| /* |
| * FreeRTOS Kernel <DEVELOPMENT BRANCH> |
| * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| * |
| * SPDX-License-Identifier: MIT |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy of |
| * this software and associated documentation files (the "Software"), to deal in |
| * the Software without restriction, including without limitation the rights to |
| * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
| * the Software, and to permit persons to whom the Software is furnished to do so, |
| * subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in all |
| * copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS |
| * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR |
| * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER |
| * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * https://www.FreeRTOS.org |
| * https://github.com/FreeRTOS |
| * |
| */ |
| |
| /*----------------------------------------------------------- |
| * Implementation of functions defined in portable.h for the ARM CM4 MPU port. |
| *----------------------------------------------------------*/ |
| |
| /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining |
| * all the API functions to use the MPU wrappers. That should only be done when |
| * task.h is included from an application file. */ |
| #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE |
| |
| /* Scheduler includes. */ |
| #include "FreeRTOS.h" |
| #include "task.h" |
| #include "mpu_syscall_numbers.h" |
| |
| #ifndef __ARM_FP |
| #error This port can only be used when the project options are configured to enable hardware floating point support. |
| #endif |
| |
| #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE |
| |
| #ifndef configSYSTICK_CLOCK_HZ |
| #define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ |
| /* Ensure the SysTick is clocked at the same frequency as the core. */ |
| #define portNVIC_SYSTICK_CLK ( 1UL << 2UL ) |
| #else |
| |
| /* The way the SysTick is clocked is not modified in case it is not the same |
| * as the core. */ |
| #define portNVIC_SYSTICK_CLK ( 0 ) |
| #endif |
| |
| #ifndef configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS |
| #warning "configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS is not defined. We recommend defining it to 0 in FreeRTOSConfig.h for better security." |
| #define configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS 1 |
| #endif |
| |
| /* Prototype of all Interrupt Service Routines (ISRs). */ |
| typedef void ( * portISR_t )( void ); |
| |
| /* Constants required to access and manipulate the NVIC. */ |
| #define portNVIC_SYSTICK_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000e010 ) ) |
| #define portNVIC_SYSTICK_LOAD_REG ( *( ( volatile uint32_t * ) 0xe000e014 ) ) |
| #define portNVIC_SYSTICK_CURRENT_VALUE_REG ( *( ( volatile uint32_t * ) 0xe000e018 ) ) |
| #define portNVIC_SHPR3_REG ( *( ( volatile uint32_t * ) 0xe000ed20 ) ) |
| #define portNVIC_SHPR2_REG ( *( ( volatile uint32_t * ) 0xe000ed1c ) ) |
| #define portNVIC_SYS_CTRL_STATE_REG ( *( ( volatile uint32_t * ) 0xe000ed24 ) ) |
| #define portNVIC_MEM_FAULT_ENABLE ( 1UL << 16UL ) |
| |
| /* Constants used to detect Cortex-M7 r0p0 and r0p1 cores, and ensure |
| * that a work around is active for errata 837070. */ |
| #define portCPUID ( *( ( volatile uint32_t * ) 0xE000ed00 ) ) |
| #define portCORTEX_M7_r0p1_ID ( 0x410FC271UL ) |
| #define portCORTEX_M7_r0p0_ID ( 0x410FC270UL ) |
| |
| /* Constants required to access and manipulate the MPU. */ |
| #define portMPU_TYPE_REG ( *( ( volatile uint32_t * ) 0xe000ed90 ) ) |
| #define portMPU_REGION_BASE_ADDRESS_REG ( *( ( volatile uint32_t * ) 0xe000ed9C ) ) |
| #define portMPU_REGION_ATTRIBUTE_REG ( *( ( volatile uint32_t * ) 0xe000edA0 ) ) |
| #define portMPU_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000ed94 ) ) |
| #define portEXPECTED_MPU_TYPE_VALUE ( configTOTAL_MPU_REGIONS << 8UL ) |
| #define portMPU_ENABLE ( 0x01UL ) |
| #define portMPU_BACKGROUND_ENABLE ( 1UL << 2UL ) |
| #define portPRIVILEGED_EXECUTION_START_ADDRESS ( 0UL ) |
| #define portMPU_REGION_VALID ( 0x10UL ) |
| #define portMPU_REGION_ENABLE ( 0x01UL ) |
| #define portPERIPHERALS_START_ADDRESS 0x40000000UL |
| #define portPERIPHERALS_END_ADDRESS 0x5FFFFFFFUL |
| |
| /* Constants required to access and manipulate the SysTick. */ |
| #define portNVIC_SYSTICK_INT ( 0x00000002UL ) |
| #define portNVIC_SYSTICK_ENABLE ( 0x00000001UL ) |
| #define portMIN_INTERRUPT_PRIORITY ( 255UL ) |
| #define portNVIC_PENDSV_PRI ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 16UL ) |
| #define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) portMIN_INTERRUPT_PRIORITY ) << 24UL ) |
| |
| /* Constants required to manipulate the VFP. */ |
| #define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34UL ) /* Floating point context control register. */ |
| #define portASPEN_AND_LSPEN_BITS ( 0x3UL << 30UL ) |
| |
| /* Constants required to set up the initial stack. */ |
| #define portINITIAL_XPSR ( 0x01000000UL ) |
| #define portINITIAL_EXC_RETURN ( 0xfffffffdUL ) |
| #define portINITIAL_CONTROL_IF_UNPRIVILEGED ( 0x03 ) |
| #define portINITIAL_CONTROL_IF_PRIVILEGED ( 0x02 ) |
| |
| /* Constants used to check the installation of the FreeRTOS interrupt handlers. */ |
| #define portSCB_VTOR_REG ( *( ( portISR_t ** ) 0xE000ED08 ) ) |
| #define portVECTOR_INDEX_SVC ( 11 ) |
| #define portVECTOR_INDEX_PENDSV ( 14 ) |
| |
| /* Constants required to check the validity of an interrupt priority. */ |
| #define portFIRST_USER_INTERRUPT_NUMBER ( 16 ) |
| #define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 ) |
| #define portAIRCR_REG ( *( ( volatile uint32_t * ) 0xE000ED0C ) ) |
| #define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff ) |
| #define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 ) |
| #define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 ) |
| #define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL ) |
| #define portPRIGROUP_SHIFT ( 8UL ) |
| |
| /* Constants used during system call enter and exit. */ |
| #define portPSR_STACK_PADDING_MASK ( 1UL << 9UL ) |
| #define portEXC_RETURN_STACK_FRAME_TYPE_MASK ( 1UL << 4UL ) |
| |
| /* Offsets in the stack to the parameters when inside the SVC handler. */ |
| #define portOFFSET_TO_LR ( 5 ) |
| #define portOFFSET_TO_PC ( 6 ) |
| #define portOFFSET_TO_PSR ( 7 ) |
| |
| |
| /* For strict compliance with the Cortex-M spec the task start address should |
| * have bit-0 clear, as it is loaded into the PC on exit from an ISR. */ |
| #define portSTART_ADDRESS_MASK ( ( StackType_t ) 0xfffffffeUL ) |
| |
| /* Does addr lie within [start, end] address range? */ |
| #define portIS_ADDRESS_WITHIN_RANGE( addr, start, end ) \ |
| ( ( ( addr ) >= ( start ) ) && ( ( addr ) <= ( end ) ) ) |
| |
| /* Is the access request satisfied by the available permissions? */ |
| #define portIS_AUTHORIZED( accessRequest, permissions ) \ |
| ( ( ( permissions ) & ( accessRequest ) ) == accessRequest ) |
| |
| /* Max value that fits in a uint32_t type. */ |
| #define portUINT32_MAX ( ~( ( uint32_t ) 0 ) ) |
| |
| /* Check if adding a and b will result in overflow. */ |
| #define portADD_UINT32_WILL_OVERFLOW( a, b ) ( ( a ) > ( portUINT32_MAX - ( b ) ) ) |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * Configure a number of standard MPU regions that are used by all tasks. |
| */ |
| static void prvSetupMPU( void ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Return the smallest MPU region size that a given number of bytes will fit |
| * into. The region size is returned as the value that should be programmed |
| * into the region attribute register for that region. |
| */ |
| static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Setup the timer to generate the tick interrupts. The implementation in this |
| * file is weak to allow application writers to change the timer used to |
| * generate the tick interrupt. |
| */ |
| void vPortSetupTimerInterrupt( void ); |
| |
| /* |
| * Standard FreeRTOS exception handlers. |
| */ |
| void xPortPendSVHandler( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION; |
| void xPortSysTickHandler( void ) PRIVILEGED_FUNCTION; |
