blob: 973bbc2a09c3ce743fe2390a8474bee6d72077da [file] [log] [blame]
//*****************************************************************************
// +--+
// | ++----+
// +-++ |
// | |
// +-+--+ |
// | +--+--+
// +----+ Copyright (c) 2009-10 Code Red Technologies Ltd.
//
// Microcontroller Startup code for use with Red Suite
//
// Version : 101130
//
// Software License Agreement
//
// The software is owned by Code Red Technologies and/or its suppliers, and is
// protected under applicable copyright laws. All rights are reserved. Any
// use in violation of the foregoing restrictions may subject the user to criminal
// sanctions under applicable laws, as well as to civil liability for the breach
// of the terms and conditions of this license.
//
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// USE OF THIS SOFTWARE FOR COMMERCIAL DEVELOPMENT AND/OR EDUCATION IS SUBJECT
// TO A CURRENT END USER LICENSE AGREEMENT (COMMERCIAL OR EDUCATIONAL) WITH
// CODE RED TECHNOLOGIES LTD.
//
//*****************************************************************************
#if defined (__cplusplus)
#ifdef __REDLIB__
#error Redlib does not support C++
#else
//*****************************************************************************
//
// The entry point for the C++ library startup
//
//*****************************************************************************
extern "C" {
extern void __libc_init_array(void);
}
#endif
#endif
#define WEAK __attribute__ ((weak))
#define ALIAS(f) __attribute__ ((weak, alias (#f)))
// Code Red - if CMSIS is being used, then SystemInit() routine
// will be called by startup code rather than in application's main()
#if defined (__USE_CMSIS)
#include "system_LPC11xx.h"
#endif
//*****************************************************************************
#if defined (__cplusplus)
extern "C" {
#endif
//*****************************************************************************
//
// Forward declaration of the default handlers. These are aliased.
// When the application defines a handler (with the same name), this will
// automatically take precedence over these weak definitions
//
//*****************************************************************************
void ResetISR(void);
WEAK void NMI_Handler(void);
WEAK void HardFault_Handler(void);
WEAK void SVCall_Handler(void);
WEAK void PendSV_Handler(void);
WEAK void SysTick_Handler(void);
WEAK void IntDefaultHandler(void);
//*****************************************************************************
//
// Forward declaration of the specific IRQ handlers. These are aliased
// to the IntDefaultHandler, which is a 'forever' loop. When the application
// defines a handler (with the same name), this will automatically take
// precedence over these weak definitions
//
//*****************************************************************************
void CAN_IRQHandler (void) ALIAS(IntDefaultHandler);
void SSP1_IRQHandler (void) ALIAS(IntDefaultHandler);
void I2C_IRQHandler (void) ALIAS(IntDefaultHandler);
void TIMER16_0_IRQHandler (void) ALIAS(IntDefaultHandler);
void TIMER16_1_IRQHandler (void) ALIAS(IntDefaultHandler);
void TIMER32_0_IRQHandler (void) ALIAS(IntDefaultHandler);
void TIMER32_1_IRQHandler (void) ALIAS(IntDefaultHandler);
void SSP0_IRQHandler (void) ALIAS(IntDefaultHandler);
void UART_IRQHandler (void) ALIAS(IntDefaultHandler);
void ADC_IRQHandler (void) ALIAS(IntDefaultHandler);
void WDT_IRQHandler (void) ALIAS(IntDefaultHandler);
void BOD_IRQHandler (void) ALIAS(IntDefaultHandler);
void PIOINT3_IRQHandler (void) ALIAS(IntDefaultHandler);
void PIOINT2_IRQHandler (void) ALIAS(IntDefaultHandler);
void PIOINT1_IRQHandler (void) ALIAS(IntDefaultHandler);
void PIOINT0_IRQHandler (void) ALIAS(IntDefaultHandler);
void WAKEUP_IRQHandler (void) ALIAS(IntDefaultHandler);
//*****************************************************************************
//
// The entry point for the application.
// __main() is the entry point for redlib based applications
// main() is the entry point for newlib based applications
//
//*****************************************************************************
//
// The entry point for the application.
// __main() is the entry point for Redlib based applications
// main() is the entry point for Newlib based applications
//
//*****************************************************************************
#if defined (__REDLIB__)
extern void __main(void);
#endif
extern int main(void);
//*****************************************************************************
//
// External declaration for the pointer to the stack top from the Linker Script
//
//*****************************************************************************
extern void _vStackTop(void);
//*****************************************************************************
#if defined (__cplusplus)
} // extern "C"
#endif
//*****************************************************************************
//
// The vector table. Note that the proper constructs must be placed on this to
// ensure that it ends up at physical address 0x0000.0000.
