/* | |
FreeRTOS V7.4.1 - Copyright (C) 2013 Real Time Engineers Ltd. | |
FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT | |
http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. | |
*************************************************************************** | |
* * | |
* FreeRTOS tutorial books are available in pdf and paperback. * | |
* Complete, revised, and edited pdf reference manuals are also * | |
* available. * | |
* * | |
* Purchasing FreeRTOS documentation will not only help you, by * | |
* ensuring you get running as quickly as possible and with an * | |
* in-depth knowledge of how to use FreeRTOS, it will also help * | |
* the FreeRTOS project to continue with its mission of providing * | |
* professional grade, cross platform, de facto standard solutions * | |
* for microcontrollers - completely free of charge! * | |
* * | |
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< * | |
* * | |
* Thank you for using FreeRTOS, and thank you for your support! * | |
* * | |
*************************************************************************** | |
This file is part of the FreeRTOS distribution. | |
FreeRTOS is free software; you can redistribute it and/or modify it under | |
the terms of the GNU General Public License (version 2) as published by the | |
Free Software Foundation AND MODIFIED BY the FreeRTOS exception. | |
>>>>>>NOTE<<<<<< The modification to the GPL is included to allow you to | |
distribute a combined work that includes FreeRTOS without being obliged to | |
provide the source code for proprietary components outside of the FreeRTOS | |
kernel. | |
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY | |
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | |
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more | |
details. You should have received a copy of the GNU General Public License | |
and the FreeRTOS license exception along with FreeRTOS; if not it can be | |
viewed here: http://www.freertos.org/a00114.html and also obtained by | |
writing to Real Time Engineers Ltd., contact details for whom are available | |
on the FreeRTOS WEB site. | |
1 tab == 4 spaces! | |
*************************************************************************** | |
* * | |
* Having a problem? Start by reading the FAQ "My application does * | |
* not run, what could be wrong?" * | |
* * | |
* http://www.FreeRTOS.org/FAQHelp.html * | |
* * | |
*************************************************************************** | |
http://www.FreeRTOS.org - Documentation, books, training, latest versions, | |
license and Real Time Engineers Ltd. contact details. | |
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, | |
including FreeRTOS+Trace - an indispensable productivity tool, and our new | |
fully thread aware and reentrant UDP/IP stack. | |
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High | |
Integrity Systems, who sell the code with commercial support, | |
indemnification and middleware, under the OpenRTOS brand. | |
http://www.SafeRTOS.com - High Integrity Systems also provide a safety | |
engineered and independently SIL3 certified version for use in safety and | |
mission critical applications that require provable dependability. | |
*/ | |
#ifndef PORTMACRO_H | |
#define PORTMACRO_H | |
#ifdef __cplusplus | |
extern "C" { | |
#endif | |
/*----------------------------------------------------------- | |
* Port specific definitions. | |
* | |
* The settings in this file configure FreeRTOS correctly for the | |
* given hardware and compiler. | |
* | |
* These settings should not be altered. | |
*----------------------------------------------------------- | |
*/ | |
/* Type definitions. */ | |
#define portCHAR char | |
#define portFLOAT float | |
#define portDOUBLE double | |
#define portLONG long | |
#define portSHORT short | |
#define portSTACK_TYPE unsigned portCHAR | |
#define portBASE_TYPE char | |
#if( configUSE_16_BIT_TICKS == 1 ) | |
typedef unsigned portSHORT portTickType; | |
#define portMAX_DELAY ( portTickType ) 0xffff | |
#else | |
typedef unsigned portLONG portTickType; | |
#define portMAX_DELAY ( portTickType ) 0xffffffff | |
#endif | |
/*-----------------------------------------------------------*/ | |
/* Hardware specifics. */ | |
#define portBYTE_ALIGNMENT 1 | |
#define portSTACK_GROWTH ( -1 ) | |
#define portTICK_RATE_MS ( ( portTickType ) 1000 / configTICK_RATE_HZ ) | |
#define portYIELD() __asm( "swi" ); | |
/*-----------------------------------------------------------*/ | |
/* Critical section handling. */ | |
#define portENABLE_INTERRUPTS() __asm( "cli" ) | |