| void vPortSVCHandler( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Starts the scheduler by restoring the context of the first task to run. |
| */ |
| static void prvRestoreContextOfFirstTask( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * C portion of the SVC handler. The SVC handler is split between an asm entry |
| * and a C wrapper for simplicity of coding and maintenance. |
| */ |
| void vSVCHandler_C( uint32_t * pulRegisters ) __attribute__( ( noinline ) ) PRIVILEGED_FUNCTION; |
| |
| /* |
| * Function to enable the VFP. |
| */ |
| static void vPortEnableVFP( void ) __attribute__( ( naked ) ); |
| |
| /** |
| * @brief Checks whether or not the processor is privileged. |
| * |
| * @return 1 if the processor is already privileged, 0 otherwise. |
| */ |
| BaseType_t xIsPrivileged( void ) __attribute__( ( naked ) ); |
| |
| /** |
| * @brief Lowers the privilege level by setting the bit 0 of the CONTROL |
| * register. |
| * |
| * Bit 0 of the CONTROL register defines the privilege level of Thread Mode. |
| * Bit[0] = 0 --> The processor is running privileged |
| * Bit[0] = 1 --> The processor is running unprivileged. |
| */ |
| void vResetPrivilege( void ) __attribute__( ( naked ) ); |
| |
| /** |
| * @brief Make a task unprivileged. |
| */ |
| void vPortSwitchToUserMode( void ); |
| |
| /** |
| * @brief Enter critical section. |
| */ |
| #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) |
| void vPortEnterCritical( void ) FREERTOS_SYSTEM_CALL; |
| #else |
| void vPortEnterCritical( void ) PRIVILEGED_FUNCTION; |
| #endif |
| |
| /** |
| * @brief Exit from critical section. |
| */ |
| #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) |
| void vPortExitCritical( void ) FREERTOS_SYSTEM_CALL; |
| #else |
| void vPortExitCritical( void ) PRIVILEGED_FUNCTION; |
| #endif |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| /** |
| * @brief Sets up the system call stack so that upon returning from |
| * SVC, the system call stack is used. |
| * |
| * @param pulTaskStack The current SP when the SVC was raised. |
| * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler. |
| * @param ucSystemCallNumber The system call number of the system call. |
| */ |
| void vSystemCallEnter( uint32_t * pulTaskStack, |
| uint32_t ulLR, |
| uint8_t ucSystemCallNumber ) PRIVILEGED_FUNCTION; |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| /** |
| * @brief Raise SVC for exiting from a system call. |
| */ |
| void vRequestSystemCallExit( void ) __attribute__( ( naked ) ) PRIVILEGED_FUNCTION; |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| /** |
| * @brief Sets up the task stack so that upon returning from |
| * SVC, the task stack is used again. |
| * |
| * @param pulSystemCallStack The current SP when the SVC was raised. |
| * @param ulLR The value of Link Register (EXC_RETURN) in the SVC handler. |
| */ |
| void vSystemCallExit( uint32_t * pulSystemCallStack, |
| uint32_t ulLR ) PRIVILEGED_FUNCTION; |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| |
| /** |
| * @brief Checks whether or not the calling task is privileged. |
| * |
| * @return pdTRUE if the calling task is privileged, pdFALSE otherwise. |
| */ |
| BaseType_t xPortIsTaskPrivileged( void ) PRIVILEGED_FUNCTION; |
| /*-----------------------------------------------------------*/ |
| |
| /* Each task maintains its own interrupt status in the critical nesting |
| * variable. Note this is not saved as part of the task context as context |
| * switches can only occur when uxCriticalNesting is zero. */ |
| static UBaseType_t uxCriticalNesting = 0xaaaaaaaa; |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| /* |
| * This variable is set to pdTRUE when the scheduler is started. |
| */ |
| PRIVILEGED_DATA static BaseType_t xSchedulerRunning = pdFALSE; |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| |
| /* |
| * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure |
| * FreeRTOS API functions are not called from interrupts that have been assigned |
| * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY. |
| */ |
| #if ( configASSERT_DEFINED == 1 ) |
| static uint8_t ucMaxSysCallPriority = 0; |
| static uint32_t ulMaxPRIGROUPValue = 0; |
| static const volatile uint8_t * const pcInterruptPriorityRegisters = ( const volatile uint8_t * const ) portNVIC_IP_REGISTERS_OFFSET_16; |
| #endif /* configASSERT_DEFINED */ |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * See header file for description. |
| */ |
| StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, |
| TaskFunction_t pxCode, |
| void * pvParameters, |
| BaseType_t xRunPrivileged, |
| xMPU_SETTINGS * xMPUSettings ) |
| { |
| if( xRunPrivileged == pdTRUE ) |
| { |
| xMPUSettings->ulTaskFlags |= portTASK_IS_PRIVILEGED_FLAG; |
| xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_PRIVILEGED; |
| } |
| else |
| { |
| xMPUSettings->ulTaskFlags &= ( ~( portTASK_IS_PRIVILEGED_FLAG ) ); |
| xMPUSettings->ulContext[ 0 ] = portINITIAL_CONTROL_IF_UNPRIVILEGED; |
| } |
| |
| xMPUSettings->ulContext[ 1 ] = 0x04040404; /* r4. */ |
| xMPUSettings->ulContext[ 2 ] = 0x05050505; /* r5. */ |
| xMPUSettings->ulContext[ 3 ] = 0x06060606; /* r6. */ |
| xMPUSettings->ulContext[ 4 ] = 0x07070707; /* r7. */ |
| xMPUSettings->ulContext[ 5 ] = 0x08080808; /* r8. */ |
| xMPUSettings->ulContext[ 6 ] = 0x09090909; /* r9. */ |
| xMPUSettings->ulContext[ 7 ] = 0x10101010; /* r10. */ |
| xMPUSettings->ulContext[ 8 ] = 0x11111111; /* r11. */ |
| xMPUSettings->ulContext[ 9 ] = portINITIAL_EXC_RETURN; /* EXC_RETURN. */ |
| |
| xMPUSettings->ulContext[ 10 ] = ( uint32_t ) ( pxTopOfStack - 8 ); /* PSP with the hardware saved stack. */ |
| xMPUSettings->ulContext[ 11 ] = ( uint32_t ) pvParameters; /* r0. */ |
| xMPUSettings->ulContext[ 12 ] = 0x01010101; /* r1. */ |
| xMPUSettings->ulContext[ 13 ] = 0x02020202; /* r2. */ |
| xMPUSettings->ulContext[ 14 ] = 0x03030303; /* r3. */ |
| xMPUSettings->ulContext[ 15 ] = 0x12121212; /* r12. */ |
| xMPUSettings->ulContext[ 16 ] = 0; /* LR. */ |
| xMPUSettings->ulContext[ 17 ] = ( ( uint32_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC. */ |
| xMPUSettings->ulContext[ 18 ] = portINITIAL_XPSR; /* xPSR. */ |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| { |
| /* Ensure that the system call stack is double word aligned. */ |
| xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = &( xMPUSettings->xSystemCallStackInfo.ulSystemCallStackBuffer[ configSYSTEM_CALL_STACK_SIZE - 1 ] ); |
| xMPUSettings->xSystemCallStackInfo.pulSystemCallStack = ( uint32_t * ) ( ( uint32_t ) ( xMPUSettings->xSystemCallStackInfo.pulSystemCallStack ) & |
| ( uint32_t ) ( ~( portBYTE_ALIGNMENT_MASK ) ) ); |
| |
| /* This is not NULL only for the duration of a system call. */ |
| xMPUSettings->xSystemCallStackInfo.pulTaskStack = NULL; |
| } |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| |
| return &( xMPUSettings->ulContext[ 19 ] ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| void vPortSVCHandler( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */ |
| { |
| __asm volatile |
| ( |
| ".syntax unified \n" |
| ".extern vSVCHandler_C \n" |
| ".extern vSystemCallEnter \n" |
| ".extern vSystemCallExit \n" |
| " \n" |
| "tst lr, #4 \n" |
| "ite eq \n" |
| "mrseq r0, msp \n" |
| "mrsne r0, psp \n" |
| " \n" |
| "ldr r1, [r0, #24] \n" |
| "ldrb r2, [r1, #-2] \n" |
| "cmp r2, %0 \n" |
| "blt syscall_enter \n" |
| "cmp r2, %1 \n" |
| "beq syscall_exit \n" |
| "b vSVCHandler_C \n" |
| " \n" |
| "syscall_enter: \n" |
| " mov r1, lr \n" |
| " b vSystemCallEnter \n" |
| " \n" |
| "syscall_exit: \n" |
| " mov r1, lr \n" |
| " b vSystemCallExit \n" |
| " \n" |
| : /* No outputs. */ |
| : "i" ( NUM_SYSTEM_CALLS ), "i" ( portSVC_SYSTEM_CALL_EXIT ) |
| : "r0", "r1", "r2", "memory" |
| ); |
| } |
| |
| #else /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| |
| void vPortSVCHandler( void ) |
| { |
| /* Assumes psp was in use. */ |
| __asm volatile |
| ( |
| #ifndef USE_PROCESS_STACK /* Code should not be required if a main() is using the process stack. */ |
| " tst lr, #4 \n" |
| " ite eq \n" |
| " mrseq r0, msp \n" |
| " mrsne r0, psp \n" |
| #else |
| " mrs r0, psp \n" |
| #endif |
| " b %0 \n" |
| ::"i" ( vSVCHandler_C ) : "r0", "memory" |
| ); |
| } |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| void vSVCHandler_C( uint32_t * pulParam ) /* PRIVILEGED_FUNCTION */ |