//
//*****************************************************************************
extern void (* const g_pfnVectors[])(void);
__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) = {
&_vStackTop, // The initial stack pointer
ResetISR, // The reset handler
NMI_Handler, // The NMI handler
HardFault_Handler, // The hard fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
SVCall_Handler, // SVCall handler
0, // Reserved
0, // Reserved
PendSV_Handler, // The PendSV handler
SysTick_Handler, // The SysTick handler
// Wakeup sources for the I/O pins:
// PIO0 (0:11)
// PIO1 (0)
WAKEUP_IRQHandler, // PIO0_0 Wakeup
WAKEUP_IRQHandler, // PIO0_1 Wakeup
WAKEUP_IRQHandler, // PIO0_2 Wakeup
WAKEUP_IRQHandler, // PIO0_3 Wakeup
WAKEUP_IRQHandler, // PIO0_4 Wakeup
WAKEUP_IRQHandler, // PIO0_5 Wakeup
WAKEUP_IRQHandler, // PIO0_6 Wakeup
WAKEUP_IRQHandler, // PIO0_7 Wakeup
WAKEUP_IRQHandler, // PIO0_8 Wakeup
WAKEUP_IRQHandler, // PIO0_9 Wakeup
WAKEUP_IRQHandler, // PIO0_10 Wakeup
WAKEUP_IRQHandler, // PIO0_11 Wakeup
WAKEUP_IRQHandler, // PIO1_0 Wakeup
CAN_IRQHandler, // C_CAN Interrupt
SSP1_IRQHandler, // SPI/SSP1 Interrupt
I2C_IRQHandler, // I2C0
TIMER16_0_IRQHandler, // CT16B0 (16-bit Timer 0)
TIMER16_1_IRQHandler, // CT16B1 (16-bit Timer 1)
TIMER32_0_IRQHandler, // CT32B0 (32-bit Timer 0)
TIMER32_1_IRQHandler, // CT32B1 (32-bit Timer 1)
SSP0_IRQHandler, // SPI/SSP0 Interrupt
UART_IRQHandler, // UART0
0, // Reserved
0, // Reserved
ADC_IRQHandler, // ADC (A/D Converter)
WDT_IRQHandler, // WDT (Watchdog Timer)
BOD_IRQHandler, // BOD (Brownout Detect)
0, // Reserved
PIOINT3_IRQHandler, // PIO INT3
PIOINT2_IRQHandler, // PIO INT2
PIOINT1_IRQHandler, // PIO INT1
PIOINT0_IRQHandler, // PIO INT0
};
//*****************************************************************************
// Functions to carry out the initialization of RW and BSS data sections. These
// are written as separate functions rather than being inlined within the
// ResetISR() function in order to cope with MCUs with multiple banks of
// memory.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void data_init(unsigned int romstart, unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int *pulSrc = (unsigned int*) romstart;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4)
*pulDest++ = *pulSrc++;
}
__attribute__ ((section(".after_vectors")))
void bss_init(unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4)
*pulDest++ = 0;
}
#ifndef USE_OLD_STYLE_DATA_BSS_INIT
//*****************************************************************************
// The following symbols are constructs generated by the linker, indicating
// the location of various points in the "Global Section Table". This table is
// created by the linker via the Code Red managed linker script mechanism. It
// contains the load address, execution address and length of each RW data
// section and the execution and length of each BSS (zero initialized) section.
//*****************************************************************************
extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table;
extern unsigned int __bss_section_table_end;
#else
//*****************************************************************************
// The following symbols are constructs generated by the linker, indicating
// the load address, execution address and length of the RW data section and
// the execution and length of the BSS (zero initialized) section.
// Note that these symbols are not normally used by the managed linker script
// mechanism in Red Suite/LPCXpresso 3.6 (Windows) and LPCXpresso 3.8 (Linux).
// They are provide here simply so this startup code can be used with earlier
// versions of Red Suite which do not support the more advanced managed linker
// script mechanism introduced in the above version. To enable their use,
// define "USE_OLD_STYLE_DATA_BSS_INIT".
