /* UIP_CONF_IPV6 */ | |
BUF->vhl = 0x45; | |
BUF->tos = 0; | |
BUF->ipoffset[0] = BUF->ipoffset[1] = 0; | |
++ipid; | |
BUF->ipid[0] = ipid >> 8; | |
BUF->ipid[1] = ipid & 0xff; | |
/* Calculate IP checksum. */ | |
BUF->ipchksum = 0; | |
BUF->ipchksum = ~(uip_ipchksum()); | |
DEBUG_PRINTF("uip ip_send_nolen: chkecum 0x%04x\n", uip_ipchksum()); | |
#endif /* UIP_CONF_IPV6 */ | |
UIP_STAT(++uip_stat.tcp.sent); | |
send: | |
DEBUG_PRINTF("Sending packet with length %d (%d)\n", uip_len, | |
(BUF->len[0] << 8) | BUF->len[1]); | |
UIP_STAT(++uip_stat.ip.sent); | |
/* Return and let the caller do the actual transmission. */ | |
uip_flags = 0; | |
return; | |
drop: | |
uip_len = 0; | |
uip_flags = 0; | |
return; | |
} | |
/*---------------------------------------------------------------------------*/ | |
u16_t | |
htons(u16_t val) | |
{ | |
return HTONS(val); | |
} | |
/*---------------------------------------------------------------------------*/ | |
void | |
uip_send(const void *data, int len) | |
{ | |
if(len > 0) { | |
uip_slen = len; | |
if(data != uip_sappdata) { | |
memcpy(uip_sappdata, (data), uip_slen); | |
} | |
} | |
} | |
/** @} */ |