| { |
| uint8_t ucSVCNumber; |
| uint32_t ulPC; |
| |
| #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) ) |
| #if defined( __ARMCC_VERSION ) |
| |
| /* Declaration when these variable are defined in code instead of being |
| * exported from linker scripts. */ |
| extern uint32_t * __syscalls_flash_start__; |
| extern uint32_t * __syscalls_flash_end__; |
| #else |
| /* Declaration when these variable are exported from linker scripts. */ |
| extern uint32_t __syscalls_flash_start__[]; |
| extern uint32_t __syscalls_flash_end__[]; |
| #endif /* #if defined( __ARMCC_VERSION ) */ |
| #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 1 ) && ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) ) */ |
| |
| /* The stack contains: r0, r1, r2, r3, r12, LR, PC and xPSR. The first |
| * argument (r0) is pulParam[ 0 ]. */ |
| ulPC = pulParam[ portOFFSET_TO_PC ]; |
| ucSVCNumber = ( ( uint8_t * ) ulPC )[ -2 ]; |
| |
| switch( ucSVCNumber ) |
| { |
| case portSVC_START_SCHEDULER: |
| prvRestoreContextOfFirstTask(); |
| break; |
| |
| case portSVC_YIELD: |
| portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; |
| |
| /* Barriers are normally not required |
| * but do ensure the code is completely |
| * within the specified behaviour for the |
| * architecture. */ |
| __asm volatile ( "dsb" ::: "memory" ); |
| __asm volatile ( "isb" ); |
| |
| break; |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 1 ) |
| #if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) |
| case portSVC_RAISE_PRIVILEGE: /* Only raise the privilege, if the |
| * svc was raised from any of the |
| * system calls. */ |
| |
| if( ( ulPC >= ( uint32_t ) __syscalls_flash_start__ ) && |
| ( ulPC <= ( uint32_t ) __syscalls_flash_end__ ) ) |
| { |
| __asm volatile |
| ( |
| " mrs r1, control \n" /* Obtain current control value. */ |
| " bic r1, #1 \n" /* Set privilege bit. */ |
| " msr control, r1 \n" /* Write back new control value. */ |
| ::: "r1", "memory" |
| ); |
| } |
| |
| break; |
| #else /* if ( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */ |
| case portSVC_RAISE_PRIVILEGE: |
| __asm volatile |
| ( |
| " mrs r1, control \n" /* Obtain current control value. */ |
| " bic r1, #1 \n" /* Set privilege bit. */ |
| " msr control, r1 \n" /* Write back new control value. */ |
| ::: "r1", "memory" |
| ); |
| break; |
| #endif /* #if( configENFORCE_SYSTEM_CALLS_FROM_KERNEL_ONLY == 1 ) */ |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 1 ) */ |
| |
| default: /* Unknown SVC call. */ |
| break; |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| void vSystemCallEnter( uint32_t * pulTaskStack, |
| uint32_t ulLR, |
| uint8_t ucSystemCallNumber ) /* PRIVILEGED_FUNCTION */ |
| { |
| extern TaskHandle_t pxCurrentTCB; |
| extern UBaseType_t uxSystemCallImplementations[ NUM_SYSTEM_CALLS ]; |
| xMPU_SETTINGS * pxMpuSettings; |
| uint32_t * pulSystemCallStack; |
| uint32_t ulStackFrameSize, ulSystemCallLocation, i; |
| |
| #if defined( __ARMCC_VERSION ) |
| /* Declaration when these variable are defined in code instead of being |
| * exported from linker scripts. */ |
| extern uint32_t * __syscalls_flash_start__; |
| extern uint32_t * __syscalls_flash_end__; |
| #else |
| /* Declaration when these variable are exported from linker scripts. */ |
| extern uint32_t __syscalls_flash_start__[]; |
| extern uint32_t __syscalls_flash_end__[]; |
| #endif /* #if defined( __ARMCC_VERSION ) */ |
| |
| ulSystemCallLocation = pulTaskStack[ portOFFSET_TO_PC ]; |
| pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB ); |
| |
| /* Checks: |
| * 1. SVC is raised from the system call section (i.e. application is |
| * not raising SVC directly). |
| * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must be NULL as |
| * it is non-NULL only during the execution of a system call (i.e. |
| * between system call enter and exit). |
| * 3. System call is not for a kernel API disabled by the configuration |
| * in FreeRTOSConfig.h. |
| * 4. We do not need to check that ucSystemCallNumber is within range |
| * because the assembly SVC handler checks that before calling |
| * this function. |
| */ |
| if( ( ulSystemCallLocation >= ( uint32_t ) __syscalls_flash_start__ ) && |
| ( ulSystemCallLocation <= ( uint32_t ) __syscalls_flash_end__ ) && |
| ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack == NULL ) && |
| ( uxSystemCallImplementations[ ucSystemCallNumber ] != ( UBaseType_t ) 0 ) ) |
| { |
| pulSystemCallStack = pxMpuSettings->xSystemCallStackInfo.pulSystemCallStack; |
| |
| if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL ) |
| { |
| /* Extended frame i.e. FPU in use. */ |
| ulStackFrameSize = 26; |
| __asm volatile ( |
| " vpush {s0} \n" /* Trigger lazy stacking. */ |
| " vpop {s0} \n" /* Nullify the affect of the above instruction. */ |
| ::: "memory" |
| ); |
| } |
| else |
| { |
| /* Standard frame i.e. FPU not in use. */ |
| ulStackFrameSize = 8; |
| } |
| |
| /* Make space on the system call stack for the stack frame. */ |
| pulSystemCallStack = pulSystemCallStack - ulStackFrameSize; |
| |
| /* Copy the stack frame. */ |
| for( i = 0; i < ulStackFrameSize; i++ ) |
| { |
| pulSystemCallStack[ i ] = pulTaskStack[ i ]; |
| } |
| |
| /* Use the pulSystemCallStack in thread mode. */ |
| __asm volatile ( "msr psp, %0" : : "r" ( pulSystemCallStack ) ); |
| |
| /* Raise the privilege for the duration of the system call. */ |
| __asm volatile ( |
| " mrs r1, control \n" /* Obtain current control value. */ |
| " bic r1, #1 \n" /* Clear nPRIV bit. */ |
| " msr control, r1 \n" /* Write back new control value. */ |
| ::: "r1", "memory" |
| ); |
| |
| /* Remember the location where we should copy the stack frame when we exit from |
| * the system call. */ |
| pxMpuSettings->xSystemCallStackInfo.pulTaskStack = pulTaskStack + ulStackFrameSize; |
| |
| /* Store the value of the Link Register before the SVC was raised. |
| * It contains the address of the caller of the System Call entry |
| * point (i.e. the caller of the MPU_<API>). We need to restore it |
| * when we exit from the system call. */ |
| pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry = pulTaskStack[ portOFFSET_TO_LR ]; |
| |
| /* Start executing the system call upon returning from this handler. */ |
| pulSystemCallStack[ portOFFSET_TO_PC ] = uxSystemCallImplementations[ ucSystemCallNumber ]; |
| /* Raise a request to exit from the system call upon finishing the |
| * system call. */ |
| pulSystemCallStack[ portOFFSET_TO_LR ] = ( uint32_t ) vRequestSystemCallExit; |
| |
| /* Record if the hardware used padding to force the stack pointer |
| * to be double word aligned. */ |
| if( ( pulTaskStack[ portOFFSET_TO_PSR ] & portPSR_STACK_PADDING_MASK ) == portPSR_STACK_PADDING_MASK ) |
| { |
| pxMpuSettings->ulTaskFlags |= portSTACK_FRAME_HAS_PADDING_FLAG; |
| } |
| else |
| { |
| pxMpuSettings->ulTaskFlags &= ( ~portSTACK_FRAME_HAS_PADDING_FLAG ); |
| } |
| |
| /* We ensure in pxPortInitialiseStack that the system call stack is |
| * double word aligned and therefore, there is no need of padding. |
| * Clear the bit[9] of stacked xPSR. */ |
| pulSystemCallStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK ); |
| } |
| } |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| void vRequestSystemCallExit( void ) /* __attribute__( ( naked ) ) PRIVILEGED_FUNCTION */ |
| { |
| __asm volatile ( "svc %0 \n" ::"i" ( portSVC_SYSTEM_CALL_EXIT ) : "memory" ); |
| } |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| void vSystemCallExit( uint32_t * pulSystemCallStack, |
| uint32_t ulLR ) /* PRIVILEGED_FUNCTION */ |
| { |
| extern TaskHandle_t pxCurrentTCB; |
| xMPU_SETTINGS * pxMpuSettings; |
| uint32_t * pulTaskStack; |
| uint32_t ulStackFrameSize, ulSystemCallLocation, i; |
| |
| #if defined( __ARMCC_VERSION ) |
| /* Declaration when these variable are defined in code instead of being |
| * exported from linker scripts. */ |
| extern uint32_t * __privileged_functions_start__; |
| extern uint32_t * __privileged_functions_end__; |
| #else |
| /* Declaration when these variable are exported from linker scripts. */ |
| extern uint32_t __privileged_functions_start__[]; |
| extern uint32_t __privileged_functions_end__[]; |
| #endif /* #if defined( __ARMCC_VERSION ) */ |
| |
