blob: 3353a82e60c37cd8d51bb391f2ebbb4127250c2f [file] [log] [blame]
//*****************************************************************************
//
// osram128x64x4.c - Driver for the OSRAM 128x64x4 graphical OLED display.
//
// Copyright (c) 2006-2007 Luminary Micro, Inc. All rights reserved.
//
// Software License Agreement
//
// Luminary Micro, Inc. (LMI) is supplying this software for use solely and
// exclusively on LMI's microcontroller products.
//
// The software is owned by LMI and/or its suppliers, and is protected under
// applicable copyright laws. All rights are reserved. Any use in violation
// of the foregoing restrictions may subject the user to criminal sanctions
// under applicable laws, as well as to civil liability for the breach of the
// terms and conditions of this license.
//
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// LMI SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 1408 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup ek_lm3sx965_api
//! @{
//
//*****************************************************************************
#include "hw_ssi.h"
#include "hw_memmap.h"
#include "hw_sysctl.h"
#include "hw_types.h"
#include "debug.h"
#include "gpio.h"
#include "ssi.h"
#include "sysctl.h"
#include "osram128x64x4.h"
//*****************************************************************************
//
// Flag to indicate if SSI port is enabled for OSRAM usage.
//
//*****************************************************************************
static volatile tBoolean g_bSSIEnabled = false;
//*****************************************************************************
//
// Define the OSRAM 128x64x4 Remap Setting(s). This will be used in
// several places in the code to switch between vertical and horizontal
// address incrementing.
//
// The Remap Command (0xA0) takes one 8-bit parameter. The parameter is
// defined as follows.
//
// Bit 7: Reserved
// Bit 6: Disable(0)/Enable(1) COM Split Odd Even
// When enabled, the COM signals are split Odd on one side, even on
// the other. Otherwise, they are split 0-39 on one side, 40-79 on
// the other.
// Bit 5: Reserved
// Bit 4: Disable(0)/Enable(1) COM Remap
// When Enabled, ROW 0-79 map to COM 79-0 (i.e. reverse row order)
// Bit 3: Reserved
// Bit 2: Horizontal(0)/Vertical(1) Address Increment
// When set, data RAM address will increment along the column rather
// than along the row.
// Bit 1: Disable(0)/Enable(1) Nibble Remap
// When enabled, the upper and lower nibbles in the DATA bus for access
// to the data RAM are swapped.
// Bit 0: Disable(0)/Enable(1) Column Address Remap
// When enabled, DATA RAM columns 0-63 are remapped to Segment Columns
// 127-0.
//
//*****************************************************************************
#define OSRAM_INIT_REMAP 0x52
#define OSRAM_INIT_OFFSET 0x4C
static const unsigned char g_pucOSRAM128x64x4VerticalInc[] = { 0xA0, 0x56 };
static const unsigned char g_pucOSRAM128x64x4HorizontalInc[] = { 0xA0, 0x52 };
//*****************************************************************************
//
// A 5x7 font (in a 6x8 cell, where the sixth column is omitted from this
// table) for displaying text on the OLED display. The data is organized as
// bytes from the left column to the right column, with each byte containing
// the top row in the LSB and the bottom row in the MSB.
//
// Note: This is the same font data that is used in the EK-LM3S811
// osram96x16x1 driver. The single bit-per-pixel is expaned in the StringDraw
// function to the appropriate four bit-per-pixel gray scale format.
//
//*****************************************************************************
static const unsigned char g_pucFont[96][5] =
{
{ 0x00, 0x00, 0x00, 0x00, 0x00 }, // " "
{ 0x00, 0x00, 0x4f, 0x00, 0x00 }, // !
{ 0x00, 0x07, 0x00, 0x07, 0x00 }, // "
{ 0x14, 0x7f, 0x14, 0x7f, 0x14 }, // #
{ 0x24, 0x2a, 0x7f, 0x2a, 0x12 }, // $
{ 0x23, 0x13, 0x08, 0x64, 0x62 }, // %
{ 0x36, 0x49, 0x55, 0x22, 0x50 }, // &
{ 0x00, 0x05, 0x03, 0x00, 0x00 }, // '
{ 0x00, 0x1c, 0x22, 0x41, 0x00 }, // (
{ 0x00, 0x41, 0x22, 0x1c, 0x00 }, // )
{ 0x14, 0x08, 0x3e, 0x08, 0x14 }, // *
{ 0x08, 0x08, 0x3e, 0x08, 0x08 }, // +
{ 0x00, 0x50, 0x30, 0x00, 0x00 }, // ,
{ 0x08, 0x08, 0x08, 0x08, 0x08 }, // -
{ 0x00, 0x60, 0x60, 0x00, 0x00 }, // .
