blob: 011e21dfee2c151bb01a78275fd4e1842b4565a9 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_q31.c
* Description: Processing function for the Q31 Biquad cascade filter
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupFilters
*/
/**
@addtogroup BiquadCascadeDF1
@{
*/
/**
@brief Processing function for the Q31 Biquad cascade filter.
@param[in] S points to an instance of the Q31 Biquad cascade structure
@param[in] pSrc points to the block of input data
@param[out] pDst points to the block of output data
@param[in] blockSize number of samples to process
@return none
@par Scaling and Overflow Behavior
The function is implemented using an internal 64-bit accumulator.
The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
Thus, if the accumulator result overflows it wraps around rather than clip.
In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
1.31 format by discarding the low 32 bits.
@remark
Refer to \ref arm_biquad_cascade_df1_fast_q31() for a faster but less precise implementation of this filter.
*/
void arm_biquad_cascade_df1_q31(
const arm_biquad_casd_df1_inst_q31 * S,
const q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
const q31_t *pIn = pSrc; /* Source pointer */
q31_t *pOut = pDst; /* Destination pointer */
q31_t *pState = S->pState; /* pState pointer */
const q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q63_t acc; /* Accumulator */
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
q31_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */
q31_t Xn; /* Temporary input */
uint32_t uShift = ((uint32_t) S->postShift + 1U);
uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */
uint32_t sample, stage = S->numStages; /* Loop counters */
#if defined (ARM_MATH_LOOPUNROLL)
q31_t acc_l, acc_h; /* temporary output variables */
#endif
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the pState values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
#if defined (ARM_MATH_LOOPUNROLL)
/* Apply loop unrolling and compute 4 output values simultaneously. */
/* Variable acc hold output values that are being computed:
*
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
/* Loop unrolling: Compute 4 outputs at a time */
sample = blockSize >> 2U;
while (sample > 0U)
{
/* Read the first input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
acc = ((q63_t) b0 * Xn) + ((q63_t) b1 * Xn1) + ((q63_t) b2 * Xn2) + ((q63_t) a1 * Yn1) + ((q63_t) a2 * Yn2);
/* The result is converted to 1.31 , Yn2 variable is reused */
acc_l = (acc ) & 0xffffffff; /* Calc lower part of acc */
acc_h = (acc >> 32) & 0xffffffff; /* Calc upper part of acc */
/* Apply shift for lower part of acc and upper part of acc */
Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Store output in destination buffer. */
*pOut++ = Yn2;
/* Read the second input */
Xn2 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
acc = ((q63_t) b0 * Xn2) + ((q63_t) b1 * Xn) + ((q63_t) b2 * Xn1) + ((q63_t) a1 * Yn2) + ((q63_t) a2 * Yn1);
/* The result is converted to 1.31, Yn1 variable is reused */
acc_l = (acc ) & 0xffffffff; /* Calc lower part of acc */
acc_h = (acc >> 32) & 0xffffffff; /* Calc upper part of acc */
/* Apply shift for lower part of acc and upper part of acc */
Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Store output in destination buffer. */
*pOut++ = Yn1;
/* Read the third input */
Xn1 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
acc = ((q63_t) b0 * Xn1) + ((q63_t) b1 * Xn2) + ((q63_t) b2 * Xn) + ((q63_t) a1 * Yn1) + ((q63_t) a2 * Yn2);
/* The result is converted to 1.31, Yn2 variable is reused */
acc_l = (acc ) & 0xffffffff; /* Calc lower part of acc */
acc_h = (acc >> 32) & 0xffffffff; /* Calc upper part of acc */
/* Apply shift for lower part of acc and upper part of acc */
Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Store output in destination buffer. */
*pOut++ = Yn2;
/* Read the forth input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
acc = ((q63_t) b0 * Xn) + ((q63_t) b1 * Xn1) + ((q63_t) b2 * Xn2) + ((q63_t) a1 * Yn2) + ((q63_t) a2 * Yn1);
/* The result is converted to 1.31, Yn1 variable is reused */
acc_l = (acc ) & 0xffffffff; /* Calc lower part of acc */
acc_h = (acc >> 32) & 0xffffffff; /* Calc upper part of acc */
/* Apply shift for lower part of acc and upper part of acc */
Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Store output in destination buffer. */
*pOut++ = Yn1;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
/* decrement loop counter */
sample--;
}
/* Loop unrolling: Compute remaining outputs */
sample = blockSize & 0x3U;
#else
/* Initialize blkCnt with number of samples */
sample = blockSize;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (sample > 0U)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
acc = ((q63_t) b0 * Xn) + ((q63_t) b1 * Xn1) + ((q63_t) b2 * Xn2) + ((q63_t) a1 * Yn1) + ((q63_t) a2 * Yn2);
/* The result is converted to 1.31 */
acc = acc >> lShift;
/* Store output in destination buffer. */
*pOut++ = (q31_t) acc;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = (q31_t) acc;
/* decrement loop counter */
sample--;
}
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent numStages occur in-place in the output buffer */
pIn = pDst;
/* Reset output pointer */
pOut = pDst;
/* decrement loop counter */
stage--;
} while (stage > 0U);
}
/**
@} end of BiquadCascadeDF1 group
*/