| ulSystemCallLocation = pulSystemCallStack[ portOFFSET_TO_PC ]; |
| pxMpuSettings = xTaskGetMPUSettings( pxCurrentTCB ); |
| |
| /* Checks: |
| * 1. SVC is raised from the privileged code (i.e. application is not |
| * raising SVC directly). This SVC is only raised from |
| * vRequestSystemCallExit which is in the privileged code section. |
| * 2. pxMpuSettings->xSystemCallStackInfo.pulTaskStack must not be NULL - |
| * this means that we previously entered a system call and the |
| * application is not attempting to exit without entering a system |
| * call. |
| */ |
| if( ( ulSystemCallLocation >= ( uint32_t ) __privileged_functions_start__ ) && |
| ( ulSystemCallLocation <= ( uint32_t ) __privileged_functions_end__ ) && |
| ( pxMpuSettings->xSystemCallStackInfo.pulTaskStack != NULL ) ) |
| { |
| pulTaskStack = pxMpuSettings->xSystemCallStackInfo.pulTaskStack; |
| |
| if( ( ulLR & portEXC_RETURN_STACK_FRAME_TYPE_MASK ) == 0UL ) |
| { |
| /* Extended frame i.e. FPU in use. */ |
| ulStackFrameSize = 26; |
| __asm volatile ( |
| " vpush {s0} \n" /* Trigger lazy stacking. */ |
| " vpop {s0} \n" /* Nullify the affect of the above instruction. */ |
| ::: "memory" |
| ); |
| } |
| else |
| { |
| /* Standard frame i.e. FPU not in use. */ |
| ulStackFrameSize = 8; |
| } |
| |
| /* Make space on the task stack for the stack frame. */ |
| pulTaskStack = pulTaskStack - ulStackFrameSize; |
| |
| /* Copy the stack frame. */ |
| for( i = 0; i < ulStackFrameSize; i++ ) |
| { |
| pulTaskStack[ i ] = pulSystemCallStack[ i ]; |
| } |
| |
| /* Use the pulTaskStack in thread mode. */ |
| __asm volatile ( "msr psp, %0" : : "r" ( pulTaskStack ) ); |
| |
| /* Drop the privilege before returning to the thread mode. */ |
| __asm volatile ( |
| " mrs r1, control \n" /* Obtain current control value. */ |
| " orr r1, #1 \n" /* Set nPRIV bit. */ |
| " msr control, r1 \n" /* Write back new control value. */ |
| ::: "r1", "memory" |
| ); |
| |
| /* Return to the caller of the System Call entry point (i.e. the |
| * caller of the MPU_<API>). */ |
| pulTaskStack[ portOFFSET_TO_PC ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry; |
| /* Ensure that LR has a valid value.*/ |
| pulTaskStack[ portOFFSET_TO_LR ] = pxMpuSettings->xSystemCallStackInfo.ulLinkRegisterAtSystemCallEntry; |
| |
| /* If the hardware used padding to force the stack pointer |
| * to be double word aligned, set the stacked xPSR bit[9], |
| * otherwise clear it. */ |
| if( ( pxMpuSettings->ulTaskFlags & portSTACK_FRAME_HAS_PADDING_FLAG ) == portSTACK_FRAME_HAS_PADDING_FLAG ) |
| { |
| pulTaskStack[ portOFFSET_TO_PSR ] |= portPSR_STACK_PADDING_MASK; |
| } |
| else |
| { |
| pulTaskStack[ portOFFSET_TO_PSR ] &= ( ~portPSR_STACK_PADDING_MASK ); |
| } |
| |
| /* This is not NULL only for the duration of the system call. */ |
| pxMpuSettings->xSystemCallStackInfo.pulTaskStack = NULL; |
| } |
| } |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xPortIsTaskPrivileged( void ) /* PRIVILEGED_FUNCTION */ |
| { |
| BaseType_t xTaskIsPrivileged = pdFALSE; |
| const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */ |
| |
| if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG ) |
| { |
| xTaskIsPrivileged = pdTRUE; |
| } |
| |
| return xTaskIsPrivileged; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| static void prvRestoreContextOfFirstTask( void ) |
| { |
| __asm volatile |
| ( |
| " ldr r0, =0xE000ED08 \n" /* Use the NVIC offset register to locate the stack. */ |
| " ldr r0, [r0] \n" |
| " ldr r0, [r0] \n" |
| " msr msp, r0 \n" /* Set the msp back to the start of the stack. */ |
| " \n" |
| /*------------ Program MPU. ------------ */ |
| " ldr r3, pxCurrentTCBConst2 \n" /* r3 = pxCurrentTCBConst2. */ |
| " ldr r2, [r3] \n" /* r2 = pxCurrentTCB. */ |
| " add r2, r2, #4 \n" /* r2 = Second item in the TCB which is xMPUSettings. */ |
| " \n" |
| " dmb \n" /* Complete outstanding transfers before disabling MPU. */ |
| " ldr r0, =0xe000ed94 \n" /* MPU_CTRL register. */ |
| " ldr r3, [r0] \n" /* Read the value of MPU_CTRL. */ |
| " bic r3, #1 \n" /* r3 = r3 & ~1 i.e. Clear the bit 0 in r3. */ |
| " str r3, [r0] \n" /* Disable MPU. */ |
| " \n" |
| " ldr r0, =0xe000ed9c \n" /* Region Base Address register. */ |
| " ldmia r2!, {r4-r11} \n" /* Read 4 sets of MPU registers [MPU Region # 0 - 3]. */ |
| " stmia r0, {r4-r11} \n" /* Write 4 sets of MPU registers [MPU Region # 0 - 3]. */ |
| " \n" |
| #if ( configTOTAL_MPU_REGIONS == 16 ) |
| " ldmia r2!, {r4-r11} \n" /* Read 4 sets of MPU registers [MPU Region # 4 - 8]. */ |
| " stmia r0, {r4-r11} \n" /* Write 4 sets of MPU registers. [MPU Region # 4 - 8]. */ |
| " ldmia r2!, {r4-r11} \n" /* Read 4 sets of MPU registers [MPU Region # 9 - 12]. */ |
| " stmia r0, {r4-r11} \n" /* Write 4 sets of MPU registers. [MPU Region # 9 - 12]. */ |
| #endif /* configTOTAL_MPU_REGIONS == 16. */ |
| " \n" |
| " ldr r0, =0xe000ed94 \n" /* MPU_CTRL register. */ |
| " ldr r3, [r0] \n" /* Read the value of MPU_CTRL. */ |
| " orr r3, #1 \n" /* r3 = r3 | 1 i.e. Set the bit 0 in r3. */ |
| " str r3, [r0] \n" /* Enable MPU. */ |
| " dsb \n" /* Force memory writes before continuing. */ |
| " \n" |
| /*---------- Restore Context. ---------- */ |
| " ldr r3, pxCurrentTCBConst2 \n" /* r3 = pxCurrentTCBConst2. */ |
| " ldr r2, [r3] \n" /* r2 = pxCurrentTCB. */ |
| " ldr r1, [r2] \n" /* r1 = Location of saved context in TCB. */ |
| " \n" |
| " ldmdb r1!, {r0, r4-r11} \n" /* r0 contains PSP after the hardware had saved context. r4-r11 contain hardware saved context. */ |
| " msr psp, r0 \n" |
| " stmia r0, {r4-r11} \n" /* Copy the hardware saved context on the task stack. */ |
| " ldmdb r1!, {r3-r11, lr} \n" /* r3 contains CONTROL register. r4-r11 and LR restored. */ |
| " msr control, r3 \n" |
| " str r1, [r2] \n" /* Save the location where the context should be saved next as the first member of TCB. */ |
| " \n" |
| " mov r0, #0 \n" |
| " msr basepri, r0 \n" |
| " bx lr \n" |
| " \n" |
| " .ltorg \n" /* Assemble current literal pool to avoid offset-out-of-bound errors with lto. */ |
| " .align 4 \n" |
| " pxCurrentTCBConst2: .word pxCurrentTCB\n" |
| ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * See header file for description. |
| */ |
| BaseType_t xPortStartScheduler( void ) |
| { |
| /* Errata 837070 workaround must only be enabled on Cortex-M7 r0p0 |
| * and r0p1 cores. */ |
| #if ( configENABLE_ERRATA_837070_WORKAROUND == 1 ) |
| configASSERT( ( portCPUID == portCORTEX_M7_r0p1_ID ) || ( portCPUID == portCORTEX_M7_r0p0_ID ) ); |
| #else |
| |
| /* When using this port on a Cortex-M7 r0p0 or r0p1 core, define |
| * configENABLE_ERRATA_837070_WORKAROUND to 1 in your |
| * FreeRTOSConfig.h. */ |
| configASSERT( portCPUID != portCORTEX_M7_r0p1_ID ); |
| configASSERT( portCPUID != portCORTEX_M7_r0p0_ID ); |
| #endif |
| |
| /* An application can install FreeRTOS interrupt handlers in one of the |
| * following ways: |
| * 1. Direct Routing - Install the functions vPortSVCHandler and |
| * xPortPendSVHandler for SVCall and PendSV interrupts respectively. |
| * 2. Indirect Routing - Install separate handlers for SVCall and PendSV |
| * interrupts and route program control from those handlers to |
| * vPortSVCHandler and xPortPendSVHandler functions. |
| * |
| * Applications that use Indirect Routing must set |
| * configCHECK_HANDLER_INSTALLATION to 0 in their FreeRTOSConfig.h. Direct |
| * routing, which is validated here when configCHECK_HANDLER_INSTALLATION |
| * is 1, should be preferred when possible. */ |
| #if ( configCHECK_HANDLER_INSTALLATION == 1 ) |
| { |
| const portISR_t * const pxVectorTable = portSCB_VTOR_REG; |
| |
| /* Validate that the application has correctly installed the FreeRTOS |
| * handlers for SVCall and PendSV interrupts. We do not check the |
| * installation of the SysTick handler because the application may |
| * choose to drive the RTOS tick using a timer other than the SysTick |
| * timer by overriding the weak function vPortSetupTimerInterrupt(). |
| * |
| * Assertion failures here indicate incorrect installation of the |
| * FreeRTOS handlers. For help installing the FreeRTOS handlers, see |
| * https://www.freertos.org/Why-FreeRTOS/FAQs. |
| * |
| * Systems with a configurable address for the interrupt vector table |
| * can also encounter assertion failures or even system faults here if |