{ 0x20, 0x10, 0x08, 0x04, 0x02 }, // /
{ 0x3e, 0x51, 0x49, 0x45, 0x3e }, // 0
{ 0x00, 0x42, 0x7f, 0x40, 0x00 }, // 1
{ 0x42, 0x61, 0x51, 0x49, 0x46 }, // 2
{ 0x21, 0x41, 0x45, 0x4b, 0x31 }, // 3
{ 0x18, 0x14, 0x12, 0x7f, 0x10 }, // 4
{ 0x27, 0x45, 0x45, 0x45, 0x39 }, // 5
{ 0x3c, 0x4a, 0x49, 0x49, 0x30 }, // 6
{ 0x01, 0x71, 0x09, 0x05, 0x03 }, // 7
{ 0x36, 0x49, 0x49, 0x49, 0x36 }, // 8
{ 0x06, 0x49, 0x49, 0x29, 0x1e }, // 9
{ 0x00, 0x36, 0x36, 0x00, 0x00 }, // :
{ 0x00, 0x56, 0x36, 0x00, 0x00 }, // ;
{ 0x08, 0x14, 0x22, 0x41, 0x00 }, // <
{ 0x14, 0x14, 0x14, 0x14, 0x14 }, // =
{ 0x00, 0x41, 0x22, 0x14, 0x08 }, // >
{ 0x02, 0x01, 0x51, 0x09, 0x06 }, // ?
{ 0x32, 0x49, 0x79, 0x41, 0x3e }, // @
{ 0x7e, 0x11, 0x11, 0x11, 0x7e }, // A
{ 0x7f, 0x49, 0x49, 0x49, 0x36 }, // B
{ 0x3e, 0x41, 0x41, 0x41, 0x22 }, // C
{ 0x7f, 0x41, 0x41, 0x22, 0x1c }, // D
{ 0x7f, 0x49, 0x49, 0x49, 0x41 }, // E
{ 0x7f, 0x09, 0x09, 0x09, 0x01 }, // F
{ 0x3e, 0x41, 0x49, 0x49, 0x7a }, // G
{ 0x7f, 0x08, 0x08, 0x08, 0x7f }, // H
{ 0x00, 0x41, 0x7f, 0x41, 0x00 }, // I
{ 0x20, 0x40, 0x41, 0x3f, 0x01 }, // J
{ 0x7f, 0x08, 0x14, 0x22, 0x41 }, // K
{ 0x7f, 0x40, 0x40, 0x40, 0x40 }, // L
{ 0x7f, 0x02, 0x0c, 0x02, 0x7f }, // M
{ 0x7f, 0x04, 0x08, 0x10, 0x7f }, // N
{ 0x3e, 0x41, 0x41, 0x41, 0x3e }, // O
{ 0x7f, 0x09, 0x09, 0x09, 0x06 }, // P
{ 0x3e, 0x41, 0x51, 0x21, 0x5e }, // Q
{ 0x7f, 0x09, 0x19, 0x29, 0x46 }, // R
{ 0x46, 0x49, 0x49, 0x49, 0x31 }, // S
{ 0x01, 0x01, 0x7f, 0x01, 0x01 }, // T
{ 0x3f, 0x40, 0x40, 0x40, 0x3f }, // U
{ 0x1f, 0x20, 0x40, 0x20, 0x1f }, // V
{ 0x3f, 0x40, 0x38, 0x40, 0x3f }, // W
{ 0x63, 0x14, 0x08, 0x14, 0x63 }, // X
{ 0x07, 0x08, 0x70, 0x08, 0x07 }, // Y
{ 0x61, 0x51, 0x49, 0x45, 0x43 }, // Z
{ 0x00, 0x7f, 0x41, 0x41, 0x00 }, // [
{ 0x02, 0x04, 0x08, 0x10, 0x20 }, // "\"
{ 0x00, 0x41, 0x41, 0x7f, 0x00 }, // ]
{ 0x04, 0x02, 0x01, 0x02, 0x04 }, // ^
{ 0x40, 0x40, 0x40, 0x40, 0x40 }, // _
{ 0x00, 0x01, 0x02, 0x04, 0x00 }, // `
{ 0x20, 0x54, 0x54, 0x54, 0x78 }, // a
{ 0x7f, 0x48, 0x44, 0x44, 0x38 }, // b
{ 0x38, 0x44, 0x44, 0x44, 0x20 }, // c
{ 0x38, 0x44, 0x44, 0x48, 0x7f }, // d
{ 0x38, 0x54, 0x54, 0x54, 0x18 }, // e
{ 0x08, 0x7e, 0x09, 0x01, 0x02 }, // f
{ 0x0c, 0x52, 0x52, 0x52, 0x3e }, // g
{ 0x7f, 0x08, 0x04, 0x04, 0x78 }, // h
{ 0x00, 0x44, 0x7d, 0x40, 0x00 }, // i
