blob: 21999d2d97ca2c1cb2b7b438a824ccce920733b1 [file] [log] [blame]
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_conv_partial_opt_q15.c
* Description: Partial convolution of Q15 sequences
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupFilters
*/
/**
@addtogroup PartialConv
@{
*/
/**
@brief Partial convolution of Q15 sequences.
@param[in] pSrcA points to the first input sequence
@param[in] srcALen length of the first input sequence
@param[in] pSrcB points to the second input sequence
@param[in] srcBLen length of the second input sequence
@param[out] pDst points to the location where the output result is written
@param[in] firstIndex is the first output sample to start with
@param[in] numPoints is the number of output points to be computed
@param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
@param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : requested subset is not in the range [0 srcALen+srcBLen-2]
@remark
Refer to \ref arm_conv_partial_fast_q15() for a faster but less precise version of this function.
*/
arm_status arm_conv_partial_opt_q15(
const q15_t * pSrcA,
uint32_t srcALen,
const q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints,
q15_t * pScratch1,
q15_t * pScratch2)
{
q15_t *pOut = pDst; /* Output pointer */
q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
q63_t acc0; /* Accumulator */
q31_t x1; /* Temporary variables to hold state and coefficient values */
q31_t y1; /* State variables */
const q15_t *pIn1; /* InputA pointer */
const q15_t *pIn2; /* InputB pointer */
const q15_t *px; /* Intermediate inputA pointer */
q15_t *py; /* Intermediate inputB pointer */
uint32_t j, k, blkCnt; /* Loop counter */
uint32_t tapCnt; /* Loop count */
arm_status status; /* Status variable */
#if defined (ARM_MATH_LOOPUNROLL)
q63_t acc1, acc2, acc3; /* Accumulator */
q31_t x2, x3; /* Temporary variables to hold state and coefficient values */
q31_t y2; /* State variables */
#endif
/* Check for range of output samples to be calculated */
if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U))))
{
/* Set status as ARM_MATH_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if (srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* Temporary pointer for scratch2 */
py = pScratch2;
/* pointer to take end of scratch2 buffer */
pScr2 = pScratch2 + srcBLen - 1;
/* points to smaller length sequence */
px = pIn2;
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
k = srcBLen >> 2U;
/* Copy smaller length input sequence in reverse order into second scratch buffer */
while (k > 0U)
{
/* copy second buffer in reversal manner */
*pScr2-- = *px++;
*pScr2-- = *px++;
*pScr2-- = *px++;
*pScr2-- = *px++;
/* Decrement loop counter */
k--;
}
/* Loop unrolling: Compute remaining outputs */
k = srcBLen % 0x4U;
#else
/* Initialize k with number of samples */
k = srcBLen;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (k > 0U)
{
/* copy second buffer in reversal manner for remaining samples */
*pScr2-- = *px++;
/* Decrement loop counter */
k--;
}
/* Initialze temporary scratch pointer */
pScr1 = pScratch1;
/* Assuming scratch1 buffer is aligned by 32-bit */
/* Fill (srcBLen - 1U) zeros in scratch buffer */
arm_fill_q15(0, pScr1, (srcBLen - 1U));
/* Update temporary scratch pointer */
pScr1 += (srcBLen - 1U);
/* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
/* Copy (srcALen) samples in scratch buffer */
arm_copy_q15(pIn1, pScr1, srcALen);
/* Update pointers */
pScr1 += srcALen;
/* Fill (srcBLen - 1U) zeros at end of scratch buffer */
arm_fill_q15(0, pScr1, (srcBLen - 1U));
/* Update pointer */
pScr1 += (srcBLen - 1U);