| * VTOR is not set correctly to point to the application's vector table. */ |
| configASSERT( pxVectorTable[ portVECTOR_INDEX_SVC ] == vPortSVCHandler ); |
| configASSERT( pxVectorTable[ portVECTOR_INDEX_PENDSV ] == xPortPendSVHandler ); |
| } |
| #endif /* configCHECK_HANDLER_INSTALLATION */ |
| |
| #if ( configASSERT_DEFINED == 1 ) |
| { |
| volatile uint8_t ucOriginalPriority; |
| volatile uint32_t ulImplementedPrioBits = 0; |
| volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER ); |
| volatile uint8_t ucMaxPriorityValue; |
| |
| /* Determine the maximum priority from which ISR safe FreeRTOS API |
| * functions can be called. ISR safe functions are those that end in |
| * "FromISR". FreeRTOS maintains separate thread and ISR API functions to |
| * ensure interrupt entry is as fast and simple as possible. |
| * |
| * Save the interrupt priority value that is about to be clobbered. */ |
| ucOriginalPriority = *pucFirstUserPriorityRegister; |
| |
| /* Determine the number of priority bits available. First write to all |
| * possible bits. */ |
| *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE; |
| |
| /* Read the value back to see how many bits stuck. */ |
| ucMaxPriorityValue = *pucFirstUserPriorityRegister; |
| |
| /* Use the same mask on the maximum system call priority. */ |
| ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue; |
| |
| /* Check that the maximum system call priority is nonzero after |
| * accounting for the number of priority bits supported by the |
| * hardware. A priority of 0 is invalid because setting the BASEPRI |
| * register to 0 unmasks all interrupts, and interrupts with priority 0 |
| * cannot be masked using BASEPRI. |
| * See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ |
| configASSERT( ucMaxSysCallPriority ); |
| |
| /* Check that the bits not implemented in hardware are zero in |
| * configMAX_SYSCALL_INTERRUPT_PRIORITY. */ |
| configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & ( ~ucMaxPriorityValue ) ) == 0U ); |
| |
| /* Calculate the maximum acceptable priority group value for the number |
| * of bits read back. */ |
| |
| while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE ) |
| { |
| ulImplementedPrioBits++; |
| ucMaxPriorityValue <<= ( uint8_t ) 0x01; |
| } |
| |
| if( ulImplementedPrioBits == 8 ) |
| { |
| /* When the hardware implements 8 priority bits, there is no way for |
| * the software to configure PRIGROUP to not have sub-priorities. As |
| * a result, the least significant bit is always used for sub-priority |
| * and there are 128 preemption priorities and 2 sub-priorities. |
| * |
| * This may cause some confusion in some cases - for example, if |
| * configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4 |
| * priority interrupts will be masked in Critical Sections as those |
| * are at the same preemption priority. This may appear confusing as |
| * 4 is higher (numerically lower) priority than |
| * configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not |
| * have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY |
| * to 4, this confusion does not happen and the behaviour remains the same. |
| * |
| * The following assert ensures that the sub-priority bit in the |
| * configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned |
| * confusion. */ |
| configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U ); |
| ulMaxPRIGROUPValue = 0; |
| } |
| else |
| { |
| ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits; |
| } |
| |
| /* Shift the priority group value back to its position within the AIRCR |
| * register. */ |
| ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT; |
| ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK; |
| |
| /* Restore the clobbered interrupt priority register to its original |
| * value. */ |
| *pucFirstUserPriorityRegister = ucOriginalPriority; |
| } |
| #endif /* configASSERT_DEFINED */ |
| |
| /* Make PendSV and SysTick the lowest priority interrupts, and make SVCall |
| * the highest priority. */ |
| portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI; |
| portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI; |
| portNVIC_SHPR2_REG = 0; |
| |
| /* Configure the regions in the MPU that are common to all tasks. */ |
| prvSetupMPU(); |
| |
| /* Start the timer that generates the tick ISR. Interrupts are disabled |
| * here already. */ |
| vPortSetupTimerInterrupt(); |
| |
| /* Initialise the critical nesting count ready for the first task. */ |
| uxCriticalNesting = 0; |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| { |
| xSchedulerRunning = pdTRUE; |
| } |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| |
| /* Ensure the VFP is enabled - it should be anyway. */ |
| vPortEnableVFP(); |
| |
| /* Lazy save always. */ |
| *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS; |
| |
| /* Start the first task. This also clears the bit that indicates the FPU is |
| * in use in case the FPU was used before the scheduler was started - which |
| * would otherwise result in the unnecessary leaving of space in the SVC stack |
| * for lazy saving of FPU registers. */ |
| __asm volatile ( |
| " ldr r0, =0xE000ED08 \n" /* Use the NVIC offset register to locate the stack. */ |
| " ldr r0, [r0] \n" |
| " ldr r0, [r0] \n" |
| " msr msp, r0 \n" /* Set the msp back to the start of the stack. */ |
| " mov r0, #0 \n" /* Clear the bit that indicates the FPU is in use, see comment above. */ |
| " msr control, r0 \n" |
| " cpsie i \n" /* Globally enable interrupts. */ |
| " cpsie f \n" |
| " dsb \n" |
| " isb \n" |
| " svc %0 \n" /* System call to start first task. */ |
| " nop \n" |
| " .ltorg \n" |
| ::"i" ( portSVC_START_SCHEDULER ) : "memory" ); |
| |
| /* Should not get here! */ |
| return 0; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vPortEndScheduler( void ) |
| { |
| /* Not implemented in ports where there is nothing to return to. |
| * Artificially force an assert. */ |
| configASSERT( uxCriticalNesting == 1000UL ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vPortEnterCritical( void ) |
| { |
| #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) |
| if( portIS_PRIVILEGED() == pdFALSE ) |
| { |
| portRAISE_PRIVILEGE(); |
| portMEMORY_BARRIER(); |
| |
| portDISABLE_INTERRUPTS(); |
| uxCriticalNesting++; |
| portMEMORY_BARRIER(); |
| |
| portRESET_PRIVILEGE(); |
| portMEMORY_BARRIER(); |
| } |
| else |
| { |
| portDISABLE_INTERRUPTS(); |
| uxCriticalNesting++; |
| } |
| #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */ |
| portDISABLE_INTERRUPTS(); |
| uxCriticalNesting++; |
| #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */ |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vPortExitCritical( void ) |
| { |
| #if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) |
| if( portIS_PRIVILEGED() == pdFALSE ) |
| { |
| portRAISE_PRIVILEGE(); |
| portMEMORY_BARRIER(); |
| |
| configASSERT( uxCriticalNesting ); |
| uxCriticalNesting--; |
| |
| if( uxCriticalNesting == 0 ) |
| { |
| portENABLE_INTERRUPTS(); |
| } |
| |
| portMEMORY_BARRIER(); |
| |
| portRESET_PRIVILEGE(); |
| portMEMORY_BARRIER(); |
| } |
| else |
| { |
| configASSERT( uxCriticalNesting ); |
| uxCriticalNesting--; |
| |
| if( uxCriticalNesting == 0 ) |
| { |
| portENABLE_INTERRUPTS(); |
| } |
| } |
| #else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */ |
| configASSERT( uxCriticalNesting ); |
| uxCriticalNesting--; |
| |
| if( uxCriticalNesting == 0 ) |
| { |
| portENABLE_INTERRUPTS(); |
| } |
| #endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */ |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void xPortPendSVHandler( void ) |
| { |
| /* This is a naked function. */ |
| |
| __asm volatile |
| ( |
| " ldr r3, pxCurrentTCBConst \n" /* r3 = pxCurrentTCBConst. */ |
| " ldr r2, [r3] \n" /* r2 = pxCurrentTCB. */ |
| " ldr r1, [r2] \n" /* r1 = Location where the context should be saved. */ |
| " \n" |
| /*------------ Save Context. ----------- */ |
| " mrs r3, control \n" |
| " mrs r0, psp \n" |
| " isb \n" |
| " \n" |
| " add r0, r0, #0x20 \n" /* Move r0 to location where s0 is saved. */ |
| " tst lr, #0x10 \n" |
| " ittt eq \n" |
| " vstmiaeq r1!, {s16-s31} \n" /* Store s16-s31. */ |
| " vldmiaeq r0, {s0-s16} \n" /* Copy hardware saved FP context into s0-s16. */ |