{ 0x20, 0x40, 0x44, 0x3d, 0x00 }, // j
{ 0x7f, 0x10, 0x28, 0x44, 0x00 }, // k
{ 0x00, 0x41, 0x7f, 0x40, 0x00 }, // l
{ 0x7c, 0x04, 0x18, 0x04, 0x78 }, // m
{ 0x7c, 0x08, 0x04, 0x04, 0x78 }, // n
{ 0x38, 0x44, 0x44, 0x44, 0x38 }, // o
{ 0x7c, 0x14, 0x14, 0x14, 0x08 }, // p
{ 0x08, 0x14, 0x14, 0x18, 0x7c }, // q
{ 0x7c, 0x08, 0x04, 0x04, 0x08 }, // r
{ 0x48, 0x54, 0x54, 0x54, 0x20 }, // s
{ 0x04, 0x3f, 0x44, 0x40, 0x20 }, // t
{ 0x3c, 0x40, 0x40, 0x20, 0x7c }, // u
{ 0x1c, 0x20, 0x40, 0x20, 0x1c }, // v
{ 0x3c, 0x40, 0x30, 0x40, 0x3c }, // w
{ 0x44, 0x28, 0x10, 0x28, 0x44 }, // x
{ 0x0c, 0x50, 0x50, 0x50, 0x3c }, // y
{ 0x44, 0x64, 0x54, 0x4c, 0x44 }, // z
{ 0x00, 0x08, 0x36, 0x41, 0x00 }, // {
{ 0x00, 0x00, 0x7f, 0x00, 0x00 }, // |
{ 0x00, 0x41, 0x36, 0x08, 0x00 }, // }
{ 0x02, 0x01, 0x02, 0x04, 0x02 }, // ~
{ 0x02, 0x01, 0x02, 0x04, 0x02 }, // ~
};
//*****************************************************************************
//
// The sequence of commands used to initialize the SSD0303 controller. Each
// command is described as follows: there is a byte specifying the number of
// bytes in the command sequence, followed by that many bytes of command data.
// Note: This initialization sequence is derived from OSRAM App Note AN018.
//
//*****************************************************************************
static const unsigned char g_pucOSRAM128x64x4Init[] =
{
//
// Column Address
//
4, 0x15, 0, 63, 0xe3,
//
// Row Address
//
4, 0x75, 0, 63, 0xe3,
//
// Contrast Control
//
3, 0x81, 50, 0xe3,
//
// Half Current Range
//
2, 0x85, 0xe3,
//
// Display Re-map
//
3, 0xA0, OSRAM_INIT_REMAP, 0xe3,
//
// Display Start Line
//
3, 0xA1, 0, 0xe3,
//
// Display Offset
//
3, 0xA2, OSRAM_INIT_OFFSET, 0xe3,
//
// Display Mode Normal
//
2, 0xA4, 0xe3,
//
// Multiplex Ratio
//
3, 0xA8, 63, 0xe3,
//
// Phase Length
//
3, 0xB1, 0x22, 0xe3,
//
// Row Period
//
3, 0xB2, 70, 0xe3,
//
// Display Clock Divide
//
3, 0xB3, 0xF1, 0xe3,
//
// VSL
//
3, 0xBF, 0x0D, 0xe3,
//
// VCOMH
//
3, 0xBE, 0x02, 0xe3,
//
// VP
//
3, 0xBC, 0x10, 0xe3,
//
// Gamma
//
10, 0xB8, 0x01, 0x11, 0x22, 0x32, 0x43, 0x54, 0x65, 0x76, 0xe3,
//
// Set DC-DC
3, 0xAD, 0x03, 0xe3,
//
// Display ON/OFF
//
2, 0xAF, 0xe3,
};
//*****************************************************************************
//
//! \internal
//!