/* Initialization of pIn2 pointer */
pIn2 = py;
pScratch1 += firstIndex;
pOut = pDst + firstIndex;
/* Actual convolution process starts here */
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = (numPoints) >> 2;
while (blkCnt > 0)
{
/* Initialze temporary scratch pointer as scratch1 */
pScr1 = pScratch1;
/* Clear Accumlators */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* Read two samples from scratch1 buffer */
x1 = read_q15x2_ia (&pScr1);
/* Read next two samples from scratch1 buffer */
x2 = read_q15x2_ia (&pScr1);
tapCnt = (srcBLen) >> 2U;
while (tapCnt > 0U)
{
/* Read four samples from smaller buffer */
y1 = read_q15x2_ia ((q15_t **) &pIn2);
y2 = read_q15x2_ia ((q15_t **) &pIn2);
/* multiply and accumlate */
acc0 = __SMLALD(x1, y1, acc0);
acc2 = __SMLALD(x2, y1, acc2);
/* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x2, x1, 0);
#else
x3 = __PKHBT(x1, x2, 0);
#endif
/* multiply and accumlate */
acc1 = __SMLALDX(x3, y1, acc1);
/* Read next two samples from scratch1 buffer */
x1 = read_q15x2_ia (&pScr1);
/* multiply and accumlate */
acc0 = __SMLALD(x2, y2, acc0);
acc2 = __SMLALD(x1, y2, acc2);
/* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x1, x2, 0);
#else
x3 = __PKHBT(x2, x1, 0);
#endif
acc3 = __SMLALDX(x3, y1, acc3);
acc1 = __SMLALDX(x3, y2, acc1);
x2 = read_q15x2_ia (&pScr1);
#ifndef ARM_MATH_BIG_ENDIAN
x3 = __PKHBT(x2, x1, 0);
#else
x3 = __PKHBT(x1, x2, 0);
#endif
acc3 = __SMLALDX(x3, y2, acc3);
/* Decrement loop counter */
tapCnt--;
}
/* Update scratch pointer for remaining samples of smaller length sequence */
pScr1 -= 4U;
/* apply same above for remaining samples of smaller length sequence */
tapCnt = (srcBLen) & 3U;
while (tapCnt > 0U)
{
/* accumlate the results */
acc0 += (*pScr1++ * *pIn2);
acc1 += (*pScr1++ * *pIn2);
acc2 += (*pScr1++ * *pIn2);
acc3 += (*pScr1++ * *pIn2++);
pScr1 -= 3U;
/* Decrement loop counter */
tapCnt--;
}
blkCnt--;
/* Store the results in the accumulators in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
write_q15x2_ia (&pOut, __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16));
write_q15x2_ia (&pOut, __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16));
#else
write_q15x2_ia (&pOut, __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16));
write_q15x2_ia (&pOut, __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Initialization of inputB pointer */
pIn2 = py;
pScratch1 += 4U;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = numPoints & 0x3;
#else
/* Initialize blkCnt with number of samples */
blkCnt = numPoints;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
/* Calculate convolution for remaining samples of Bigger length sequence */
while (blkCnt > 0)
{
/* Initialze temporary scratch pointer as scratch1 */
pScr1 = pScratch1;
/* Clear Accumlators */
acc0 = 0;
tapCnt = (srcBLen) >> 1U;
while (tapCnt > 0U)
{
/* Read next two samples from scratch1 buffer */
x1 = read_q15x2_ia (&pScr1);
/* Read two samples from smaller buffer */
y1 = read_q15x2_ia ((q15_t **) &pIn2);
acc0 = __SMLALD(x1, y1, acc0);
/* Decrement the loop counter */
tapCnt--;
}
tapCnt = (srcBLen) & 1U;
/* apply same above for remaining samples of smaller length sequence */
while (tapCnt > 0U)
{
/* accumlate the results */
acc0 += (*pScr1++ * *pIn2++);
/* Decrement loop counter */
tapCnt--;
}
blkCnt--;
/* The result is in 2.30 format. Convert to 1.15 with saturation.
** Then store the output in the destination buffer. */
*pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
/* Initialization of inputB pointer */
pIn2 = py;
pScratch1 += 1U;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
@} end of PartialConv group
*/