| " vstmiaeq r1!, {s0-s16} \n" /* Store hardware saved FP context. */ |
| " sub r0, r0, #0x20 \n" /* Set r0 back to the location of hardware saved context. */ |
| " \n" |
| " stmia r1!, {r3-r11, lr} \n" /* Store CONTROL register, r4-r11 and LR. */ |
| " ldmia r0, {r4-r11} \n" /* Copy hardware saved context into r4-r11. */ |
| " stmia r1!, {r0, r4-r11} \n" /* Store original PSP (after hardware has saved context) and the hardware saved context. */ |
| " str r1, [r2] \n" /* Save the location from where the context should be restored as the first member of TCB. */ |
| " \n" |
| /*---------- Select next task. --------- */ |
| " mov r0, %0 \n" |
| #if ( configENABLE_ERRATA_837070_WORKAROUND == 1 ) |
| " cpsid i \n" /* ARM Cortex-M7 r0p1 Errata 837070 workaround. */ |
| #endif |
| " msr basepri, r0 \n" |
| " dsb \n" |
| " isb \n" |
| #if ( configENABLE_ERRATA_837070_WORKAROUND == 1 ) |
| " cpsie i \n" /* ARM Cortex-M7 r0p1 Errata 837070 workaround. */ |
| #endif |
| " bl vTaskSwitchContext \n" |
| " mov r0, #0 \n" |
| " msr basepri, r0 \n" |
| " \n" |
| /*------------ Program MPU. ------------ */ |
| " ldr r3, pxCurrentTCBConst \n" /* r3 = pxCurrentTCBConst. */ |
| " ldr r2, [r3] \n" /* r2 = pxCurrentTCB. */ |
| " add r2, r2, #4 \n" /* r2 = Second item in the TCB which is xMPUSettings. */ |
| " \n" |
| " dmb \n" /* Complete outstanding transfers before disabling MPU. */ |
| " ldr r0, =0xe000ed94 \n" /* MPU_CTRL register. */ |
| " ldr r3, [r0] \n" /* Read the value of MPU_CTRL. */ |
| " bic r3, #1 \n" /* r3 = r3 & ~1 i.e. Clear the bit 0 in r3. */ |
| " str r3, [r0] \n" /* Disable MPU. */ |
| " \n" |
| " ldr r0, =0xe000ed9c \n" /* Region Base Address register. */ |
| " ldmia r2!, {r4-r11} \n" /* Read 4 sets of MPU registers [MPU Region # 0 - 3]. */ |
| " stmia r0, {r4-r11} \n" /* Write 4 sets of MPU registers [MPU Region # 0 - 3]. */ |
| " \n" |
| #if ( configTOTAL_MPU_REGIONS == 16 ) |
| " ldmia r2!, {r4-r11} \n" /* Read 4 sets of MPU registers [MPU Region # 4 - 7]. */ |
| " stmia r0, {r4-r11} \n" /* Write 4 sets of MPU registers. [MPU Region # 4 - 7]. */ |
| " ldmia r2!, {r4-r11} \n" /* Read 4 sets of MPU registers [MPU Region # 8 - 11]. */ |
| " stmia r0, {r4-r11} \n" /* Write 4 sets of MPU registers. [MPU Region # 8 - 11]. */ |
| #endif /* configTOTAL_MPU_REGIONS == 16. */ |
| " \n" |
| " ldr r0, =0xe000ed94 \n" /* MPU_CTRL register. */ |
| " ldr r3, [r0] \n" /* Read the value of MPU_CTRL. */ |
| " orr r3, #1 \n" /* r3 = r3 | 1 i.e. Set the bit 0 in r3. */ |
| " str r3, [r0] \n" /* Enable MPU. */ |
| " dsb \n" /* Force memory writes before continuing. */ |
| " \n" |
| /*---------- Restore Context. ---------- */ |
| " ldr r3, pxCurrentTCBConst \n" /* r3 = pxCurrentTCBConst. */ |
| " ldr r2, [r3] \n" /* r2 = pxCurrentTCB. */ |
| " ldr r1, [r2] \n" /* r1 = Location of saved context in TCB. */ |
| " \n" |
| " ldmdb r1!, {r0, r4-r11} \n" /* r0 contains PSP after the hardware had saved context. r4-r11 contain hardware saved context. */ |
| " msr psp, r0 \n" |
| " stmia r0!, {r4-r11} \n" /* Copy the hardware saved context on the task stack. */ |
| " ldmdb r1!, {r3-r11, lr} \n" /* r3 contains CONTROL register. r4-r11 and LR restored. */ |
| " msr control, r3 \n" |
| |
| " tst lr, #0x10 \n" |
| " ittt eq \n" |
| " vldmdbeq r1!, {s0-s16} \n" /* s0-s16 contain hardware saved FP context. */ |
| " vstmiaeq r0!, {s0-s16} \n" /* Copy hardware saved FP context on the task stack. */ |
| " vldmdbeq r1!, {s16-s31} \n" /* Restore s16-s31. */ |
| |
| " str r1, [r2] \n" /* Save the location where the context should be saved next as the first member of TCB. */ |
| " bx lr \n" |
| " \n" |
| " .ltorg \n" /* Assemble the current literal pool to avoid offset-out-of-bound errors with lto. */ |
| " .align 4 \n" |
| " pxCurrentTCBConst: .word pxCurrentTCB \n" |
| ::"i" ( configMAX_SYSCALL_INTERRUPT_PRIORITY ) |
| ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void xPortSysTickHandler( void ) |
| { |
| uint32_t ulDummy; |
| |
| ulDummy = portSET_INTERRUPT_MASK_FROM_ISR(); |
| traceISR_ENTER(); |
| { |
| /* Increment the RTOS tick. */ |
| if( xTaskIncrementTick() != pdFALSE ) |
| { |
| traceISR_EXIT_TO_SCHEDULER(); |
| /* Pend a context switch. */ |
| portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; |
| } |
| else |
| { |
| traceISR_EXIT(); |
| } |
| } |
| portCLEAR_INTERRUPT_MASK_FROM_ISR( ulDummy ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * Setup the systick timer to generate the tick interrupts at the required |
| * frequency. |
| */ |
| __attribute__( ( weak ) ) void vPortSetupTimerInterrupt( void ) |
| { |
| /* Stop and clear the SysTick. */ |
| portNVIC_SYSTICK_CTRL_REG = 0UL; |
| portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL; |
| |
| /* Configure SysTick to interrupt at the requested rate. */ |
| portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL; |
| portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK | portNVIC_SYSTICK_INT | portNVIC_SYSTICK_ENABLE ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| /* This is a naked function. */ |
| static void vPortEnableVFP( void ) |
| { |
| __asm volatile |
| ( |
| " ldr.w r0, =0xE000ED88 \n" /* The FPU enable bits are in the CPACR. */ |
| " ldr r1, [r0] \n" |
| " \n" |
| " orr r1, r1, #( 0xf << 20 ) \n" /* Enable CP10 and CP11 coprocessors, then save back. */ |
| " str r1, [r0] \n" |
| " bx r14 \n" |
| " .ltorg \n" |
| ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| static void prvSetupMPU( void ) |
| { |
| #if defined( __ARMCC_VERSION ) |
| |
| /* Declaration when these variable are defined in code instead of being |
| * exported from linker scripts. */ |
| extern uint32_t * __privileged_functions_start__; |
| extern uint32_t * __privileged_functions_end__; |
| extern uint32_t * __FLASH_segment_start__; |
| extern uint32_t * __FLASH_segment_end__; |
| extern uint32_t * __privileged_data_start__; |
| extern uint32_t * __privileged_data_end__; |
| #else |
| /* Declaration when these variable are exported from linker scripts. */ |
| extern uint32_t __privileged_functions_start__[]; |
| extern uint32_t __privileged_functions_end__[]; |
| extern uint32_t __FLASH_segment_start__[]; |
| extern uint32_t __FLASH_segment_end__[]; |
| extern uint32_t __privileged_data_start__[]; |
| extern uint32_t __privileged_data_end__[]; |
| #endif /* if defined( __ARMCC_VERSION ) */ |
| |
| /* The only permitted number of regions are 8 or 16. */ |
| configASSERT( ( configTOTAL_MPU_REGIONS == 8 ) || ( configTOTAL_MPU_REGIONS == 16 ) ); |
| |
| /* Ensure that the configTOTAL_MPU_REGIONS is configured correctly. */ |
| configASSERT( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE ); |
| |
| /* Check the expected MPU is present. */ |
| if( portMPU_TYPE_REG == portEXPECTED_MPU_TYPE_VALUE ) |
| { |
| /* First setup the unprivileged flash for unprivileged read only access. */ |
| portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __FLASH_segment_start__ ) | /* Base address. */ |
| ( portMPU_REGION_VALID ) | |
| ( portUNPRIVILEGED_FLASH_REGION ); |
| |
| portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_ONLY ) | |
| ( ( configTEX_S_C_B_FLASH & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | |
| ( prvGetMPURegionSizeSetting( ( uint32_t ) __FLASH_segment_end__ - ( uint32_t ) __FLASH_segment_start__ ) ) | |
| ( portMPU_REGION_ENABLE ); |
| |
| /* Setup the privileged flash for privileged only access. This is where |
| * the kernel code is placed. */ |
| portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_functions_start__ ) | /* Base address. */ |
| ( portMPU_REGION_VALID ) | |
| ( portPRIVILEGED_FLASH_REGION ); |
| |
| portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_ONLY ) | |
| ( ( configTEX_S_C_B_FLASH & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | |
| ( prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_functions_end__ - ( uint32_t ) __privileged_functions_start__ ) ) | |
| ( portMPU_REGION_ENABLE ); |
| |
| /* Setup the privileged data RAM region. This is where the kernel data |
| * is placed. */ |
| portMPU_REGION_BASE_ADDRESS_REG = ( ( uint32_t ) __privileged_data_start__ ) | /* Base address. */ |
| ( portMPU_REGION_VALID ) | |
| ( portPRIVILEGED_RAM_REGION ); |
| |
| portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_PRIVILEGED_READ_WRITE ) | |