//! Write a sequence of command bytes to the SSD0323 controller.
//!
//! The data is written in a polled fashion; this function will not return
//! until the entire byte sequence has been written to the controller.
//!
//! \return None.
//
//*****************************************************************************
static void
OSRAMWriteCommand(const unsigned char *pucBuffer, unsigned long ulCount)
{
unsigned long ulTemp;
//
// Return iff SSI port is not enabled for OSRAM.
//
if(!g_bSSIEnabled)
{
return;
}
//
// Clear the command/control bit to enable command mode.
//
GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_7, 0);
//
// Loop while there are more bytes left to be transferred.
//
while(ulCount != 0)
{
//
// Write the next byte to the controller.
//
SSIDataPut(SSI0_BASE, *pucBuffer++);
//
// Dummy read to drain the fifo and time the GPIO signal.
//
SSIDataGet(SSI0_BASE, &ulTemp);
//
// Decrement the BYTE counter.
//
ulCount--;
}
}
//*****************************************************************************
//
//! \internal
//!
//! Write a sequence of data bytes to the SSD0323 controller.
//!
//! The data is written in a polled fashion; this function will not return
//! until the entire byte sequence has been written to the controller.
//!
//! \return None.
//
//*****************************************************************************
static void
OSRAMWriteData(const unsigned char *pucBuffer, unsigned long ulCount)
{
unsigned long ulTemp;
//
// Return iff SSI port is not enabled for OSRAM.
//
if(!g_bSSIEnabled)
{
return;
}
//
// Set the command/control bit to enable data mode.
//
GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_7, GPIO_PIN_7);
//
// Loop while there are more bytes left to be transferred.
//
while(ulCount != 0)
{
//
// Write the next byte to the controller.
//
SSIDataPut(SSI0_BASE, *pucBuffer++);
//
// Dummy read to drain the fifo and time the GPIO signal.
//
SSIDataGet(SSI0_BASE, &ulTemp);
//
// Decrement the BYTE counter.
//
ulCount--;
}
}
//*****************************************************************************
//
//! Clears the OLED display.
//!
//! This function will clear the display RAM. All pixels in the display will
//! be turned off.
//!
//! This function is contained in <tt>osram128x64x4.c</tt>, with
//! <tt>osram128x64x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
OSRAM128x64x4Clear(void)
{
static const unsigned char pucCommand1[] = { 0x15, 0, 63 };
static const unsigned char pucCommand2[] = { 0x75, 0, 79 };
unsigned long ulRow, ulColumn;
static unsigned char pucZeroBuffer[8] = { 0, 0, 0, 0, 0, 0, 0, 0};
//
// Set the window to fill the entire display.
//
OSRAMWriteCommand(pucCommand1, sizeof(pucCommand1));
OSRAMWriteCommand(pucCommand2, sizeof(pucCommand2));
OSRAMWriteCommand(g_pucOSRAM128x64x4VerticalInc,
sizeof(g_pucOSRAM128x64x4VerticalInc));
//
// In vertical address increment mode, loop through each column, filling
// each row with 0.
//
for(ulColumn = 0; ulColumn < (128/2); ulColumn++)
{
//
// 8 rows (bytes) per row of text.
//
for(ulRow = 0; ulRow < 80; ulRow += 8)
{
OSRAMWriteData(pucZeroBuffer, sizeof(pucZeroBuffer));
}
}
}
//*****************************************************************************
//
//! Displays a string on the OLED display.
//!
//! \param pcStr is a pointer to the string to display.
//! \param ulX is the horizontal position to display the string, specified in
//! columns from the left edge of the display.
//! \param ulY is the vertical position to display the string, specified in
//! rows from the top edge of the display.
//! \param ucLevel is the 4-bit grey scale value to be used for displayed text.
//!
//! This function will draw a string on the display. Only the ASCII characters
//! between 32 (space) and 126 (tilde) are supported; other characters will
//! result in random data being draw on the display (based on whatever appears
//! before/after the font in memory). The font is mono-spaced, so characters
//! such as "i" and "l" have more white space around them than characters such
//! as "m" or "w".
