| /* |
| * FreeRTOS Kernel <DEVELOPMENT BRANCH> |
| * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| * |
| * SPDX-License-Identifier: MIT |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy of |
| * this software and associated documentation files (the "Software"), to deal in |
| * the Software without restriction, including without limitation the rights to |
| * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
| * the Software, and to permit persons to whom the Software is furnished to do so, |
| * subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in all |
| * copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS |
| * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR |
| * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER |
| * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * https://www.FreeRTOS.org |
| * https://github.com/FreeRTOS |
| * |
| */ |
| |
| /* Standard includes. */ |
| #include <stdlib.h> |
| |
| /* Scheduler includes. */ |
| #include "FreeRTOS.h" |
| #include "task.h" |
| |
| #if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1 |
| /* Check the configuration. */ |
| #if ( configMAX_PRIORITIES > 32 ) |
| #error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice. |
| #endif |
| #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ |
| |
| #ifndef configSETUP_TICK_INTERRUPT |
| #error configSETUP_TICK_INTERRUPT() must be defined in FreeRTOSConfig.h to call the function that sets up the tick interrupt. |
| #endif |
| |
| #ifndef configCLEAR_TICK_INTERRUPT |
| #error configCLEAR_TICK_INTERRUPT must be defined in FreeRTOSConfig.h to clear which ever interrupt was used to generate the tick interrupt. |
| #endif |
| |
| /* A critical section is exited when the critical section nesting count reaches |
| * this value. */ |
| #define portNO_CRITICAL_NESTING ( ( uint32_t ) 0 ) |
| |
| /* Tasks are not created with a floating point context, but can be given a |
| * floating point context after they have been created. A variable is stored as |
| * part of the tasks context that holds portNO_FLOATING_POINT_CONTEXT if the task |
| * does not have an FPU context, or any other value if the task does have an FPU |
| * context. */ |
| #define portNO_FLOATING_POINT_CONTEXT ( ( StackType_t ) 0 ) |
| |
| /* Constants required to setup the initial task context. */ |
| #define portINITIAL_SPSR ( ( StackType_t ) 0x1f ) /* System mode, ARM mode, IRQ enabled FIQ enabled. */ |
| #define portTHUMB_MODE_BIT ( ( StackType_t ) 0x20 ) |
| #define portTHUMB_MODE_ADDRESS ( 0x01UL ) |
| |
| /* Masks all bits in the APSR other than the mode bits. */ |
| #define portAPSR_MODE_BITS_MASK ( 0x1F ) |
| |
| /* The value of the mode bits in the APSR when the CPU is executing in user |
| * mode. */ |
| #define portAPSR_USER_MODE ( 0x10 ) |
| |
| /* Let the user override the pre-loading of the initial LR with the address of |
| * prvTaskExitError() in case it messes up unwinding of the stack in the |
| * debugger. */ |
| #ifdef configTASK_RETURN_ADDRESS |
| #define portTASK_RETURN_ADDRESS configTASK_RETURN_ADDRESS |
| #else |
| #define portTASK_RETURN_ADDRESS prvTaskExitError |
| #endif |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * Starts the first task executing. This function is necessarily written in |
| * assembly code so is implemented in portASM.s. |
| */ |
| extern void vPortRestoreTaskContext( void ); |
| |
| /* |
| * Used to catch tasks that attempt to return from their implementing function. |
| */ |
| static void prvTaskExitError( void ); |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* A variable is used to keep track of the critical section nesting. This |
| * variable has to be stored as part of the task context and must be initialised to |
| * a non zero value to ensure interrupts don't inadvertently become unmasked before |
| * the scheduler starts. As it is stored as part of the task context it will |
| * automatically be set to 0 when the first task is started. */ |
| volatile uint32_t ulCriticalNesting = 9999UL; |
| |
| /* Saved as part of the task context. If ulPortTaskHasFPUContext is non-zero then |
| * a floating point context must be saved and restored for the task. */ |
| volatile uint32_t ulPortTaskHasFPUContext = pdFALSE; |
| |
| /* Set to 1 to pend a context switch from an ISR. */ |
| volatile uint32_t ulPortYieldRequired = pdFALSE; |
| |
| /* Counts the interrupt nesting depth. A context switch is only performed if |
| * if the nesting depth is 0. */ |
| volatile uint32_t ulPortInterruptNesting = 0UL; |
| |
| /*-----------------------------------------------------------*/ |
| |
| /* |
| * See header file for description. |
| */ |
| StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, |
| TaskFunction_t pxCode, |
| void * pvParameters ) |
| { |
| /* Setup the initial stack of the task. The stack is set exactly as |
| * expected by the portRESTORE_CONTEXT() macro. |
| * |
| * The fist real value on the stack is the status register, which is set for |
| * system mode, with interrupts enabled. A few NULLs are added first to ensure |
| * GDB does not try decoding a non-existent return address. */ |
| *pxTopOfStack = ( StackType_t ) NULL; |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) NULL; |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) NULL; |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) portINITIAL_SPSR; |
| |
| if( ( ( uint32_t ) pxCode & portTHUMB_MODE_ADDRESS ) != 0x00UL ) |
| { |
| /* The task will start in THUMB mode. */ |
| *pxTopOfStack |= portTHUMB_MODE_BIT; |
| } |
| |
| pxTopOfStack--; |
| |
| /* Next the return address, which in this case is the start of the task. */ |
| *pxTopOfStack = ( StackType_t ) pxCode; |
| pxTopOfStack--; |