| ( portMPU_REGION_EXECUTE_NEVER ) | |
| ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | |
| prvGetMPURegionSizeSetting( ( uint32_t ) __privileged_data_end__ - ( uint32_t ) __privileged_data_start__ ) | |
| ( portMPU_REGION_ENABLE ); |
| |
| /* By default allow everything to access the general peripherals. The |
| * system peripherals and registers are protected. */ |
| portMPU_REGION_BASE_ADDRESS_REG = ( portPERIPHERALS_START_ADDRESS ) | |
| ( portMPU_REGION_VALID ) | |
| ( portGENERAL_PERIPHERALS_REGION ); |
| |
| portMPU_REGION_ATTRIBUTE_REG = ( portMPU_REGION_READ_WRITE | portMPU_REGION_EXECUTE_NEVER ) | |
| ( prvGetMPURegionSizeSetting( portPERIPHERALS_END_ADDRESS - portPERIPHERALS_START_ADDRESS ) ) | |
| ( portMPU_REGION_ENABLE ); |
| |
| /* Enable the memory fault exception. */ |
| portNVIC_SYS_CTRL_STATE_REG |= portNVIC_MEM_FAULT_ENABLE; |
| |
| /* Enable the MPU with the background region configured. */ |
| portMPU_CTRL_REG |= ( portMPU_ENABLE | portMPU_BACKGROUND_ENABLE ); |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| static uint32_t prvGetMPURegionSizeSetting( uint32_t ulActualSizeInBytes ) |
| { |
| uint32_t ulRegionSize, ulReturnValue = 4; |
| |
| /* 32 is the smallest region size, 31 is the largest valid value for |
| * ulReturnValue. */ |
| for( ulRegionSize = 32UL; ulReturnValue < 31UL; ( ulRegionSize <<= 1UL ) ) |
| { |
| if( ulActualSizeInBytes <= ulRegionSize ) |
| { |
| break; |
| } |
| else |
| { |
| ulReturnValue++; |
| } |
| } |
| |
| /* Shift the code by one before returning so it can be written directly |
| * into the the correct bit position of the attribute register. */ |
| return( ulReturnValue << 1UL ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xIsPrivileged( void ) /* __attribute__ (( naked )) */ |
| { |
| __asm volatile |
| ( |
| " mrs r0, control \n" /* r0 = CONTROL. */ |
| " tst r0, #1 \n" /* Perform r0 & 1 (bitwise AND) and update the conditions flag. */ |
| " ite ne \n" |
| " movne r0, #0 \n" /* CONTROL[0]!=0. Return false to indicate that the processor is not privileged. */ |
| " moveq r0, #1 \n" /* CONTROL[0]==0. Return true to indicate that the processor is privileged. */ |
| " bx lr \n" /* Return. */ |
| " \n" |
| " .align 4 \n" |
| ::: "r0", "memory" |
| ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vResetPrivilege( void ) /* __attribute__ (( naked )) */ |
| { |
| __asm volatile |
| ( |
| " mrs r0, control \n" /* r0 = CONTROL. */ |
| " orr r0, #1 \n" /* r0 = r0 | 1. */ |
| " msr control, r0 \n" /* CONTROL = r0. */ |
| " bx lr \n" /* Return to the caller. */ |
| ::: "r0", "memory" |
| ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vPortSwitchToUserMode( void ) |
| { |
| /* Load the current task's MPU settings from its TCB. */ |
| xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); |
| |
| /* Mark the task as unprivileged. */ |
| xTaskMpuSettings->ulTaskFlags &= ( ~( portTASK_IS_PRIVILEGED_FLAG ) ); |
| |
| /* Lower the processor's privilege level. */ |
| vResetPrivilege(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings, |
| const struct xMEMORY_REGION * const xRegions, |
| StackType_t * pxBottomOfStack, |
| configSTACK_DEPTH_TYPE uxStackDepth ) |
| { |
| #if defined( __ARMCC_VERSION ) |
| |
| /* Declaration when these variable are defined in code instead of being |
| * exported from linker scripts. */ |
| extern uint32_t * __SRAM_segment_start__; |
| extern uint32_t * __SRAM_segment_end__; |
| extern uint32_t * __privileged_data_start__; |
| extern uint32_t * __privileged_data_end__; |
| #else |
| /* Declaration when these variable are exported from linker scripts. */ |
| extern uint32_t __SRAM_segment_start__[]; |
| extern uint32_t __SRAM_segment_end__[]; |
| extern uint32_t __privileged_data_start__[]; |
| extern uint32_t __privileged_data_end__[]; |
| #endif /* if defined( __ARMCC_VERSION ) */ |
| |
| int32_t lIndex; |
| uint32_t ul; |
| |
| if( xRegions == NULL ) |
| { |
| /* No MPU regions are specified so allow access to all RAM. */ |
| xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress = |
| ( ( uint32_t ) __SRAM_segment_start__ ) | /* Base address. */ |
| ( portMPU_REGION_VALID ) | |
| ( portSTACK_REGION ); /* Region number. */ |
| |
| xMPUSettings->xRegion[ 0 ].ulRegionAttribute = |
| ( portMPU_REGION_READ_WRITE ) | |
| ( portMPU_REGION_EXECUTE_NEVER ) | |
| ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | |
| ( prvGetMPURegionSizeSetting( ( uint32_t ) __SRAM_segment_end__ - ( uint32_t ) __SRAM_segment_start__ ) ) | |
| ( portMPU_REGION_ENABLE ); |
| |
| xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) __SRAM_segment_start__; |
| xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) __SRAM_segment_end__; |
| xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION | |
| tskMPU_WRITE_PERMISSION ); |
| |
| /* Invalidate user configurable regions. */ |
| for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ ) |
| { |
| xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID ); |
| xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL; |
| xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL; |
| xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL; |
| xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL; |
| } |
| } |
| else |
| { |
| /* This function is called automatically when the task is created - in |
| * which case the stack region parameters will be valid. At all other |
| * times the stack parameters will not be valid and it is assumed that the |
| * stack region has already been configured. */ |
| if( uxStackDepth > 0 ) |
| { |
| /* Define the region that allows access to the stack. */ |
| xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress = |
| ( ( uint32_t ) pxBottomOfStack ) | |
| ( portMPU_REGION_VALID ) | |
| ( portSTACK_REGION ); /* Region number. */ |
| |
| xMPUSettings->xRegion[ 0 ].ulRegionAttribute = |
| ( portMPU_REGION_READ_WRITE ) | |
| ( portMPU_REGION_EXECUTE_NEVER ) | |
| ( prvGetMPURegionSizeSetting( uxStackDepth * ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t ) ) ) | |
| ( ( configTEX_S_C_B_SRAM & portMPU_RASR_TEX_S_C_B_MASK ) << portMPU_RASR_TEX_S_C_B_LOCATION ) | |
| ( portMPU_REGION_ENABLE ); |
| |
| xMPUSettings->xRegionSettings[ 0 ].ulRegionStartAddress = ( uint32_t ) pxBottomOfStack; |
| xMPUSettings->xRegionSettings[ 0 ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) ( pxBottomOfStack ) + |
| ( uxStackDepth * ( configSTACK_DEPTH_TYPE ) sizeof( StackType_t ) ) - 1UL ); |
| xMPUSettings->xRegionSettings[ 0 ].ulRegionPermissions = ( tskMPU_READ_PERMISSION | |
| tskMPU_WRITE_PERMISSION ); |
| } |
| |
| lIndex = 0; |
| |
| for( ul = 1UL; ul <= portNUM_CONFIGURABLE_REGIONS; ul++ ) |
| { |
| if( ( xRegions[ lIndex ] ).ulLengthInBytes > 0UL ) |
| { |
| /* Translate the generic region definition contained in |
| * xRegions into the CM4 specific MPU settings that are then |
| * stored in xMPUSettings. */ |
| xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = |
| ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress ) | |
| ( portMPU_REGION_VALID ) | |
| ( ul - 1UL ); /* Region number. */ |
| |
| xMPUSettings->xRegion[ ul ].ulRegionAttribute = |
| ( prvGetMPURegionSizeSetting( xRegions[ lIndex ].ulLengthInBytes ) ) | |
| ( xRegions[ lIndex ].ulParameters ) | |
| ( portMPU_REGION_ENABLE ); |
| |
| xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = ( uint32_t ) xRegions[ lIndex ].pvBaseAddress; |
| xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = ( uint32_t ) ( ( uint32_t ) xRegions[ lIndex ].pvBaseAddress + xRegions[ lIndex ].ulLengthInBytes - 1UL ); |
| xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL; |
| |
| if( ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_ONLY ) == portMPU_REGION_READ_ONLY ) || |
| ( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) == portMPU_REGION_PRIVILEGED_READ_WRITE_UNPRIV_READ_ONLY ) ) |
| { |
| xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = tskMPU_READ_PERMISSION; |
| } |
| |
| if( ( xRegions[ lIndex ].ulParameters & portMPU_REGION_READ_WRITE ) == portMPU_REGION_READ_WRITE ) |
| { |
| xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = ( tskMPU_READ_PERMISSION | tskMPU_WRITE_PERMISSION ); |
| } |
| } |
| else |
| { |
| /* Invalidate the region. */ |