//!
//! If the drawing of the string reaches the right edge of the display, no more
//! characters will be drawn. Therefore, special care is not required to avoid
//! supplying a string that is "too long" to display.
//!
//! This function is contained in <tt>osram128x64x4.c</tt>, with
//! <tt>osram128x64x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \note Because the OLED display packs 2 pixels of data in a single byte, the
//! parameter \e ulX must be an even column number (e.g. 0, 2, 4, etc).
//!
//! \return None.
//
//*****************************************************************************
void
OSRAM128x64x4StringDraw(const char *pcStr, unsigned long ulX,
unsigned long ulY, unsigned char ucLevel)
{
static unsigned char pucBuffer[8];
unsigned long ulIdx1, ulIdx2;
unsigned char ucTemp;
//
// Check the arguments.
//
ASSERT(ulX < 128);
ASSERT((ulX & 1) == 0);
ASSERT(ulY < 64);
ASSERT(ucLevel < 16);
//
// Setup a window starting at the specified column and row, ending
// at the right edge of the display and 8 rows down (single character row).
//
pucBuffer[0] = 0x15;
pucBuffer[1] = ulX / 2;
pucBuffer[2] = 63;
OSRAMWriteCommand(pucBuffer, 3);
pucBuffer[0] = 0x75;
pucBuffer[1] = ulY;
pucBuffer[2] = ulY + 7;
OSRAMWriteCommand(pucBuffer, 3);
OSRAMWriteCommand(g_pucOSRAM128x64x4VerticalInc,
sizeof(g_pucOSRAM128x64x4VerticalInc));
//
// Loop while there are more characters in the string.
//
while(*pcStr != 0)
{
//
// Get a working copy of the current character and convert to an
// index into the character bit-map array.
//
ucTemp = *pcStr;
ucTemp &= 0x7F;
if(ucTemp < ' ')
{
ucTemp = ' ';
}
else
{
ucTemp -= ' ';
}
//
// Build and display the character buffer.
//
for(ulIdx1 = 0; ulIdx1 < 3; ulIdx1++)
{
//
// Convert two columns of 1-bit font data into a single data
// byte column of 4-bit font data.
//
for(ulIdx2 = 0; ulIdx2 < 8; ulIdx2++)
{
pucBuffer[ulIdx2] = 0;
if(g_pucFont[ucTemp][ulIdx1*2] & (1 << ulIdx2))
{
pucBuffer[ulIdx2] = ((ucLevel << 4) & 0xf0);
}
if((ulIdx1 < 2) &&
(g_pucFont[ucTemp][ulIdx1*2+1] & (1 << ulIdx2)))
{
pucBuffer[ulIdx2] |= ((ucLevel << 0) & 0x0f);
}
}
//
// If there is room, dump the single data byte column to the
// display. Otherwise, bail out.
//
if(ulX < 126)
{
OSRAMWriteData(pucBuffer, 8);
ulX += 2;
}
else
{
return;
}
}
//
// Advance to the next character.
//
pcStr++;
}
}
//*****************************************************************************
//
//! Displays an image on the OLED display.
//!
//! \param pucImage is a pointer to the image data.
//! \param ulX is the horizontal position to display this image, specified in
//! columns from the left edge of the display.
//! \param ulY is the vertical position to display this image, specified in
//! rows from the top of the display.
//! \param ulWidth is the width of the image, specified in columns.
//! \param ulHeight is the height of the image, specified in rows.
//!
//! This function will display a bitmap graphic on the display. Because of the
//! format of the display RAM, the starting column (/e ulX) and the number of
//! columns (/e ulWidth) must be an integer multiple of two.
//!
//! The image data is organized with the first row of image data appearing left
//! to right, followed immediately by the second row of image data. Each byte
//! contains the data for two columns in the current row, with the leftmost
//! column being contained in bits 7:4 and the rightmost column being contained
//! in bits 3:0.
//!
//! For example, an image six columns wide and seven scan lines tall would
//! be arranged as follows (showing how the twenty one bytes of the image would
//! appear on the display):
//!
