blob: b72f8fd941c3f1240ac3c5dd39791ad06c710b1e [file] [log] [blame]
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_rfft_f32.c
*
* Description: RFFT & RIFFT Floating point process function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
extern void arm_radix4_butterfly_f32(
float32_t * pSrc,
uint16_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier);
extern void arm_radix4_butterfly_inverse_f32(
float32_t * pSrc,
uint16_t fftLen,
float32_t * pCoef,
uint16_t twidCoefModifier,
float32_t onebyfftLen);
extern void arm_bitreversal_f32(
float32_t * pSrc,
uint16_t fftSize,
uint16_t bitRevFactor,
uint16_t * pBitRevTab);
/**
* @ingroup groupTransforms
*/
/*--------------------------------------------------------------------
* Internal functions prototypes
*--------------------------------------------------------------------*/
void arm_split_rfft_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pATable,
float32_t * pBTable,
float32_t * pDst,
uint32_t modifier);
void arm_split_rifft_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pATable,
float32_t * pBTable,
float32_t * pDst,
uint32_t modifier);
/**
* @addtogroup RealFFT
* @{
*/
/**
* @brief Processing function for the floating-point RFFT/RIFFT.
* @deprecated Do not use this function. It has been superceded by \ref arm_rfft_fast_f32 and will be removed
* in the future.
* @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure.
* @param[in] *pSrc points to the input buffer.
* @param[out] *pDst points to the output buffer.
* @return none.
*/
void arm_rfft_f32(
const arm_rfft_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst)
{
const arm_cfft_radix4_instance_f32 *S_CFFT = S->pCfft;
/* Calculation of Real IFFT of input */
if(S->ifftFlagR == 1u)
{
/* Real IFFT core process */
arm_split_rifft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
/* Complex radix-4 IFFT process */
arm_radix4_butterfly_inverse_f32(pDst, S_CFFT->fftLen,
S_CFFT->pTwiddle,
S_CFFT->twidCoefModifier,
S_CFFT->onebyfftLen);
/* Bit reversal process */
if(S->bitReverseFlagR == 1u)
{
arm_bitreversal_f32(pDst, S_CFFT->fftLen,
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
}
}
else
{
/* Calculation of RFFT of input */
/* Complex radix-4 FFT process */
arm_radix4_butterfly_f32(pSrc, S_CFFT->fftLen,
S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
/* Bit reversal process */
if(S->bitReverseFlagR == 1u)
{
arm_bitreversal_f32(pSrc, S_CFFT->fftLen,
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
}
/* Real FFT core process */
arm_split_rfft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
}
}
/**
* @} end of RealFFT group
*/
/**
* @brief Core Real FFT process
* @param[in] *pSrc points to the input buffer.
* @param[in] fftLen length of FFT.
* @param[in] *pATable points to the twiddle Coef A buffer.
* @param[in] *pBTable points to the twiddle Coef B buffer.
* @param[out] *pDst points to the output buffer.
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_split_rfft_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pATable,
float32_t * pBTable,
float32_t * pDst,
uint32_t modifier)
{
uint32_t i; /* Loop Counter */
float32_t outR, outI; /* Temporary variables for output */
float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
float32_t *pDst1 = &pDst[2], *pDst2 = &pDst[(4u * fftLen) - 1u]; /* temp pointers for output buffer */
float32_t *pSrc1 = &pSrc[2], *pSrc2 = &pSrc[(2u * fftLen) - 1u]; /* temp pointers for input buffer */
/* Init coefficient pointers */
pCoefA = &pATable[modifier * 2u];
pCoefB = &pBTable[modifier * 2u];
i = fftLen - 1u;
while(i > 0u)
{
/*
outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
+ pSrc[2 * n - 2 * i] * pBTable[2 * i] +
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
*/
/* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
/* read pATable[2 * i] */
CoefA1 = *pCoefA++;
/* pATable[2 * i + 1] */
CoefA2 = *pCoefA;
/* pSrc[2 * i] * pATable[2 * i] */
outR = *pSrc1 * CoefA1;
/* pSrc[2 * i] * CoefA2 */
outI = *pSrc1++ * CoefA2;
/* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
outR -= (*pSrc1 + *pSrc2) * CoefA2;
/* pSrc[2 * i + 1] * CoefA1 */
outI += *pSrc1++ * CoefA1;
CoefB1 = *pCoefB;
/* pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
outI -= *pSrc2-- * CoefB1;
/* pSrc[2 * fftLen - 2 * i] * CoefA2 */
outI -= *pSrc2 * CoefA2;
/* pSrc[2 * fftLen - 2 * i] * CoefB1 */
outR += *pSrc2-- * CoefB1;
/* write output */
*pDst1++ = outR;
*pDst1++ = outI;
/* write complex conjugate output */
*pDst2-- = -outI;
*pDst2-- = outR;
/* update coefficient pointer */
pCoefB = pCoefB + (modifier * 2u);
pCoefA = pCoefA + ((modifier * 2u) - 1u);
i--;
}
pDst[2u * fftLen] = pSrc[0] - pSrc[1];
pDst[(2u * fftLen) + 1u] = 0.0f;
pDst[0] = pSrc[0] + pSrc[1];
pDst[1] = 0.0f;
}
/**
* @brief Core Real IFFT process
* @param[in] *pSrc points to the input buffer.
* @param[in] fftLen length of FFT.
* @param[in] *pATable points to the twiddle Coef A buffer.
* @param[in] *pBTable points to the twiddle Coef B buffer.
* @param[out] *pDst points to the output buffer.
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_split_rifft_f32(
float32_t * pSrc,
uint32_t fftLen,
float32_t * pATable,
float32_t * pBTable,
float32_t * pDst,
uint32_t modifier)
{
float32_t outR, outI; /* Temporary variables for output */
float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
float32_t *pSrc1 = &pSrc[0], *pSrc2 = &pSrc[(2u * fftLen) + 1u];
pCoefA = &pATable[0];
pCoefB = &pBTable[0];
while(fftLen > 0u)
{
/*
outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
pIn[2 * n - 2 * i] * pBTable[2 * i] -
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
*/
CoefA1 = *pCoefA++;
CoefA2 = *pCoefA;
/* outR = (pSrc[2 * i] * CoefA1 */
outR = *pSrc1 * CoefA1;
/* - pSrc[2 * i] * CoefA2 */
outI = -(*pSrc1++) * CoefA2;
/* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
outR += (*pSrc1 + *pSrc2) * CoefA2;
/* pSrc[2 * i + 1] * CoefA1 */
outI += (*pSrc1++) * CoefA1;
CoefB1 = *pCoefB;
/* - pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
outI -= *pSrc2-- * CoefB1;
/* pSrc[2 * fftLen - 2 * i] * CoefB1 */
outR += *pSrc2 * CoefB1;
/* pSrc[2 * fftLen - 2 * i] * CoefA2 */
outI += *pSrc2-- * CoefA2;
/* write output */
*pDst++ = outR;
*pDst++ = outI;
/* update coefficient pointer */
pCoefB = pCoefB + (modifier * 2u);
pCoefA = pCoefA + ((modifier * 2u) - 1u);
/* Decrement loop count */
fftLen--;
}
}