| xMPUSettings->xRegion[ ul ].ulRegionBaseAddress = ( ( ul - 1UL ) | portMPU_REGION_VALID ); |
| xMPUSettings->xRegion[ ul ].ulRegionAttribute = 0UL; |
| xMPUSettings->xRegionSettings[ ul ].ulRegionStartAddress = 0UL; |
| xMPUSettings->xRegionSettings[ ul ].ulRegionEndAddress = 0UL; |
| xMPUSettings->xRegionSettings[ ul ].ulRegionPermissions = 0UL; |
| } |
| |
| lIndex++; |
| } |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| BaseType_t xPortIsAuthorizedToAccessBuffer( const void * pvBuffer, |
| uint32_t ulBufferLength, |
| uint32_t ulAccessRequested ) /* PRIVILEGED_FUNCTION */ |
| |
| { |
| uint32_t i, ulBufferStartAddress, ulBufferEndAddress; |
| BaseType_t xAccessGranted = pdFALSE; |
| const xMPU_SETTINGS * xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */ |
| |
| if( xSchedulerRunning == pdFALSE ) |
| { |
| /* Grant access to all the kernel objects before the scheduler |
| * is started. It is necessary because there is no task running |
| * yet and therefore, we cannot use the permissions of any |
| * task. */ |
| xAccessGranted = pdTRUE; |
| } |
| else if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG ) |
| { |
| xAccessGranted = pdTRUE; |
| } |
| else |
| { |
| if( portADD_UINT32_WILL_OVERFLOW( ( ( uint32_t ) pvBuffer ), ( ulBufferLength - 1UL ) ) == pdFALSE ) |
| { |
| ulBufferStartAddress = ( uint32_t ) pvBuffer; |
| ulBufferEndAddress = ( ( ( uint32_t ) pvBuffer ) + ulBufferLength - 1UL ); |
| |
| for( i = 0; i < portTOTAL_NUM_REGIONS_IN_TCB; i++ ) |
| { |
| if( portIS_ADDRESS_WITHIN_RANGE( ulBufferStartAddress, |
| xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress, |
| xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) && |
| portIS_ADDRESS_WITHIN_RANGE( ulBufferEndAddress, |
| xTaskMpuSettings->xRegionSettings[ i ].ulRegionStartAddress, |
| xTaskMpuSettings->xRegionSettings[ i ].ulRegionEndAddress ) && |
| portIS_AUTHORIZED( ulAccessRequested, xTaskMpuSettings->xRegionSettings[ i ].ulRegionPermissions ) ) |
| { |
| xAccessGranted = pdTRUE; |
| break; |
| } |
| } |
| } |
| } |
| |
| return xAccessGranted; |
| } |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configASSERT_DEFINED == 1 ) |
| |
| void vPortValidateInterruptPriority( void ) |
| { |
| uint32_t ulCurrentInterrupt; |
| uint8_t ucCurrentPriority; |
| |
| /* Obtain the number of the currently executing interrupt. */ |
| __asm volatile ( "mrs %0, ipsr" : "=r" ( ulCurrentInterrupt )::"memory" ); |
| |
| /* Is the interrupt number a user defined interrupt? */ |
| if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER ) |
| { |
| /* Look up the interrupt's priority. */ |
| ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ]; |
| |
| /* The following assertion will fail if a service routine (ISR) for |
| * an interrupt that has been assigned a priority above |
| * configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API |
| * function. ISR safe FreeRTOS API functions must *only* be called |
| * from interrupts that have been assigned a priority at or below |
| * configMAX_SYSCALL_INTERRUPT_PRIORITY. |
| * |
| * Numerically low interrupt priority numbers represent logically high |
| * interrupt priorities, therefore the priority of the interrupt must |
| * be set to a value equal to or numerically *higher* than |
| * configMAX_SYSCALL_INTERRUPT_PRIORITY. |
| * |
| * Interrupts that use the FreeRTOS API must not be left at their |
| * default priority of zero as that is the highest possible priority, |
| * which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY, |
| * and therefore also guaranteed to be invalid. |
| * |
| * FreeRTOS maintains separate thread and ISR API functions to ensure |
| * interrupt entry is as fast and simple as possible. |
| * |
| * The following links provide detailed information: |
| * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html |
| * https://www.freertos.org/Why-FreeRTOS/FAQs */ |
| configASSERT( ucCurrentPriority >= ucMaxSysCallPriority ); |
| } |
| |
| /* Priority grouping: The interrupt controller (NVIC) allows the bits |
| * that define each interrupt's priority to be split between bits that |
| * define the interrupt's pre-emption priority bits and bits that define |
| * the interrupt's sub-priority. For simplicity all bits must be defined |
| * to be pre-emption priority bits. The following assertion will fail if |
| * this is not the case (if some bits represent a sub-priority). |
| * |
| * If the application only uses CMSIS libraries for interrupt |
| * configuration then the correct setting can be achieved on all Cortex-M |
| * devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the |
| * scheduler. Note however that some vendor specific peripheral libraries |
| * assume a non-zero priority group setting, in which cases using a value |
| * of zero will result in unpredictable behaviour. */ |
| configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue ); |
| } |
| |
| #endif /* configASSERT_DEFINED */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) |
| |
| void vPortGrantAccessToKernelObject( TaskHandle_t xInternalTaskHandle, |
| int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */ |
| { |
| uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit; |
| xMPU_SETTINGS * xTaskMpuSettings; |
| |
| ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS ); |
| ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS ); |
| |
| xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle ); |
| |
| xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] |= ( 1U << ulAccessControlListEntryBit ); |
| } |
| |
| #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) |
| |
| void vPortRevokeAccessToKernelObject( TaskHandle_t xInternalTaskHandle, |
| int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */ |
| { |
| uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit; |
| xMPU_SETTINGS * xTaskMpuSettings; |
| |
| ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS ); |
| ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS ); |
| |
| xTaskMpuSettings = xTaskGetMPUSettings( xInternalTaskHandle ); |
| |
| xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] &= ~( 1U << ulAccessControlListEntryBit ); |
| } |
| |
| #endif /* #if ( ( configUSE_MPU_WRAPPERS_V1 == 0 ) && ( configENABLE_ACCESS_CONTROL_LIST == 1 ) ) */ |
| /*-----------------------------------------------------------*/ |
| |
| #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) |
| |
| #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) |
| |
| BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */ |
| { |
| uint32_t ulAccessControlListEntryIndex, ulAccessControlListEntryBit; |
| BaseType_t xAccessGranted = pdFALSE; |
| const xMPU_SETTINGS * xTaskMpuSettings; |
| |
| if( xSchedulerRunning == pdFALSE ) |
| { |
| /* Grant access to all the kernel objects before the scheduler |
| * is started. It is necessary because there is no task running |
| * yet and therefore, we cannot use the permissions of any |
| * task. */ |
| xAccessGranted = pdTRUE; |
| } |
| else |
| { |
| xTaskMpuSettings = xTaskGetMPUSettings( NULL ); /* Calling task's MPU settings. */ |
| |
| ulAccessControlListEntryIndex = ( ( uint32_t ) lInternalIndexOfKernelObject / portACL_ENTRY_SIZE_BITS ); |
| ulAccessControlListEntryBit = ( ( uint32_t ) lInternalIndexOfKernelObject % portACL_ENTRY_SIZE_BITS ); |
| |
| if( ( xTaskMpuSettings->ulTaskFlags & portTASK_IS_PRIVILEGED_FLAG ) == portTASK_IS_PRIVILEGED_FLAG ) |
| { |
| xAccessGranted = pdTRUE; |
| } |
| else |
| { |
| if( ( xTaskMpuSettings->ulAccessControlList[ ulAccessControlListEntryIndex ] & ( 1U << ulAccessControlListEntryBit ) ) != 0 ) |
| { |
| xAccessGranted = pdTRUE; |
| } |
| } |
| } |
| |
| return xAccessGranted; |
| } |
| |
| #else /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */ |
| |
| BaseType_t xPortIsAuthorizedToAccessKernelObject( int32_t lInternalIndexOfKernelObject ) /* PRIVILEGED_FUNCTION */ |
| { |
| ( void ) lInternalIndexOfKernelObject; |
| |
| /* If Access Control List feature is not used, all the tasks have |
| * access to all the kernel objects. */ |
| return pdTRUE; |
| } |
| |
| #endif /* #if ( configENABLE_ACCESS_CONTROL_LIST == 1 ) */ |
| |
| #endif /* #if ( configUSE_MPU_WRAPPERS_V1 == 0 ) */ |
| /*-----------------------------------------------------------*/ |