//! \verbatim
//! +-------------------+-------------------+-------------------+
//! | Byte 0 | Byte 1 | Byte 2 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 3 | Byte 4 | Byte 5 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 6 | Byte 7 | Byte 8 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 9 | Byte 10 | Byte 11 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 12 | Byte 13 | Byte 14 |
//! +---------+---------+---------+--3------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 15 | Byte 16 | Byte 17 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! | Byte 18 | Byte 19 | Byte 20 |
//! +---------+---------+---------+---------+---------+---------+
//! | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 | 7 6 5 4 | 3 2 1 0 |
//! +---------+---------+---------+---------+---------+---------+
//! \endverbatim
//!
//! This function is contained in <tt>osram128x64x4.c</tt>, with
//! <tt>osram128x64x4.h</tt> containing the API definition for use by`
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
OSRAM128x64x4ImageDraw(const unsigned char *pucImage, unsigned long ulX,
unsigned long ulY, unsigned long ulWidth,
unsigned long ulHeight)
{
static unsigned char pucBuffer[8];
//
// Check the arguments.
//
ASSERT(ulX < 128);
ASSERT((ulX & 1) == 0);
ASSERT(ulY < 64);
ASSERT((ulX + ulWidth) <= 128);
ASSERT((ulY + ulHeight) <= 64);
ASSERT((ulWidth & 1) == 0);
//
// Setup a window starting at the specified column and row, and ending
// at the column + width and row+height.
//
pucBuffer[0] = 0x15;
pucBuffer[1] = ulX / 2;
pucBuffer[2] = (ulX + ulWidth - 2) / 2;
OSRAMWriteCommand(pucBuffer, 3);
pucBuffer[0] = 0x75;
pucBuffer[1] = ulY;
pucBuffer[2] = ulY + ulHeight - 1;
OSRAMWriteCommand(pucBuffer, 3);
OSRAMWriteCommand(g_pucOSRAM128x64x4HorizontalInc,
sizeof(g_pucOSRAM128x64x4HorizontalInc));
//
// Loop while there are more rows to display.
//
while(ulHeight--)
{
//
// Write this row of image data.
//
OSRAMWriteData(pucImage, (ulWidth / 2));
//
// Advance to the next row of the image.
//
pucImage += (ulWidth / 2);
}
}
//*****************************************************************************
//
//! Enable the SSI component of the OLED display driver.
//!
//! \param ulFrequency specifies the SSI Clock Frequency to be used.
//!
//! This function initializes the SSI interface to the OLED display.
//!
//! This function is contained in <tt>osram128x64x4.c</tt>, with
//! <tt>osram128x64x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
OSRAM128x64x4Enable(unsigned long ulFrequency)
{
unsigned long ulTemp;
//
// Disable the SSI port.
//
SSIDisable(SSI0_BASE);
//
// Configure the SSI0 port for master mode.
//
SSIConfig(SSI0_BASE, SSI_FRF_MOTO_MODE_2, SSI_MODE_MASTER, ulFrequency, 8);
//
// (Re)Enable SSI control of the FSS pin.
//
GPIOPinTypeSSI(GPIO_PORTA_BASE, GPIO_PIN_3);
GPIOPadConfigSet(GPIO_PORTA_BASE, GPIO_PIN_3, GPIO_STRENGTH_8MA,
GPIO_PIN_TYPE_STD_WPU);
//
// Enable the SSI port.
//
SSIEnable(SSI0_BASE);
//
// Drain the receive fifo.
//
while(SSIDataNonBlockingGet(SSI0_BASE, &ulTemp) != 0)
{
}
//
// Indicate that the OSRAM driver can use the SSI Port.
//
g_bSSIEnabled = true;
}
//*****************************************************************************
//
//! Enable the SSI component of the OLED display driver.
//!
//! \param ulFrequency specifies the SSI Clock Frequency to be used.
//!
//! This function initializes the SSI interface to the OLED display.
//!
//! This function is contained in <tt>osram128x64x4.c</tt>, with
//! <tt>osram128x64x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
OSRAM128x64x4Disable(void)
{
unsigned long ulTemp;
//
// Indicate that the OSRAM driver can no longer use the SSI Port.
//
g_bSSIEnabled = false;
//
// Drain the receive fifo.
//
while(SSIDataNonBlockingGet(SSI0_BASE, &ulTemp) != 0)
{
}
//
// Disable the SSI port.
//
SSIDisable(SSI0_BASE);
//
// Disable SSI control of the FSS pin.