| |
| /* Next all the registers other than the stack pointer. */ |
| *pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS; /* R14 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x12121212; /* R12 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x11111111; /* R11 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x10101010; /* R10 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x09090909; /* R9 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x08080808; /* R8 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x07070707; /* R7 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x06060606; /* R6 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x05050505; /* R5 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x04040404; /* R4 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x03030303; /* R3 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x02020202; /* R2 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) 0x01010101; /* R1 */ |
| pxTopOfStack--; |
| *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */ |
| pxTopOfStack--; |
| |
| /* The task will start with a critical nesting count of 0 as interrupts are |
| * enabled. */ |
| *pxTopOfStack = portNO_CRITICAL_NESTING; |
| pxTopOfStack--; |
| |
| /* The task will start without a floating point context. A task that uses |
| * the floating point hardware must call vPortTaskUsesFPU() before executing |
| * any floating point instructions. */ |
| *pxTopOfStack = portNO_FLOATING_POINT_CONTEXT; |
| |
| return pxTopOfStack; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| static void prvTaskExitError( void ) |
| { |
| /* A function that implements a task must not exit or attempt to return to |
| * its caller as there is nothing to return to. If a task wants to exit it |
| * should instead call vTaskDelete( NULL ). |
| * |
| * Artificially force an assert() to be triggered if configASSERT() is |
| * defined, then stop here so application writers can catch the error. */ |
| configASSERT( ulPortInterruptNesting == ~0UL ); |
| portDISABLE_INTERRUPTS(); |
| |
| for( ; ; ) |
| { |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| BaseType_t xPortStartScheduler( void ) |
| { |
| uint32_t ulAPSR; |
| |
| /* Only continue if the CPU is not in User mode. The CPU must be in a |
| * Privileged mode for the scheduler to start. */ |
| __asm volatile ( "MRS %0, APSR" : "=r" ( ulAPSR ) ); |
| |
| ulAPSR &= portAPSR_MODE_BITS_MASK; |
| configASSERT( ulAPSR != portAPSR_USER_MODE ); |
| |
| if( ulAPSR != portAPSR_USER_MODE ) |
| { |
| /* Start the timer that generates the tick ISR. */ |
| portDISABLE_INTERRUPTS(); |
| configSETUP_TICK_INTERRUPT(); |
| |
| /* Start the first task executing. */ |
| vPortRestoreTaskContext(); |
| } |
| |
| /* Will only get here if vTaskStartScheduler() was called with the CPU in |
| * a non-privileged mode or the binary point register was not set to its lowest |
| * possible value. prvTaskExitError() is referenced to prevent a compiler |
| * warning about it being defined but not referenced in the case that the user |
| * defines their own exit address. */ |
| ( void ) prvTaskExitError; |
| return 0; |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vPortEndScheduler( void ) |
| { |
| /* Not implemented in ports where there is nothing to return to. |
| * Artificially force an assert. */ |
| configASSERT( ulCriticalNesting == 1000UL ); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vPortEnterCritical( void ) |
| { |
| portDISABLE_INTERRUPTS(); |
| |
| /* Now that interrupts are disabled, ulCriticalNesting can be accessed |
| * directly. Increment ulCriticalNesting to keep a count of how many times |
| * portENTER_CRITICAL() has been called. */ |
| ulCriticalNesting++; |
| |
| /* This is not the interrupt safe version of the enter critical function so |
| * assert() if it is being called from an interrupt context. Only API |
| * functions that end in "FromISR" can be used in an interrupt. Only assert if |
| * the critical nesting count is 1 to protect against recursive calls if the |
| * assert function also uses a critical section. */ |
| if( ulCriticalNesting == 1 ) |
| { |
| configASSERT( ulPortInterruptNesting == 0 ); |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vPortExitCritical( void ) |
| { |
| if( ulCriticalNesting > portNO_CRITICAL_NESTING ) |
| { |
| /* Decrement the nesting count as the critical section is being |
| * exited. */ |
| ulCriticalNesting--; |
| |
| /* If the nesting level has reached zero then all interrupt |
| * priorities must be re-enabled. */ |
| if( ulCriticalNesting == portNO_CRITICAL_NESTING ) |
| { |
| /* Critical nesting has reached zero so all interrupt priorities |
| * should be unmasked. */ |
| portENABLE_INTERRUPTS(); |
| } |
| } |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void FreeRTOS_Tick_Handler( void ) |
| { |
| uint32_t ulInterruptStatus; |
| |
| ulInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); |
| |
| /* Increment the RTOS tick. */ |
| if( xTaskIncrementTick() != pdFALSE ) |
| { |
| ulPortYieldRequired = pdTRUE; |
| } |
| |
| portCLEAR_INTERRUPT_MASK_FROM_ISR( ulInterruptStatus ); |
| |
| configCLEAR_TICK_INTERRUPT(); |
| } |
| /*-----------------------------------------------------------*/ |
| |
| void vPortTaskUsesFPU( void ) |
| { |
| uint32_t ulInitialFPSCR = 0; |
| |
| /* A task is registering the fact that it needs an FPU context. Set the |
| * FPU flag (which is saved as part of the task context). */ |
| ulPortTaskHasFPUContext = pdTRUE; |
| |
| /* Initialise the floating point status register. */ |
| __asm volatile ( "FMXR FPSCR, %0" ::"r" ( ulInitialFPSCR ) ); |
| } |
| /*-----------------------------------------------------------*/ |