#define portDISABLE_INTERRUPTS() __asm( "sei" ) | |
/* | |
* Disable interrupts before incrementing the count of critical section nesting. | |
* The nesting count is maintained so we know when interrupts should be | |
* re-enabled. Once interrupts are disabled the nesting count can be accessed | |
* directly. Each task maintains its own nesting count. | |
*/ | |
#define portENTER_CRITICAL() \ | |
{ \ | |
extern volatile unsigned portBASE_TYPE uxCriticalNesting; \ | |
\ | |
portDISABLE_INTERRUPTS(); \ | |
uxCriticalNesting++; \ | |
} | |
/* | |
* Interrupts are disabled so we can access the nesting count directly. If the | |
* nesting is found to be 0 (no nesting) then we are leaving the critical | |
* section and interrupts can be re-enabled. | |
*/ | |
#define portEXIT_CRITICAL() \ | |
{ \ | |
extern volatile unsigned portBASE_TYPE uxCriticalNesting; \ | |
\ | |
uxCriticalNesting--; \ | |
if( uxCriticalNesting == 0 ) \ | |
{ \ | |
portENABLE_INTERRUPTS(); \ | |
} \ | |
} | |
/*-----------------------------------------------------------*/ | |
/* Task utilities. */ | |
/* | |
* These macros are very simple as the processor automatically saves and | |
* restores its registers as interrupts are entered and exited. In | |
* addition to the (automatically stacked) registers we also stack the | |
* critical nesting count. Each task maintains its own critical nesting | |
* count as it is legitimate for a task to yield from within a critical | |
* section. If the banked memory model is being used then the PPAGE | |
* register is also stored as part of the tasks context. | |
*/ | |
#ifdef BANKED_MODEL | |
/* | |
* Load the stack pointer for the task, then pull the critical nesting | |
* count and PPAGE register from the stack. The remains of the | |
* context are restored by the RTI instruction. | |
*/ | |
#define portRESTORE_CONTEXT() \ | |
{ \ | |
__asm( " \n\ | |
.globl pxCurrentTCB ; void * \n\ | |
.globl uxCriticalNesting ; char \n\ | |
\n\ | |
ldx pxCurrentTCB \n\ | |
lds 0,x ; Stack \n\ | |
\n\ | |
movb 1,sp+,uxCriticalNesting \n\ | |
movb 1,sp+,0x30 ; PPAGE \n\ | |
" ); \ | |
} | |
/* | |
* By the time this macro is called the processor has already stacked the | |
* registers. Simply stack the nesting count and PPAGE value, then save | |
* the task stack pointer. | |
*/ | |
#define portSAVE_CONTEXT() \ | |
{ \ | |
__asm( " \n\ | |
.globl pxCurrentTCB ; void * \n\ | |
.globl uxCriticalNesting ; char \n\ | |
\n\ | |
movb 0x30, 1,-sp ; PPAGE \n\ | |
movb uxCriticalNesting, 1,-sp \n\ | |
\n\ | |
ldx pxCurrentTCB \n\ | |
sts 0,x ; Stack \n\ | |
" ); \ | |
} | |
#else | |
/* | |
* These macros are as per the BANKED versions above, but without saving | |
* and restoring the PPAGE register. | |
*/ | |
#define portRESTORE_CONTEXT() \ | |
{ \ | |
__asm( " \n\ | |
.globl pxCurrentTCB ; void * \n\ | |
.globl uxCriticalNesting ; char \n\ | |
\n\ | |
ldx pxCurrentTCB \n\ | |
lds 0,x ; Stack \n\ | |
\n\ | |
movb 1,sp+,uxCriticalNesting \n\ | |
" ); \ | |
} | |
#define portSAVE_CONTEXT() \ | |
{ \ | |
__asm( " \n\ | |
.globl pxCurrentTCB ; void * \n\ | |
.globl uxCriticalNesting ; char \n\ | |
\n\ | |
movb uxCriticalNesting, 1,-sp \n\ | |
\n\ | |
ldx pxCurrentTCB \n\ | |
sts 0,x ; Stack \n\ | |
" ); \ | |
} | |
#endif | |
/* | |
* Utility macros to save/restore correct software registers for GCC. This is | |
* useful when GCC does not generate appropriate ISR head/tail code. | |
*/ | |
#define portISR_HEAD() \ | |
{ \ | |
__asm(" \n\ | |
movw _.frame, 2,-sp \n\ | |
movw _.tmp, 2,-sp \n\ | |
movw _.z, 2,-sp \n\ | |
movw _.xy, 2,-sp \n\ | |
;movw _.d2, 2,-sp \n\ | |
;movw _.d1, 2,-sp \n\ | |
"); \ | |
} | |
#define portISR_TAIL() \ | |
{ \ | |
__asm(" \n\ | |
movw 2,sp+, _.xy \n\ | |
movw 2,sp+, _.z \n\ | |
movw 2,sp+, _.tmp \n\ | |
movw 2,sp+, _.frame \n\ | |
;movw 2,sp+, _.d1 \n\ | |
;movw 2,sp+, _.d2 \n\ | |
rti \n\ | |
"); \ | |
} | |
/* | |
* Utility macro to call macros above in correct order in order to perform a | |
* task switch from within a standard ISR. This macro can only be used if | |
* the ISR does not use any local (stack) variables. If the ISR uses stack | |
* variables portYIELD() should be used in it's place. | |
*/ | |
#define portTASK_SWITCH_FROM_ISR() \ | |
portSAVE_CONTEXT(); \ | |
vTaskSwitchContext(); \ | |
portRESTORE_CONTEXT(); | |
/* Task function macros as described on the FreeRTOS.org WEB site. */ | |
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters ) | |
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters ) | |
#ifdef __cplusplus | |
} | |
#endif | |
#endif /* PORTMACRO_H */ | |