//
GPIODirModeSet(GPIO_PORTA_BASE, GPIO_PIN_3, GPIO_DIR_MODE_OUT);
GPIOPadConfigSet(GPIO_PORTA_BASE, GPIO_PIN_3, GPIO_STRENGTH_8MA,
GPIO_PIN_TYPE_STD_WPU);
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_3, GPIO_PIN_3);
}
//*****************************************************************************
//
//! Initialize the OLED display.
//!
//! \param ulFrequency specifies the SSI Clock Frequency to be used.
//!
//! This function initializes the SSI interface to the OLED display and
//! configures the SSD0323 controller on the panel.
//!
//! This function is contained in <tt>osram128x64x4.c</tt>, with
//! <tt>osram128x64x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
OSRAM128x64x4Init(unsigned long ulFrequency)
{
unsigned long ulIdx;
//
// Enable the SSI0 and GPIO port blocks as they are needed by this driver.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
//
// Configure the SSI0CLK and SSIOTX pins for SSI operation.
//
GPIOPinTypeSSI(GPIO_PORTA_BASE, GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_5);
GPIOPadConfigSet(GPIO_PORTA_BASE, GPIO_PIN_2, GPIO_STRENGTH_8MA,
GPIO_PIN_TYPE_STD_WPU);
GPIOPadConfigSet(GPIO_PORTA_BASE, GPIO_PIN_3, GPIO_STRENGTH_8MA,
GPIO_PIN_TYPE_STD_WPU);
GPIOPadConfigSet(GPIO_PORTA_BASE, GPIO_PIN_5, GPIO_STRENGTH_8MA,
GPIO_PIN_TYPE_STD_WPU);
//
// Configure the PC7 pin as a D/Cn signal for OLED device.
//
GPIODirModeSet(GPIO_PORTC_BASE, GPIO_PIN_7, GPIO_DIR_MODE_OUT);
GPIOPadConfigSet(GPIO_PORTC_BASE, GPIO_PIN_7, GPIO_STRENGTH_8MA,
GPIO_PIN_TYPE_STD);
GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_7, GPIO_PIN_7);
//
// Configure and enable the SSI0 port for master mode.
//
OSRAM128x64x4Enable(ulFrequency);
//
// Clear the frame buffer.
//
OSRAM128x64x4Clear();
//
// Initialize the SSD0323 controller. Loop through the initialization
// sequence array, sending each command "string" to the controller.
//
for(ulIdx = 0; ulIdx < sizeof(g_pucOSRAM128x64x4Init);
ulIdx += g_pucOSRAM128x64x4Init[ulIdx] + 1)
{
//
// Send this command.
//
OSRAMWriteCommand(g_pucOSRAM128x64x4Init + ulIdx + 1,
g_pucOSRAM128x64x4Init[ulIdx] - 1);
}
}
//*****************************************************************************
//
//! Turns on the OLED display.
//!
//! This function will turn on the OLED display, causing it to display the
//! contents of its internal frame buffer.
//!
//! This function is contained in <tt>osram128x64x4.c</tt>, with
//! <tt>osram128x64x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
OSRAM128x64x4DisplayOn(void)
{
unsigned long ulIdx;
//
// Initialize the SSD0323 controller. Loop through the initialization
// sequence array, sending each command "string" to the controller.
//
for(ulIdx = 0; ulIdx < sizeof(g_pucOSRAM128x64x4Init);
ulIdx += g_pucOSRAM128x64x4Init[ulIdx] + 1)
{
//
// Send this command.
//
OSRAMWriteCommand(g_pucOSRAM128x64x4Init + ulIdx + 1,
g_pucOSRAM128x64x4Init[ulIdx] - 1);
}
}
//*****************************************************************************
//
//! Turns off the OLED display.
//!
//! This function will turn off the OLED display. This will stop the scanning
//! of the panel and turn off the on-chip DC-DC converter, preventing damage to
//! the panel due to burn-in (it has similar characters to a CRT in this
//! respect).
//!
//! This function is contained in <tt>osram128x64x4.c</tt>, with
//! <tt>osram128x64x4.h</tt> containing the API definition for use by
//! applications.
//!
//! \return None.
//
//*****************************************************************************
void
OSRAM128x64x4DisplayOff(void)
{
static const unsigned char pucCommand1[] =
{
0xAE, 0xAD, 0x02
};
//
// Turn off the DC-DC converter and the display.
//
OSRAMWriteCommand(pucCommand1, sizeof(pucCommand1));
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************