//*****************************************************************************
extern unsigned int _etext;
extern unsigned int _data;
extern unsigned int _edata;
extern unsigned int _bss;
extern unsigned int _ebss;
#endif
//*****************************************************************************
// Reset entry point for your code.
// Sets up a simple runtime environment and initializes the C/C++
// library.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void
ResetISR(void) {
#ifndef USE_OLD_STYLE_DATA_BSS_INIT
//
// Copy the data sections from flash to SRAM.
//
unsigned int LoadAddr, ExeAddr, SectionLen;
unsigned int *SectionTableAddr;
// Load base address of Global Section Table
SectionTableAddr = &__data_section_table;
// Copy the data sections from flash to SRAM.
while (SectionTableAddr < &__data_section_table_end) {
LoadAddr = *SectionTableAddr++;
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
data_init(LoadAddr, ExeAddr, SectionLen);
}
// At this point, SectionTableAddr = &__bss_section_table;
// Zero fill the bss segment
while (SectionTableAddr < &__bss_section_table_end) {
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
bss_init(ExeAddr, SectionLen);
}
#else
// Use Old Style Data and BSS section initialization.
// This will only initialize a single RAM bank.
unsigned int * LoadAddr, *ExeAddr, *EndAddr, SectionLen;
// Copy the data segment from flash to SRAM.
LoadAddr = &_etext;
ExeAddr = &_data;
EndAddr = &_edata;
SectionLen = (void*)EndAddr - (void*)ExeAddr;
data_init((unsigned int)LoadAddr, (unsigned int)ExeAddr, SectionLen);
// Zero fill the bss segment
ExeAddr = &_bss;
EndAddr = &_ebss;
SectionLen = (void*)EndAddr - (void*)ExeAddr;
bss_init ((unsigned int)ExeAddr, SectionLen);
#endif
#ifdef __USE_CMSIS
SystemInit();
#endif
#if defined (__cplusplus)
//
// Call C++ library initialisation
//
__libc_init_array();
#endif
#if defined (__REDLIB__)
// Call the Redlib library, which in turn calls main()
__main() ;
#else
main();
#endif
//
// main() shouldn't return, but if it does, we'll just enter an infinite loop
//
while (1) {
;
}
}
//*****************************************************************************
// Default exception handlers. Override the ones here by defining your own
// handler routines in your application code.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void NMI_Handler(void)
{
while(1)
{
}
}
void pop_registers_from_fault_stack(unsigned int * hardfault_args)
{
volatile unsigned int stacked_r0;
volatile unsigned int stacked_r1;
volatile unsigned int stacked_r2;
volatile unsigned int stacked_r3;
volatile unsigned int stacked_r12;
volatile unsigned int stacked_lr;
volatile unsigned int stacked_pc;
volatile unsigned int stacked_psr;
stacked_r0 = ((unsigned long) hardfault_args[0]);
stacked_r1 = ((unsigned long) hardfault_args[1]);
stacked_r2 = ((unsigned long) hardfault_args[2]);
stacked_r3 = ((unsigned long) hardfault_args[3]);
stacked_r12 = ((unsigned long) hardfault_args[4]);
stacked_lr = ((unsigned long) hardfault_args[5]);
stacked_pc = ((unsigned long) hardfault_args[6]);
stacked_psr = ((unsigned long) hardfault_args[7]);
/* Inspect stacked_pc to locate the offending instruction. */
for( ;; )
{
__asm volatile ( "NOP" );
}
}
__attribute__ ((section(".after_vectors")))
void HardFault_Handler(void)
{
__asm volatile
(
" mov r0, lr \n"
" mov r1, #4 \n"
" and r1, r0 \n"
" cmp r1, #0 \n"
" beq is_equal \n"
" mrs r0, psp \n"
" b is_done \n"
"is_equal: \n"
" mrs r0, msp \n"
"is_done: \n"
" ldr r1, [r0, #24] \n"
" ldr r2, handler2_address_const \n"
" bx r2 \n"
" handler2_address_const: .word pop_registers_from_fault_stack \n"
);
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void SVCall_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void PendSV_Handler(void)
{
while(1)
{
}
}
__attribute__ ((section(".after_vectors")))
void SysTick_Handler(void)
{
while(1)
{
}
}
//*****************************************************************************
//
// Processor ends up here if an unexpected interrupt occurs or a specific
// handler is not present in the application code.
//
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void IntDefaultHandler(void)
{
while(1)
{
}
}